Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Подвижность Электрофорез

    С помощью уже использованных представлений легко рассчитать и скорость электрофореза. Механизм этого явления подобен механизму электроосмоса, но в данном случае неподвижной остается жидкая фаза, а частицы, которые малы и, следовательно, легко подвижны, перемещаются в электрическом поле. Скорость и их движения можно найти из выражения (5.4). Если разделить эту скорость на напряженность приложенного электрического поля Е, то получим величину = и Е, называемую электрофоретической подвижностью, которая характеризует подвижность коллоидной частицы при электрофорезе. Электрофоретическая подвижность полностью аналогична подвижности ионов в электрическом поле. Итак, [c.139]


    Как уже отмечалось, электрофорез коллоидных частиц очень похож на ионофорез, и не только по характеру и механизму явления, но и по величине электрофоретической подвижности. Последняя, как и подвижность ионов, имеет порядок несколько микронов в секунду при напряженности электрического поля 1 В/см. Этот факт также говорит в пользу если не независимости, то, во всяком случае, слабой зависимости электрофоретической подвижности от размера частиц. [c.155]

    Несмотря на сходство электрофореза и ионофореза, применяемые для их исследования методы различны. Метод подвижной границы, редко используемый при ионофорезе, оказался исключительно плодотворным для электрофореза. В ряде случаев электрофорез оказывается возможным исследовать непосредственно, прямым микроскопическим или ультрамикроскопическим методом, что невозможно при ионофорезе из-за субмикроскопических размеров ионов, [c.155]

    В методе подвижной границы скорость электрофореза измеряют по скорости, с которой движется в электрическом поле граница между коллоидной дисперсией и ее ультрафильтратом. Применимость этого метода связана с тем фактом, что электропроводность коллоидной системы обычно лишь немного превышает электропроводность чистой дисперсионной среды. Коллоидные частицы, обладающие в электрическом поле почти одинаковой с ионами подвижностью, имеют в силу своих сравнительно больших размеров гораздо меньшую концентрацию. Поэтому они слабо участвуют в переносе электричества через раствор, а электропроводность среды почти не изменяется от их присутствия. Это обстоятельство оказывается очень важным, так как если бы два раствора, образующие границу, по скорости которой определяется подвижность данного компонента в электрическом поле, имели разную электропровод- [c.155]

    НОСТЬ, то напряженность поля изменялась бы на границе скачком и, кроме того, изменялась бы во времени при перемещении границы. Такая неоднородность поля и зависимость его напряженности от времени, обычно не проявляющаяся или проявляющаяся в очень малой степени при электрофорезе, служат существенным препятствием для использования метода подвижной границы при ионофорезе. В тех случаях, когда этот метод может применяться к коллоидным системам, он оказывается очень выигрышным, так как позволяет не только измерить электрофоретическую подвижность, но и разделить путем электрофореза компоненты с разной подвижностью, определить их число и идентифицировать каждый из них. Все эти преимущества привели, с одной стороны, к появлению тщательно разработанного Тизелиусом (1930 г.) метода подвижной границы, а с другой — к широкому применению электрофореза на бумаге и в других средах. [c.156]


    Важное преимущество электрофореза на бумаге перед методом подвижной границы связано с возможностью полного разделения компонентов путем элюирования соответствующих зон. С помощью комбинирования сте-кания раствора по наклонной фильтровальной бумаге с электрофоретическим отклонением создан метод, позволяющий беспрепятственно разделять компоненты. [c.158]

    У стенки х = г) скорость течения равна В центре кюветы х = 0) скорость имеет ту же величину, но с обратным знаком, а при X г 2 0,708 г она равна нулю. Если электрофорез наблюдать на этом уровне, то измеренная скорость частицы, деленная на напряженность поля, дает электрофоретическую подвижность. Уровень нулевой скорости для достаточно широкой плоскопараллельной кюветы находится с помощью аналогичных расчетов. Ему соответствует /г = 0,214 й, где й — глубина кюветы.  [c.159]

