Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углеводы восстановление

    Окисление органических веществ. В результате поглощения СО2 и дальнейших его преобразований в ходе фотосинтеза образуется молекула углевода, которая служит углеродным скелетом для построения всех органических соединений в клетке. Органические вещества, возникшие в процессе фотосинтеза, характеризуются высоким запасом внутренней энергии. Но энергия, аккумулированная в конечных продуктах фотосинтеза — углеводах, жирах, белках,— недоступна для непосредственного использования ее в химических реакциях. Перевод этой потенциальной энергии в активную форму осуществляется в процессе дыхания. Дыхание включает механизмы активации атомоп водорода органического субстрата, освобождения и мобилизации энергии в виде АТФ и генерации различных углеродных скелетов. В процессе дыхания углевод, жиры и белки в реакциях биологического окисления и постепенной перестройки органического скелета отдают спои атомы водорода с образованием восстановленных форм. Последние при окислении в дыхательной цепи освобождают энергию, которая аккумулируется в активной форме в сопряженных реакциях синтеза АТФ. Таким образом, фотосинтез и дыхание — это разли ные, но тесно связанные стороны общего энергообмена. [c.609]


    Содержащиеся в пищевых продуктах жиры и углеводы служат основными источниками энергии. Чистые жиры обладают калорийностью (теплотой сгорания) 37,6 кДж-г-, чистые углеводы (сахар) имеют калорийность около 17 кДж-г (крахмал—17,5, сахароза—16,5 и глюкоза— 15,6). Калорийность пищевых продуктов определяют при помощи калориметрической бомбы, как описано в приложении VI. Третьей основной составной частью пищевых продуктов являются белки, необходимые главным образом для обеспечения роста и восстановления тканей. Взрослому человеку среднего роста необходимо получать ежедневно около 50 г белков. Обычно же человек потребляет несколько больше— 80 г калорийность этого количества составляет примерно 1400 кДж, поскольку теплота сгорания белка равна около 18 кДж-г . Таким образом, за счет жиров и углеводов человек должен получать около 10 600 кДж из 12 000 кДж, необходимых ему ежедневно. Обычно же человек за счет жиров получает около одной трети от общего количества необходимой энергии (100 г дает 3760 кДж), а за счет углеводов около 60%. Люди, выполняющие очень тяжелую физическую работу, например лесорубы или исследователи Арктики, нуждающиеся в усиленном питании, могут повысить суточное потребление жиров до 250 г жиры — более концентрированный источник энергии, чем углеводы. [c.406]

    Восстановленная метиленовая синь уже способна непосредственно вступать во взаимодействие с кислородом воздуха. При этом отнятый от ее молекулы водород соединяется с кислородом, образуя воду. Как видим, присоединение кислорода к углеводам осуществляется через промежуточную окислительно-восстановительную систему метиленовая синь — лейкометиленовая синь. Подобные процессы, только значительно более сложные, протекают в живой клетке, осуществляя так называемое внутреннее дыхание тканей. [c.143]

    В природе существуют микроорганизмы, вызывающие процесс денитрификации, т. е. восстановление азотнокислых солей до газообразного азота. Эти бактерии относятся к группе факультативных анаэробов. Процесс денитрификации протекает при наличии в среде безазотистых веществ углеводов, клетчатки, солей летучих жирных кислот и др. Такие вещества окисляются освободившимся из нитратов кислородом. Очевидно, в этом заключается энергетический смысл процесса. Схематически процесс денитрификации можно записать уравнением [c.265]

