Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Олово определение аскорбиновой кислотой

    В качестве восстановителей применяют гидразинсульфат, хлорид олова и аскорбиновую кислоту. С гидразином реакцию проводят при нагревании. При определении мышьяка рассматриваемым методом рекомендуется применять молибденовый реагент, содержащий молибдат аммония, гидразин и серную кислоту в соответствующих количествах (см. ниже). [c.262]


    Описанный метод применен для выделения мышьяка при его определении в рудах и продуктах из переработки [268, 269]. Для восстановления мышьяка(У) до мышьяка(1П) могут использоваться и другие восстановители, в том числе сульфит натрия, иодид калия, аскорбиновая кислота, хлорид олова(П) и др. [c.124]

    Определение дегидроаскорбиновой кислоты. В исследуемом материале, кроме аскорбиновой кислоты, может присутствовать ее окисленная форма — дегидроаскорбиновая кислота. Дегидроаскорбиновую кислоту определяют, переводя ее в аскорбиновую, восстановлением HjS. Кроме того, HjS удаляет олово, которое попадает в анализируемый материал из консервных банок, и устраняет мутность в экстрактах при анализе хлебных продуктов. [c.133]

    При непрямом титриметрическом определении олова [25] окисляют Sn взятым в избытке Fe при температуре кипения избыток Fe " оттитровывают раствором аскорбиновой кислоты при 60° С и pH 1в присутствии S N"-ионов. [c.240]

    Метод позволяет определять следы алюминия в олове высокой чистоты при содержании его 5-10- %. Олово мешает определению. Из всех обычно встречающихся примесей в олове высокой чистоты определению мешает также трехвалентное железо. Все остальные примеси заметного влияния на ход определения не оказывают. Мешающее действие Fe + устраняют восстановлением его до Fe2+ аскорбиновой кислотой. Олово удаляют нз анализируемого раствора в виде хлорного олова. [c.347]

    Описанная выше реакция с роданидом калия применяется для определения молибдена в руде колориметрическим методом. Восстановление обычно проводят при помощи хлористого олова, однако были предложены и другие восстановители, действующие более мягко и исключающие поэтому возможность восстановления молибдена до более низкой валентности, не дающей окрашенного соединения с роданидом. К числу таких восстановителей относятся, например, ацетон [194], аскорбиновая кислота и тиомочевина [195]. В качестве восстановителя рекомендуют также применять йодистый калий, связывая выделяющийся йод сульфитом натрия [196]. Такой способ восстановления дает более устойчивую окраску. [c.88]

    Для определения гексацианоферрата (III) предложено большое число реагентов. В монографии [3] описано 17 реагентов, в том числе аскорбиновая кислота, сульфат гидразина, нитрит натрия, хлорид олова(II) и нитрат ртути(I), однако некоторые из них пе представляют практического интереса. Ниже рассмотрены методы титрования с участием аскорбиновой кислоты, церия(IV), титана (III) и иодида. [c.95]


    В литературе описаны и другие методы анализа цианкобаламина, в частности спектрофотометрический [604 — 607], полярографический [608], определение содержания кобальта [609 - 611]. Известно также, что каждый грамм-моль цианкобаламина дает 1 г-моль цианида [612, 613), поэтому цианид-селективный электрод можно использовать для анализа цианкобаламина [602]. H N можно количественно выделить из цианкобаламина а) восстановлением аскорбиновой кислотой, раствором хлорида олова(П) в соляной кислоте или гипофосфитом [c.201]

    Для повышения чувствительности метода определение фосфора и кремния проводят по восстановленным формам их молибденовых гетерополикислот, обладающих максимальным поглощением в области 700—830 нм. В качестве восстановителей служат соли олова (II), сульфат железа (II), гидразин-сульфат, гидрохинон, аскорбиновая кислота и др. [c.132]