    При одновременном проведении хроматографирования и электрофореза лист бумаги пропитывают раствором электролита и закрепляют между электродами, на которые подается напряжение от источника постоянного тока. Одновременно происходит движение подвижной фазы. Такой процесс значительно сокращает время анализа и улучшает разделение смеси. [c.220]

    Зная скорость электрофореза и приложенное напряжение, можно рассчитать электрофоретическую подвижность /,ф, а затем и -потенциал, пользуясь формулой (96)., [c.175]

Рис. 57. Схема прибора для измерения скорости электрофореза методом подвижной границы (вариант 1) Рис. 57. <a href="/info/855414">Схема прибора</a> для <a href="/info/310840">измерения скорости</a> <a href="/info/902825">электрофореза методом подвижной границы</a> (вариант 1)
    Для сравнения способности к электрофорезу различных дисперсных систем пользуются электрофоретической подвижностью—линейной скоростью движения частиц при единичной напряженности электрического поля  [c.76]

    Причиной электрофореза, как и других электрокинетических явлений, служит наличие двойного ионного слоя (ДИС) на поверхности раздела фаз. При положительно заряженной дисперсной фазе коллоидные частицы вместе с адсорбированными на них положительными потенциалопределяющими ионами движутся к катоду, отрицательно заряженные противоионы диффузного слоя —к аноду. В случае отрицательного заряда частиц движение происходит в обратных направлениях. Дисперсная фаза смещается относительно дисперсионной среды по поверхности скольжения. Поэтому, измерив скорость электрофореза, находят потенциал коллоидной частицы, т. е. электрокинетический или (дзета) потенциал. Величина -потенциала характеризует агрегативную устойчивость золя и зависит от толщины диффузного слоя, концентрации и заряда противоионов. Скорость электрофореза определяют методом подвижной границы — наблюдают за передвижением границы между окрашенным коллоидным раствором и бесцветной контактной жидкостью. Наилучшей контактной жидкостью является ультрафильтрат самого золя. Для приближенных измерений используют воду. Сущность метода состоит в определении времени, за которое граница окрашенного золя переместит- [c.205]

Рис. 21.4, Прибор Чайковского — Малаховой для электрофореза по методу подвижной границы Рис. 21.4, <a href="/info/708328">Прибор Чайковского</a> — Малаховой для электрофореза по <a href="/info/40267">методу подвижной</a> границы
    Теоретическое пояснение. Электрофорез основан на использовании электрофоретической подвижности заряженных частиц в жидкости под действием постоянного электрического поля. [c.231]

    Величина Uq называется электрофоретической подвижностью и обычно служит для сравнения способности к электрофорезу, различных коллоидных систем. [c.200]

    Помимо явлений электрофоретического запаздывания и электрической релаксации на скорость электрофореза может влиять и агрегатное состояние дисперсной фазы. Так, скорость электрофоретического переноса жидких частиц при всех прочих одинаковых условиях электрофореза равна подвижности твердых частиц лишь в частном случае, когда в результате адсорбции поверхностноактивных веществ поверхность капли становится неподвижной, что делает жидкую частицу похожей на твердую. В общем же случае жидкие частицы, обладающие достаточно высокой проводимостью, движутся при электрофорезе значительно быстрее, чем твердые. Это объясняется следующими причинами. Во-первых, трение о поверхность жидкой частицы всегда меньше, чем трение о поверхность твердого шарика таких же размеров, так как капли жидкости могут деформироваться при движении среды. Во-вторых, двойной электрический слой [c.206]


    Следует упомянуть о работах А. И. Фрумкина, определявшего электрофоретическую подвижность капель ртути. А. И. Фрумкин показал, что капля ртути полностью поляризована, так что ее поведение подобно поведению непроводника. Однако поляризация изменяет поверхностное натяжение на полюсах капли, вызывая движение ртути вдоль поверхности капли. Если капля заряжена положительно (обычный случай), то заряд на поверхности капли у полюса, обращенного к положительному электроду, уменьшается и поверхностное натяжение в этом месте возрастает, тогда как на другом полюсе капли происходит обратное явление. В результате разницы в поверхностных натяжениях внутри капли возникает движение ртути, что схематически представлено на рис. УП,23. Стрелки внутри капли показывают движение ртути, стрелки снаружи капли — направление движения дисперсионной среды. Большая стрелка внизу рисунка обозначает направление движения всей капли. Не трудно понять, что это движение ртути должно ускорять перенос частицы к отрицательному электроду. Такие круговые движения могут увеличивать скорость переноса капли на несколько порядков по сравнению с обычными скоростями электрофореза. [c.206]