    Катализаторы (N1 30%, Си 5% N1 30%, Си 10% N1 16%, Си 10%) готовились осаждением карбонатов путем предварительной пропитки диатомита 10%-ным раствором углекислого натрия и последующей обработкой 10%-ными растворами сернокислых солей никеля, меди с последующим восстановлением в токе водорода при 350 °С. Уменьшение времени восстановления катализатора с 20 до 10 ч практически мало сказывалось на активности катализатора содержание глицерина в гидрогенизате не менялось, содержание гликолей возрастало с 34% (20 ч) до 44% к сухим веществам (10 ч). Катализатор, выгруженный в токе азота и углекислого газа, дает практически одинаковые результаты. Уменьшение скорости подачи водорода с 12 до 6 т /не сказывается на активности катализатора. При восстановлении шихты катализатора в течение 20 ч получен катализатор, расщепляющий углевод с содержанием в катализате высших полиолов 24%, глицерина 28%, гликолей 30% к сухим веществам. При гидрогенолизе 10%)-ного раствора сахарозы в течение 153 ч непрерывной работы получен гидрогенизат с содержанием глицерина 29%, глико-лей 34%, высших полиолов 18% к сухим веществам. [c.24]


    Для асимметрического восстановления кетонов и спиртов использовались также комплексы из алюмогидрида и других оптически активных спиртов [97], производных углеводов [98], спартеина [99], аминов [100]. [c.129]

    Каталитическое восстановление углеводов впервые было осуществлено в 1912 г. В. Н. Ипатьевым. Вначале для этой цели применялись металлы платиновой группы, но их высокая стоимость заставила исследователей начать поиски новых, более дешевых катализаторов. В этой связи учеными разных стран были изучены никелевые и медные катализаторы, полученные восстановлением их солей и нанесенные на различные носители (кизельгур, окись хрома, окись алюминия и др.). В связи с тем, что указанные катализаторы имели сравнительно невысокую активность, предпринимались попытки улучшить их качество за-счет введения различных промоторов, а также испытывались новые формы катализаторов, в частности сплавные катализаторы. Последние отличаются простотой приготовления и повышенной стабильностью. Разви- [c.22]

    Такой состав был получен как среднее из результатов 11 экспериментов из них 6 проводили со свежим катализатором (3% к углеводу) и 5 опытов с регенерированным катализатором и добавлением 3% свежего катализатора при каждом проходе количество возвратного катализатора во всех случаях составляло 9% к углеводу. Регенерация выводимого из процесса катализатора проводилась путем обжига в токе воздуха при 400 °С с последующим восстановлением водородом при 450 °С. [c.109]

    Специальными исследованиями было установлено, что начальная активность и стабильность скелетных никелевых катализаторов зависит от температуры выщелачивания сплава при более низкой температуре получается более активный и стабильный катализатор. Изучалось восстановление углеводов на скелетных никелевых катализаторах при различном соотношении в сплаве никеля и алюминия и было показано, что при низком содержании никеля активность и стабильность катализатора уменьшаются (см. гл. 2). [c.152]

    После завершения этих реакций наступает темновая стадия процесса фотосинтеза, сущность которой состоит в передаче водорода молекулой восстановленного хлорофилла молекуле СО2 с образованием органических соединений типа углеводов. Этот процесс совершается под действием соответствующих ферментов по схеме [c.178]

    С точки зрения органического синтеза общая схема процесса состоит в образовании углеводов при восстановлении диоксида углерода  [c.228]

    За счет поглощаемой энергии солнечного света проходит важнейший на нашей планете фотохимический процесс — синтез углеводов и образование молекулярного кислорода из СОа и НгО. Свет поглощается специальным пигментом — хлорофиллом, который переходит в электронно-возбужденное состояние, и с этого начинается цепочка реакций, приводящая в конечном итоге к восстановлению углекислого газа до глюкозы. Суммарное уравнение реакции можно записать в виде [c.370]