    При введении восстановителей (аскорбиновой кислоты) и комплексообразователей (цитратов, комплексона 1П) [68] определение долей микрограмма бериллия в 10 мл конечного раствора возможно в присутствии до 25 мг алюминия, кальция, марганца, до 0 мг магния, молибдена, свинца и цинка, до 0,35 мг железа и 0,25 мг титана и хрома. При наличии значительных количеств золота и серебра их следует восстановить и отфильтровать в процессе разложения пробы 36, 51]. Миллиграммовые содержания ванадата и меди уменьшают яркость свечения бериллиевого комплекса на 10—20% такие же количества германия, олова, ртути и уранила снижают ее в 1,5— [c.209]

    Для определения олова с 8-оксихинолином в рудах его отгоняют в токе СОа (см. стр. 329), из полученного раствора отбирают 2—5 мл в мерный цилиндр диаметром около 1 см, прибавляют несколько капель воды, насыщенной сернистым ангидридом, или аскорбиновой кислоты, вводят 5—8 мл воды, раствор нейтрализуют по метиловому оранжевому до желтой окраски, прибавляют 1,2 мл 0,1 н. соляной кислоты, 10 мл 0,2 М раствора бифталата калия, 3 мл раствора оксихинолина в хлороформе. Жидкость сильно встряхивают в течение 1 мин. Содержание олова определяют, сравнивая интенсивности флуоресценции полученного раствора и шкалы эталонных растворов. [c.331]

    Хорошие результаты получены при восстановлении смесью хлорида олова (И) и сернокислого гидразина [73—80]. Для восстановления желтой фосфорномолибденовой кислоты применяют также сернокислый гидразин. При определении фосфора в присутствии нитрат-ионов [76] и в быстрорежущих и нержавеющих сталях [77] для восстановления фосфорномолибденовой кислоты применяют сернокислый гидразин [94], а также аскорбиновую кислоту [78, 79], хлорид титана(III) [80], ферроцен [81], соль Мора [82—85]. Для определения фосфора в виде синей фосфорномолибденовой кислоты рекомендовано применение смешанного реагента, содержащего молибден(У) и молибден(У1) в отношении 2 3. [86]. [c.107]

    В качестве восстановителя для селена используют хлорид олова (II) [50—55], тиомочевину [56], аскорбиновую кислоту [57—59], солянокислый гидразин [60—65], ацетон в хлористоводородной среде [66], а для теллура —хлорид олова(II), гипофосфит натрия и гипофосфористую кислоту [67—69] и др. Для стабилизации золей используют гуммиарабик [62, 67, 70—72] и желатин [35, 61, 71, 73—76]. Для увеличения чувствительности фотометрического определения селена и теллура вводят при восстановлении сенсибилизирующие добавки в виде ионов меди, сурьмы и висмута [35, 68, 74, 75, 77—80]. [c.227]

    Определение в виде восстановленного кремне-молибденового комплекса [189, 190]. Определение основано на восстановлении желтой кремне-молибденовой гетерополикислоты с образованием продуктов, окрашенных в синий цвет. Оттенок окраски восстановленного продукта зависит от степени восстановления молибдена. Хорошие результаты получаются с применением в качестве восстановителей хлорида олова (П) или аскорбиновой кислоты. Область максимального поглощения лучей окрашенным соединением 650—700 ммк. Чувствительность определения 0,1 мкг мл. [c.132]

    В отличие от рассмотренных выше элементов определение общего содержания ртути методом ААС основано на измерении поглощения света ее парами, которые вьщеляются потоком воздуха из водного раствора после восстановления ионов до атомного состояния, при длине волны 253,7 нм в газовой кювете при комнатной температуре ( метод холодн()го пара ). В качестве восстановителей применяют хлорид олова, станнит натрия, аскорбиновую кислоту и др. [3,8]. Предел обнаружения состав.гтя-ет 0,2 мкг/л, диапазон измеряемых концентраций 0,2 - 10 мкг/л [И] Для устранения мешающего влияния органических веществ, поглощаюшцх свет при данной длине волны, к пробе добавляют кислый раствор перманганата или бихромата калия. [c.249]