    Он выполняется следующим образом. На середину полоски плотной, гомогенной фильтровальной (хроматографической) бумаги, пропитанной буферным раствором с определенным значением pH, наносят каплю исследуемого коллоидного раствора. Затем на полоску бумаги накладывают разность потенциалов. Под влиянием образующегося электрического поля отдельные компоненты, содержащиеся в капле, обладающие разными электрофоретическими подвижностями, передвигаются по полоске с различными скоростями. Через некоторое время компоненты распределяются на бумаге в виде стольких зон, различно удаленных от исходной точки, сколько компонентов содержалось в растворе. Полоску высушивают и прогревают для денатурации и фиксации находящихся на ней белков и после этого окрашивают подходящими красителями. В результате проявляется распределение компонентов по длине полоски. Роль бумаги в этом методе сводится к устранению диффузионного и конвекционного перемешивания белков при электрофорезе. [c.210]

    Некоторые исследователи установили, что у органозолей с достаточно большой диэлектрической проницаемостью среды обнаруживаются явления электрофореза и существует известная корреляция между электрофоретической подвижностью частиц и устойчивостью этих систем. Таким образом, в органозолях, так же, как и в гидрозолях, коллоидные частицы могут нести двойной электрический слой и обладать -потенциалом. Установлено также, что во многих случаях для органозолей справедливы закономерности, которым подчиняются и гидрозоли. К ним приложимо правило Шульце—Гарди, при их коагуляции наблюдаются явления аддитивности и антагонизма при действии ионов и т. д. Таким образом, есть все основания считать, что к золям с неводной дисперсионной средой с известными коррективами приложима физическая теория коагуляции. [c.306]

    Среди ряда макроскопических методов электрофореза наиболее распространены методы с подвижной границей. [c.196]

    Электрофорез уже давно использовался в биологии различными авторами для суждения о знаке и величине заряда, главным образом различных бактерий и белков. Определение электрофоретической скорости белков по методу подвижной границы с получением электрофоретических диаграмм, на чем мы остановимся далее подробно, является весьма важным методом не только для изучения сложных белковых систем, но и используется широко для практических медицинских целей. При различных инфекционных заболеваниях специфически изменяется белковый состав плазмы крови, и поэтому электрофоретические диаграммы могут быть успешно применены для диагностики болезней. [c.6]

Рис. 25.8. Прибор для электрофореза по методу подвижной границы Рис. 25.8. Прибор для электрофореза по <a href="/info/40267">методу подвижной</a> границы
    Разработана препаративная сортировка клеточных частиц, основанная на различии их электрофоретической подвижности. Этот метод, названный свободным распределительным электрофорезом, нашел применение в иммунологических исследованиях. Через вертикально устанавливаемую камеру, боковыми стенками которой служат электроды, с постоянной скоростью протекает среда, в которой могут быть суспендированы клетки. В эту же камеру вводится взвесь клеток. Их путь в камере зависит [c.101]

    Поскольку разные ионы обладают разной подвижностью, на основе электрофореза возможно разделение веществ, молекулы которых могут быть заряжены. К их числу относятся важнейшие биополимеры— белки и нуклеиновые кислоты. Белки содержат, как правило, много NH2- и других групп, способных присоединять протоны и тем самым заряжаться положительно. Они содержат также много карбоксильных групп (СООН), которые, ионизуясь, дают отрицательно заряженные ионы СОО . Степень протонирования и степень ионизации отдельных групп, а следовательно, и заряд белковой молекулы зависят от pH среды. В кислой среде белки заряжены положительно, в щелочной — отрицательно. Нуклеиновые кислоты содержат остатки фосфорной кислоты, которые уже в слабо кислой, а тем более в нейтральной и щелочной средах ионизированы, т. е. несут отрицательный заряд, в связи с чем нуклеиновые кислоты находятся в растворе в виде полианионов. Поэтому электрофорез является важнейшим методом препаративного разделения и анализа смесей белков и смесей нуклеиновых кислот. [c.330]