    С,Н120в — самый распространенный моносахарид (углевод). Встречается в свободном состоянии особенно много ее в еиноградном соке, откуда другое название Г.— виноградный сахар. Г. входит в состав молекул крахмала, целлюлозы, декстрина, гликогена, мальтозы, сахарозы и многих других ди- и полисахаридов, из которых Г. получают как конечный продукт гидролиза. В печени человека из Г. синтезируется гликоген, в промышленности Г. получают гидролизом крахмала или клетчатки. При восстановлении Г. образуется шестиатомный спирт сорбит. Г. легко окисляется, дает реакцию серебряного зеркала. Г. широко применяется в медицине как вещество, легко усваивающееся организмом, при сердечных заболеваниях, шоковом состоянии, после операций. Г. [c.78]

    Так как суммарный процесс фотосинтеза состоит в окислении воды до кислорода и восстановлении диоксида углерода до углеводов, можно следующим образом оценить энергетические параметры процесса. Окислительно-восстано-вительный потенциал пары (см. гл. X, разд. 6) Н2О/О2 равен +0,81 В, а пары углевод/СОа равен —0,42 В. Таким образом, перенос одного электрона от воды на диоксид углерода требует затраты 0,82 — (—0,42) = 1,24 В, или 119,6 кДж/моль. В реакции [c.164]

    Основной характерной особенностью процесса расщепления углеводов по Смиту является более высокая чувствительность к кислотному гидролизу гликозидной связи в восстановленных продуктах периодатного окисления, чем в исходных соединениях. [c.112]

    Со времени работы Михаэлиса в 1936 г. [413] становилось jB e более очевидным, что многие окислительно-восстановитель-ные процессы в биологии протекают через одноэлектронные стадии. Большинство ферментов, катализирующих эти реакции, сами являются окислительно-восстановительными агентами. Это и понятно, поскольку основной поток энергии в биологических реакциях идет от углеводов (восстановленные соединения с большим запасом энергии) к углекислоте (окисленное соединение низкой энергии). [c.410]


    Гидрирование в растворе веществ, инертных в условиях реакции. Этот способ используется при восстановлении соединений, тзердых при рабочей температуре (получение сорбита и маннита из углеводов в водном растворе, гидрирование полимеров) или склонных (при высокой их концентрации) к повышенному образованию побочных продуктов. Так, альдегиды гидрируют в виде их растворов в соответствующих спиртах, чтобы избежать развития процессов альдольной конденсации. [c.516]

    ФОТОСИНТЕЗ — синтез растениями органических веществ (углеводов, белков, жиров) из диоксида углерода, воды, азота, ( юсфора, минеральных солей и других компонентов с помощью солнечной энергии, поглощаемой пигментом хлорофиллом. Ф.— основной процесс образования органических веществ на Земле, определяющий круговорот углерода, кислорода и других элементов, а также основной механизм трансформации солнечной энергии на нашей планете. В процессе Ф, растения усваивают вгод4 101 туглерода, разлагают 1,2 х X 10 т воды, выделяют 1 10 т кислорода и запасают 4-102° кал солнечной энергии в виде химической энергии продуктов Ф. Это количество энергии намного превышает годовую потребность человечества в ней. Ф.—сложный окис-лительно-восстановительный процесс, сочетающий фотохимические реакции с ферментативными. Вследствие Ф. происходит окисление воды с выделением молекулярного кислорода и восстановление диоксида углерода, что выражается [c.268]

    Одними из перспективных являются медные скелетные катализаторы, которые давно нашли свое применение при восстановлении карбонильных и ненасыщенных соединений [47], в реакциях дегидрирования вторичных спиртов [48], в реакциях обессерива-ния и других процессах [49]. В последние годы они применяются и при гидрогенолизе углеводов [50—53]. [c.47]

    Имеется множество работ по гидрированию углеводов с применением в качестве катализатора никеля с промоторами, осажденного различными способами на носителях — кизельгуре, силикаге- ле, окиси алюминия, глине, алюмосиликате, окиси магния, активированном угле и т. д. Восстановление никеля из его солей, осажденных на носителях, проводилось водородом при высокой температуре (300—400 °С) [10]. Для гидрирования ксилозы предлагались катализаторы, полученные осаждением никелевой соли содой с последующим восстановлением никель, осажденный на кизельгуре, и смешанные никель-кобальт-хромовые катализаторы на различных носителях. Для гидрирования коилозы рекомендовался также медно-хромовый катализатор [11]. [c.152]