    Молибденомышьяковая кислота всегда образуется в а-форме, которая при рн 1 медленно переходит в р-форму. Все молибденовые ГПК могут быть получены в р-форме в водно-органических средах [8], чем обусловлено проведение реакции образования гетерополикислот фосфора, кремния в смешанных средах [9]. Этот метод [9], не уступая по простоте выполнения обычному методу фотометрического определения фосфора в водных растворах, несколько превосходит его по чувствительности. В последнее время для получения синих форм ГПК в качестве восстановителей используют преимущественно более мягкие восстановители [ 11] аскорбиновую кислоту, аскорбиновую кислоту 4-Н- антимонилтартрат и аскорбиновую кислоту с солью висмута, что предотвращает восстановление молибдена из молибдата аммония, который берут в избытке [10] применяют также соль Мора, хлорид олова [c.139]

    При определении кремния следует иметь в виду, что реакционноспособной является лишь мономерная форма, образующая молибденокремниевую кислоту в течение 75 с. Обычно для полного развития окраски необходимо 10—15 мин, в течение которых происходит деполимеризация димерной формы в мономерную. Для молибденокремниевой кислоты лучшими восстановителями являются аскорбиновая кислота, аминонафтолсульфат натрия, оксалат олова, смесь Мо (VI) и Мо (V), что приводит к непосредственному образованию синей формы ГПК без стадии образования желтой формы. [c.139]

    При определении фосфора экстракционно-фотометрическим методом применяют восстанавливающий реактив растворяют 1,3 г аскорбиновой кислоты в 20 мл воды и добавляют 1,3 мл раствора, содержащего 10 г хлорида олова Sn l2-2H20 в 25 мл концентрированной соляной кислоты, добавляют 15 мл 4,5 М раствора H2SO4 и разбавляют водой до 100 мл. [c.119]

    Недеструктивный активационный метод применяется для определения ЗЬ в алюминии [841, 1688] и его сплавах [945], нитриде алюминия [421], аскорбиновой кислоте [1630], асфальте [982], висмуте [830, 1204, 1239] и его сплавах с сурьмой [48, 313], воздушной пыли [884, 13131, галените [21], германии [633, 1384, 1385], горных породах [230, 427, 541, 949, 1061, 1289], графите [106, 1207], железе, чугуне и стали [135, 884, 1128, 1129, 1556, 1652], индии [12711, карбиде кремния [468], кремнии [212, 762, 932, 950, 989, 1217, 1361], тетрахлориде кремния [1462] и эпитаксиальных слоях кремния [580], меди [1002], морских [642, 1427] и природных водах [4, 1040], нефти и нефтепродуктах [991, 1517], олове [1305], поли-фенолах [983], почвах [1528], растительных материалах [1316, 1528], рудах [466, 1270], свинце [835 -837, 1205, 1505, 1506], стандартных образцах металлов [1316], теллуре [5], титане [68], хроматографической бумаге [1409], циркалое [1099], эммитерных сплавах [625], трифенилах [8771 и фториде лития [331]. Благодаря высокой чувствительности и вследствие того, что для анализа, как правило, требуется небольшое количество анализируемого материала, эти методы часто используются в криминалистической практике [884, 892, 12961. Имеются указания [965] аб использова- [c.74]

    Для обнаружения урана может быть использован роданид калия или аммония, дающий с уранилом желтое окрашивание. По данным Арланд [305], образуются комплексные ионы вида [U02S N] , [и02(8СМ)2], [и02(ЗСМ)з1 с константами равновесия 5,7 5,5 и 15 соответственно. Реакция выполняется как в водных растворах, так и в смесях, содержащих ацетон, спирт или монобутиловый эфир этиленгликоля [426]. При определении в среде смешивающихся с водой органических растворителей избирательность метода увеличивается 2г, ТЬ, 5п, Мп, а также ацетаты, сульфаты и фосфаты определению не мешают [437]. Ре (III) предварительно восстанавливают аскорбиновой кислотой [990] или хлористым оловом [633]. Одним из достоинств метода является то обстоятельство, что окраска устойчива в широких пределах кислотности — от 0,1 до 2,0Л/ по НС1 или НМОз, поэтому поддержание точного значения pH не обязательно. Роданидный метод является особенно удобным при определении урана на фоне больших количеств тория. При соотношении и ТЬ=--1 10000 торий не мешает [440]. Но чувствительность роданидного метода невысока — 20—40 мкг мл урана. [c.38]