    Общий принцип разделения выглядит весьма просто. На раствор электролита наносится в виде слоя (зоны) раствор, содержащий разделяемую смесь. После подачи напряжения каждый компонент смеси начинает перемещаться в соответствии со своей подвижностью. Через некоторое время каждый из компонентов, имеющий подвижность, достаточно сильно отличающуюся от таковой для других компонентов, образует свою зону на расстоянии UiS t (i —время электрофореза) от расположения исходной зоны. Следует, однако, иметь в виду, что само создание зоны приводит к возникновению скачка концентрации каждого из разделяемых компонентов на границе разделяемая смесь —исходный электролит. Поэтому сразу же начинается диффузия компонентов в свободный от них электролит. Диффузия идет на протяжении всего процесса разделения, приводя к размыванию зон. Поэтому профиль концентраций разделяемых компонентов вдоль ячейки, в которой проводится электрофорез, постепенно сглаживается, как это изображено на 330 [c.330]

    Измерение скорости электрофореза выполняли в специально сконструированной кювете, схема которой дана на рис. 12.1. Рабочую стеклянную кювету 1 в виде прямоугольного парал-лепипеда с открытыми торцами длиной 20 мм и поперечным сечением 20x0,8 мм помещали между двумя сосудами 2 также прямоугольного сечения, изготовленными из оргстекда. Толщина стенок измерительной ячейки составляла 0,2 мм, что обеспечивало надежную визуализацию микрообъектов при работе с темнопольным микроскопом. Боковые емкости 2 в месте их сочленения с кюветой имели ряд отверстий диаметром 0,5 мм эти емкости прочно закреплялись на основании 3, в котором было высверлено отверстие для вхождения темнопольного объектива 4. Б нижнюю часть емкостей 2 помещали гель агар-агара 5, приготовленный на 1 н. растворе КС1 сверху заливали 0,1 и. раствор USO4 (б) и помещали медные электроды 7. Такая установка удобна в обращении в ней обеспечена герметичность сочленения боковых емкостей с измерительной камерой и возможность тщательной очистки последней после проведения исследований. На основании данных о подвижности частиц дисперсной фазы вычисляли -потенциал по формуле Гельмгольца — Смолуховского без учета поправки на поверхностную проводимость [59]. [c.202]

    Вопрос о природе связи аминокислотных производных с другими нефтяными компонентами (порфиринами, асфальтенами) пока не решен. Ряд экспериментальных результатов косвенно свидетельствует о возможности их взаимосвязывания или ассоциирования. Известно, что порфррины не удается отделить от аминокислот с помощью электрофореза [761]. После гидролиза заметно меняются характеристики порфириновых компонентов концентрата .несколько увеличивается удельный объем их удерживания при г ель-хроматографии [390], меняются подвижность при тонкослойной хроматографии и И К спектры. Однако убедительных прямых подтверждений наличия химической связи между аминокислотами (пептидными) и порфириновыми молекулами не получено. [c.135]

    Полученное ранее дифференциальное уравнение (IV.65) справедливо как для электроосмоса, так и для электрофореза, поскольку оно было выведено из баланса двил<ущих сил процесса — электрической силы и силы трения. Отличие состоит только в выбранной системе координат. Если при электроосмосе движется жидкость относительно твердого тела, то при электрофорезе, наоборот, частицы движутся относительно жидкой среды. Вид уравнений (IV. 66) и (IV. 68) остается тем же самым, только под скоростью и имеют в виду линейную скорость движения частиц. Отношение ио/Е при электрофорезе называют электрофоретической подвижностью  [c.223]