    Пищевая промышленность широко использует спирты, получаемые восстановлением углеводов. Если принять сладость сахарозы за 100, то сладость эритрита оценивают в 238, -арабита — в 100, маннита — в 57, дульцита — в 74 [4]. Относительная сладость растворов полиолов зависит от их концентрации в растворе Камме-рер [5] приводит следующие данные о сладости растворов ксилита и сорбита в сравнении с растворами сахарозы и фруктозы (табл. 6.1). [c.177]

    Согласно современным представлениям, фотохимическая стадия Ф. заключается в поглощении хлорофиллом кванта света с переходом хлорофилла в восстановленное состояние вследствие присоединения к нему электрона или водорода из какого-либо восстановителя. Восстановленный хлорофилл с помощью нескольких последовательно действующих ферментов передает электрон или водород, а тем самым и поглощенную энергию на восстановление углекислоты. Что касается химизма фотосинтетиче-ского превращения углерода, то согласно современному представлению первичная фиксация СО2 происходит на углеводе, содержащем пять атомов углерода,— рибулозодифосфате, который при этом распадается с образованием фосфоглицериновой кислоты. Последняя восстанавливается до фосфоглицериново-го альдегида, который конденсируется с фосфодиоксиацетоном и образует фруктозодифосфат, а затем свободные сахара — гексозы, сахарозы и крахмал — в процессе, обратном гликолитиче-скому распаду. Очень важно, что растения могут осуществлять Ф. не только при естественном солнечном свете, но и при искусственном освещении, что дает возможность выращивать растения в разное время года. [c.269]

    В этой связи здесь хотелось бы сказать прежде всего о первопроходческих работах в данном направлении Ю. А. Жданова. Являясь активным поборником введения принципа историзма в химию, Ю. А. Жданов еще с 1950-х годов разрабатывает вопросы химической эволюции [21, 22] и, в частности, определения высоты химической организации веществ. В 1960-е годы он предложил применять два параметра для оценки структурного и энергетического уровней органических соединений. Один из них — информационная емкость соединения в расчете на один атом. Этот параметр не зависит от величины и сложности молекулы и служит объективным критерием структурных богатств как одного соединения, так и всего класса (углеводы, аминокислоты, терненоиды, нуклеиновые кислоты, стероиды, алкалоиды). В качестве энергетического параметра Ю. А. Ждановым выбрана средняя степень -окисления атома углерода в молекуле она характеризует электронное окружение атома и отражает соотношение в органическом соединении противоположных тенденций к спонтанному окислительно-восстановительному диспропорционированию. Эта величина выявляет отношение данного соединения к всеобщей среде живого— воде, взаимодействие с которой даже в отсутствие окислителей может привести одни органические соединения к окислению, другие—к восстановлению. [c.192]

    Полисахариды состоят из остатков моносахаридов, связанных между собой гликозидной связью. Эта группа углеводов включает низкомолекулярные (сахароподобные) полисахариды, содержащие от 2 до 10 остатков моноз, и высокомолекулярцые, состоящие от десятков до нескольких десятков тысяч остатков моноз. Глюкоза является одной из наиболее распространенных альдогексоз. При окислении глюкозы образуется глюконовая кислота, а при восстановлении — шестиатомный спирт — сорбит. При переходе ациклической формы в циклическую полуацетальную форму у первого углеродного атома формируется полуацетальная гидроксигруппа. Пр своим свойствам эта группа отличается от спиртового. [c.401]

    Реакция (8.43) термодинамически маловероятна в темноте (А// = 470 кДж, Д(3 = 500кДж на моль участвующего в реакции СОг). Образование одной молекулы кислорода требует переноса четырех электронов, и четыре электрона необходимы для восстановления одной молекулы СОг до углевода  [c.229]