    Определение кобальта спектральным методом после обога-ш,ения экстракцией пирролидиндитиокарбаминатов [637]. Авторы рекомендуют проводить обогащение микроэлементов с селективным отделением железа, алюминия, щелочноземельных и щелочных металлов. Анализируемую пробу переводят в растворимое состояние каким-либо известным методом. К 25 мл раствора пробы в 7 N соляной кислоте прибавляют 1 каплю 30%-ного раствора перекиси водорода и взбалтывают с равным объемом метилозобутилкетона 30 сек. Органический слой содержит около 94% железа в виде хлорида, а также хлориды галлия, олова, ванадия, молибдена и др. Его взбалтывают 1 мин. с 25 мл водного раствора аскорбиновой кислоты для восстановления трех- [c.212]

    Определение олова в рудах [391]. Определению не мешают (в кратных количествах) ш,елочноземельные элементы, А1, Се(1У), Сг(П1), Ьа, НМ, Рг, ТЬ—ЫО Со,Ре(П1), Мп, N1 — 600 Ag, Си, Т1(П1) — 100 Аз(1П), Hg(II) — 60 8Ь(У), Т1(1) — 50 В1, Ое, 1п, и (VI), 2п — 40 РЬ, Рс1 — 20 Оа, У. Не мешают сульфаты, ацетаты, нитраты, хлориды, фосфаты, глицерин и аскорбиновая кислота. Метод применен для определения 0,15—1,20% олова в рудах, применим для анализа минералов, латуни и бронзы. Кроме ПАН-2, можно применять 2-ХАДМФ-5,6 и ПАДМФ-5,6. [c.122]

    В качестве восстановителя применяется хлорид олова (II), а также аскорбиновая кислота, тиомочевина, иодид калия и др. Большой избыток 5пС12 вреден, так как может произойти восстановление молибдена до низших валентных форм с образованием слабо окрашенных роданидных комплексов. В большинстве случаев определение молибдена приходится выполнять в присутствии железа, роданид которого разрушается от прибавления ЗпСЬ вследствие восстановления железа до двухвалентного. При наличии ионов Ре " значительная часть 5пС12 затрачивается на восстановление железа и в растворе образуется соответствующее коли- [c.135]

    Примечание. Цинк, свинец, никель, олово и марганец в тех копи-нествах, в которых они находятся в медно-цинковых сплавах, определению алюминия не мешают. Влияние ионов железа устраняют введением в раствор аскорбиновой кислоты, которая восстанавливает ионы Ре + до Fe ", образующих с эриохромцианином бесцветный комплекс влияние ионов меди устраняют добавлением тиосульфата натрия, образзгаощего бесцветный тиосульфатный комплекс. Анализ выполняется за 12—15 мин с ошибкой, не превышающей 3 отн. %. [c.94]

    Метод почти специфичен для селена. Четырехвалентный теллур не реагирует. Пятивалентный ванадий, трехвалентное железо, двухвалентная медь и другие окислители мешают определению, давая окрашенные продукты с реагентом. Ост и Гиллис [19] применяли фторид для маскировки железа и оксалат для маскировки меди. Чжэн [6, 7] маскировал все мешающие ионы, за исключением пятивалентного ванадия, этилендиаминтетрауксусной кислотой. При экстрагировании пиазселенола все окрашенные ионы остаются в водной фазе. Вещества, которые восстанавливают или связывают в комплекс четырехвалентный селен, мешают определению, например ионы двухвалентного олова и йодида, а также аскорбиновой кислоты. [c.385]