    Наряду с мембранными методами для разделения заряженных частиц или молекул можно использовать их различную подвижность в электрическом поле - зонный электрофорез. До настоящего времени описано лишь несколько случаев применения электрофореза в анализе суперэкотоксикантов. Тем не менее этот метод вызывает в последние годы повышенный интерес, особенно его капиллярный вариант [115, 116], поскольку в обычном зонном электрофорезе из-за конвекции раствора, вызванной его нагреванием при прохождении электрического тока, зоны размываются, и не происходит их разделения на узкие полосы Для предотвращения размывания зон электрофорез проводят в капиллярных трз бках. [c.227]

    Фрэмтон и Гортнер (см. ссылку 81) сообщают о произведенных ими измерениях электрофореза самых разнообразных водных дисперсий углерода. Они отмечают весьма примечательное однообразие подвижности частиц углерода, независимо от большого различия в их размере, чистоте и источнике происхождения. Полученные ими данные составляют содержание табл. 10, из которой видно, что даже активирование углерода не оказывает никакого влияния на подвижность частиц (см. образец 5). [c.83]

    Метод Тизелиуса особенно широко применяется для исследования биоколлоидов. Их электрофоретическая подвижность довольно сильно и специфически зависит от pH среды поэтому измерения производят в забуферениой среде. Изменяя pH и определяя соответствующую электрофоретическую подвижность объекта, можно построить ее зависимость от pH и найти изоэлектриче кую точку, т. е. то значение pH, при котором электрофоретическая подвижность обращается в нуль. Изоэлектрическая точка является очень важной константой для биоколлоидов. Путем изменения pH можно также изменять соотношение электрофоретических подвижностей компонентов смеси, и тогда при электрофорезе появляется несколько границ, соответствующих числу компонентов с достаточно различающимися подвижностями и . Такие отдельные компоненты можно четко различить. [c.157]

    И менее точен, но зато значительно проще, чем метод Тизелиуса. На полоску фильтровальной бумаги, увлажненной буферным раствором, наносят в форме поперечной черточки или пятна исследуемый биоколлоидный раствор. Полоску помещают в горизонтальном положении в закрытое пространство, а концы ее погружают в буферный раствор, где находятся электроды. После подключения источника электродвижущей силы электрическое поле вызывает движение компонентов, находящихся в черточке или пятне, вдоль полоски. Скорость перемещения компонентов зависит от их электрофоретической подвижности. Через некоторое время электрофорез прекращают, бумагу высушивают и погружают в раствор красителя, который на биоколлоиде адсорбируется сильнее, чем на бумаге. По полученному изображению видно положение компонентов в конце электрофореза, и можно судить об их числе и электрофоретической подвижности. Из сказанного выше видно, что бумага играет роль пористой среды, препятствующей растеканию компонентов и их конвективному перемешиванию со средой, в которой протекает электрофорез . В последнее время вместо бумаги используют гелеобразные среды (агар-агар, желатин), которые дают более резко очерченные зоны. Электрофорез на бумаге (и в других средах) сопровождается побочными явлениями, такими, например, как перенос вещества, вызываемый миграцией испаряющегося буфера (Машбёф, Ребейрот и др., 1953 г.). Кроме того, было установлено (Шелудко, Константинов, Цветанов, 1959 г.), что, например, в желатине не только сама электрофоретическая подвижность некоторых красителей меньше, чем в воде или водных растворах, но и соотношение между подвижностями компонентов в этом случае совсем иное. Эти особенности метода еще не до конца изучены. Поскольку рассматриваемый метод имеет важное практическое значение, различные проблемы создаваемой в настоящее время теории электрофореза в пористых и гелеобразных средах п разнообразные методы его использования являются предметом многих научных трудов. Некоторое представление о них читатель может получить из монографии [6 1. [c.158]