    Для восстановления атомов кислорода двуокиси углерода до типичной для углеводов структуры Н — С — ОН надо на 2 атома кислорода затратить 4 атома водорода, выделяемых из четырех молекул воды (4НгО -> 4Н -Ь 40Н ) выделение 4Н из 4НгО требует затраты энергии 8 квантов света. [c.349]

    Каталитическое восстановление углеводов можно проводить в присутствии никеля Ренея. Однако из альдоз и кетоз соответствующие полиспирты удойнее получать простым кипячением и спирте с никелем Ренея [341]. [c.69]

    Этот синтез детально рассмотрен в литературе [6]. Хлорангидриды кислот можно превратить в эфиры тиоспиртов действием какого-либо меркаптана или алкилмеркаптида свинца. Обычно стандартный катализатор — никель Ренея W-1 или более активный — W-4 приводит к образованию спирта, но если катализатор частично дезактивирован нагреванием в ацетоне в течение 1—2 ч, то получается с удовлетворительным выходом альдегид. Этот синтез применялся в ряду углеводов [7] и стероидов [81. Необходимость использования для восстановления большого количества никеля Ренея (около [c.35]

    В результате этих и других экспериментов был сформулирован ряд положений, послуживших основой для создания так называемо Z-схемы фотосинтеза (рис. 13-18). Перенос одного электрона через эту систему требует затраты энергии двух квантов света. Таким образом, для образования одной молекулы NADPH необходимо четыре кванта, а на каждый акт включения СОг в состав углевода — восемь квантов. Большинство авторитетных специалистов в этой области считают, что для восстановления одной молекулы Oj требуется по меньшей мере восеыь-девять квантов. [c.38]

    Общая скорость генерирования радикалов определяется скоростью восстановления Fe в Fe " , поэтому в пром, системы вводят дополнительно восстановители, напр, фруктозу и др. углеводы, гидразин, ронгалит NaHS02 СН2О х [c.237]

    Транскетолаза, в состав к-рой входит ТДФ,-один из ферментов пентозофосфатного цикла окисления углеводов, являющегося осн. источником восстановленного никотин-амиддинуклеотидфосфата (НАДФН) и рибозо-5-фосфата (первый используется как донор водорода в многочисл. р-циях восстановления, второй входит в состав нуклеотидов и нуклеиновых к-т). [c.564]

    ФОТОСЙНТЕЗ, образование зелеными растениями и нек-рыми бактериями орг. в-в с использованием энергии солнечного света. Происходит при участии пигментов (у растений хлорофиллов). В основе Ф. лежат окислит.-восстановит. р-ции, в к-рых электроны переносятся от донора (напр., Н2О, H2S) к акцептору (СО2) с образованием восстановленных соед. (углеводов) и выделением Oj (если донор электронов Н2О), S (если донор электронов, напр., H2S) и др. [c.175]

    Химическая энергия 6 = 61 + 62, выделенная в этих реакциях, используется бактериями для восстановления оксида углерода (IV) до углеводов. Хемоавтотрофы в нриродньк экосистемах играют относительно небольшую роль. [c.9]


Смотреть страницы где упоминается термин Углеводы восстановление: [c.23]    [c.120]    [c.231]    [c.66]    [c.718]    [c.312]    [c.338]    [c.379]    [c.336]    [c.207]    [c.41]    [c.125]    [c.375]    [c.484]    [c.581]    [c.257]    [c.178]   
Биохимия (2004) -- [ c.228 ]




ПОИСК





Смотрите так же термины и статьи:

Аммиак, восстановление углеводов

Реакции восстановления в ряду углеводов

Углеводы восстановление производных

Углеводы также Сахара окисление восстановление

Углеводы, определение с помощью восстановления меди

Углекислота, восстановление углеводов



© 2025 chem21.info Реклама на сайте