    Известен экстракционно-фотометрический метод определения титана с помощью диантяпирилметана и хлорида олова (II) [194]. Благодаря отсутствию в системе второго комплексообразу-ющего лиганда (S N ) определение высокоизбирательно и удобно. Присутствие хлорида олова позволяет одновременно устранять мешающее влияние железа и экстрагировать диантипирил-метановый комплекс титана хлороформом. Определению мешают только W и NOj-. Для экстракционно-фотометрического определения титана применен салицилальгидразид бензойной кислоты [195]. Чувствительность реакции 0,01 мкг/мл. Влияние железа устраняют аскорбиновой кислотой или гидроксиламином. [c.69]

    Прямые реакции с иодом. Стандартный раствор иода, который является слабым окислителем, можно применять для титрования сильных восстановителей. Широкие возможности его применения можно проиллюстрировать кратким перечислением некоторых примеров титрование As в гидрокарбонатном растворе в присутствии крахмала в качестве индикатора определение олова после восстановления его до Sn свинцом, сурьмой, алюминием, никелем или железом определение таллия (III) после восстановления его до таллия (I) определение сульфидов либо прямым титрованием раствором иода, либо косвенным способом, основанным на добавлении избытка иода и последующем обратном титровании определение тиоацетамида титрованием иодом как основа микроопределения ионов тяжелых металлов определение сульфитов обратным титрованием раздельное определение гипофосфита и фосфита в одной пробе титрованием при двух различных значениях pH определение цианидов по количественной реакции с иодом в щелочной среде определение титрованием иодом ряда органических соединений [78], например, полифенолов, аскорбиновой кислоты, меркаптанов, мочевой кислоты, гидразинов, фенолов, дитиогликолевой кислоты, металлорганических меркаптидов, алкильных соединений алюминия и др. Йодные числа применяют в качестве меры нена-сыщенности жиров и масел. Подробное описание многих методов анализа с использованием иода можно найти в руководстве Кольтгофа и Белчера [1]. [c.399]

    Для целей рутинного анализа были разработаны автоматические методы определения фосфора по молибденовой сини. В автоматическом варианте применяют методы, в которых в качестве восстановителя используют олово(II) или аскорбиновую кислоту. С помощью автоматического анализатора, выпускаемого фирмой Весктап , в течение 1 ч можно проанализировать 60 образцов. Градуировочный график линеен в интервале 0,1—0,001 ррт, относительное стандартное отклонение 3%. [c.460]

    Титранты, полученные из металлоактивных электродов — олово(11), железо 11), хром(П)—используют для определения нитро-, нитрозо-, азосоединений, трифенилфосфина, цистеина, меркаптанов и аскорбиновой кислоты в различных органических растворителях. В качестве фоновых электролитов используют хлорид и перхлорат лития или натрия, хлорную кислоту, ацетат натрия, галогениды тетраалкиламмония [649]. [c.81]

    Предложен непламенный атомно-абсорбционный метод определения ртути, основанный на измерении поглощения излучения с длиной волны 253,7 нм атомами ртути, которые выделяются потоком воздуха из водного раствора после восстановления ионов ртути до атомного состояния. В качестве восстановителей используют хлорид олова, станнит натрия, аскорбиновую кислоту и другие восстановители в зависимости от присутствия в растворах веществ, мешающих определению ртути (сульфаты, сульфиды, галогениды и др.) [456, 457]. Ртутный анализатор состоит из ультрафиолетового атомно-абсорбционного фотометра без собственного фотоусилителя и показывающего прибора рН-метра. Фотометр имеет источник аналитической линии ртути (253,7 нм), газовую абсорбционную кювету, фотоприемник, микровольтметр и аэратор-барбатер. Предел обнаружения составляет относительное стандартное отклонение 0,05. Данная методика позволяет вести прямое определение ртути в 2 мл пробы и обеспечивает контроль допустимых ее содержаний. [c.211]

    В выполненном нами систематическом исследовании [1] различных известных восстановителей для определения малых количеств фосфора было показано, что наилучшим из них является аскорбиновая кислота с добавкой антимонил-тартрата калия. Проведенное позднее ориентировочное сопоставление различных восстановителей при определении п" методу молибденовой сини малых количеств мышьяка под твердило, что и в этом случае лучшим восстановителем является также аскорбиновая кислота с добавкой антимонил-тартрата калия [2] по сравнению с аскорбиновой кислотой [3] и двухлористым оловом [4]. [c.238]

    Проведено сравнительное изучение трех наиболее часто применяемых восстановителей молибдофосфата до гетерополисини при определении микро- и субмикрограммовых количеств фосфора двухлористого олова, гидразинсульфата и аскорбиновой кислоты с катализатором антимонилтартра-юм калия с целью выбора лучшего. [c.64]

    Оптимальными условиями образования комплекса теллура являются 10—11 н. среда по H2SO4 и 0,1 н. НВг, 0,3 мл 0,1 %-ного раствора бутилродамина и 0,1 мл 2%-ного раствора аскорбиновой кислоты на каждые 10 мл анализируемого раствора. Линейная зависимость между содержанием теллура в растворе и интенсивностью люминесценции его комплекса сохраняется в интервале 0,02—1 мкг в 6 мл. Определению мешают олово, висмут, индий, таллий и более 2 мг мышьяка. [c.338]

    Большая часть титриметрических методов определения золота основана на осаждении его в виде металла или соли золота (I). Во всех методах, кроме иодометрического, конечную точку титрования определяют потенциометрически или обратным титрованием избытка реагента. Как следует из величины окислительно-восстановительных потенциалов солей золота, для восстановления их пригодны многие реагенты. Наиболее употребительны гидрохинон, железо(П), арсенит натрия и аскорбиновая кислота. Такие восстановители, как титан(1П), олово(П), хром(II), медь(1), соли гидразиния, двуокись серы и т. п., применяются в некоторых специальных случаях, но не рекомендуются для общего употребления. [c.117]

    Плаксин II Суворовская [761] отмечали, что при колориметрическом определении золота с формальдегидом, бензидином, а-нафтиламином, хлоридом олова(II) и хлоридом ртути(I) большое влияние оказывают соли шелочных и тяжелых металлов. Это справедливо и для методов с использованием аскорбиновой кислоты [762], тионалида [763], нитробензола и гексацианофер-рата(И) калия [764]. Шнайдерман [754] нашел, что при действии аскорбиновой кислоты при pH 3—6 (в присутствии крахмала) образуются устойчивые коллоидные растворы золота. Значительные количества железа, никеля, меди, свинца и др. не мешают определению. Окраска не подчиняется закону Бера. Берг и сотр. [763] применяли для колориметрического определения золота в сернокислых растворах тионалид. Кральич [764] рекомендовал нитрозобензол и гексацианоферрат ) калия для определения золота в растворах с pH 5. Светопоглошение измеряли с помощью зеленого фильтра (528 ммк). Ни один из трех последних реагентов не имеет преимуществ по сравнению с хлоридом олова (II). [c.280]

    Проведенные исследования показали, что для колориметрического определения любых концентраций кремния наиболее пригодна кислотность 0,02—2 н. при этом следует и-збегать кипения раствора и, вообще, длительного нагревания. Растворение навески лучше проводить пр И комнатной температуре в азотной кислоте [116]. Чувствительность определения кремния в 50 мл- по желтому комплексу 0,025 мг, по синему — 0,005 мг [74]. В качестве восстановителей можно применять двухлористое олово [74, 121—124], соль Мора 50, 125—132], аскорбиновую кислоту [124, 131], тиомочевину [116, 133], 1-амино-2-наф-тол-4-сульфокислоту [134] и др. Присутствующие в боре примеси железа, алюминия, никеля определению кремния в виде желтого и синего комплексов не мешают .  [c.155]


Смотреть страницы где упоминается термин Олово определение аскорбиновой кислотой: [c.286]    [c.174]    [c.110]    [c.55]    [c.294]    [c.163]    [c.173]    [c.315]    [c.136]   
Новые окс-методы в аналитической химии (1968) -- [ c.240 , c.246 ]




ПОИСК





Смотрите так же термины и статьи:

Аскорбиновая кислота

Аскорбиновая кислота, определени

Олово определение



© 2025 chem21.info Реклама на сайте