    Электрофорез [1—3]. Движение заряженных частиц под влиянием внешнего электрического поля и находящихся во взвешенном состоянии в неподвижной жидкости называется электрофорезом. Это явление можно представить себе следующим образом. Частицы жидкости окружены двойным электрическим слоем. При приложении электрического поля распределение зарядов частиц в дуффузном слое нарушается вследствие смещения их по отношению к частице и непрерывного обмена ионными атмосферами вокруг частиц. В то же время сами частицы под действием электрического поля движутся по направлению противоположно заряженного полюса. Измерив скорость движения частиц и зная градиент потенциала приложенногс электрического поля, можно рассчитать электрофоретическую подвижность частиц С/эф (так назьшают путь, проходимый частицей за одну секунду в поле с градиентом потенциала 1 в/см). Тогда [c.168]

    Как и в электрофорезе, скорость движения ионов на бумаге ПОД действием электрического поля пропорциональна приложенному потенциалу. Лучщее разделение компонентов смесн происходит при высоких потенциалах. Но значение потенциала ограничено тем, что при больщой силе тока бумага разогревается и растворитель сильно испаряется. При слищком большой силе тока бумага может даже обуглиться. Для уменьшения разогрева бумаги опыты проводят на холоду или применяют охлаждающие жидкости — неэлектролиты, например хлорбензол. Чтобы избежать испарения электролита с бумаги, последнюю помещают между двумя стеклянными пластинками. При прочих равных условиях подвижность ионов увеличивается с повышением температуры. [c.349]

    I. Макроэлектрофорез — метод подвижной границы. Измерение скорости электрофореза проводят в приборах, изображенных на рис. 57 и 58. Прибор на рис. 57 представляет собой И-образную трубку, оба колена которой градуированы (в единицах длины) к пей нрннаяпа узкая стскляпная трубочка с воронкой и крапом. Измерения выполняются в следующем порядке. [c.98]

    Метод Тизелиуса особенно широко применяется при исследовании белков и других высокомолекулярных электролитов, поскольку с его помощью можно не только определить скорость электрофореза, но и разделить смесь высокомолекулярных веществ на отдельные компоненты. В самом деле, если исследуемый раствор содержит несколько компонентов с различными электрофоретическими лодвижностями, то фронт передвижения более подвижных компонентов будет обгонять фронт движения компонентов, движущихся медленнее, и образуется столько границ, сколько компонентов, в смеси. [c.209]

    Электрические свойства растворов полиэлектролитов. Электрокинетический потенциал, как известно, с большей или меньшей точностью может быть подсчитан по уравнениям Гельмгольца — Смолуховского или Генри только для коллоидных частиц, размер которых значительно превосходит толщину двойного электрического слоя. Для частиц же, диаметр которых мал по сравнению с толщиной двойного электрического слоя, при расчете электрокинетического потенциала следует вводить ряд поправок и в первую очередь поправку на электрическую релаксацию. Кроме того, если макромолекулы находятся в растворе в виде рыхлого клубка, то должно быть принято во внимание движение среды через петли свернутой цепи. К сожалению, до сих пор теория электрофореза для свернутых в клубок макромолекул отсутствует. Поэтому в настоящее время распространено определение электрофоретической подвижности не отдельных макромолекул, а макромолекул, адсорбированных на достаточно крупных частицах кварца или угля или на капельках масла. В этом случае электрокинетический потенциал легко определить с помощью микроэлектрофоретических методов. Как показали многочисленные исследования, при достаточной толщине слоя полимера, покрывающего частицу, подобный прием дает вполне воспроизводимые результаты. [c.477]

    Для разделения смесей нашли применение в основном два способа электрофореза метод подвижной границы (или свободный электрофорез) и зонный электрофорез. При свободном электрофорезе (в жидкой среде) каждый компонент смеси после разделения имеет лишь одну четкую границу — фронт зоны. Вторая граница (тыл зоны) размыта, и на нее наслаивается фронт следующего компонента. Вследствие этого невозможно выделить чистые компоненты. При зонном электрофорезе получают четкое разделение компонентов смеси на зоны, ограниченные двумя границами ( фронтом и тылом ). Для получения зон с четкими границами ограничивают диффузию различными способами и осуществляют антиконвекционную стабилизацию зон. [c.362]

    Методы электрофореза имеют большое теоретическое и практическое значение. Знание величины -потенииала позволяет судить об устойчивости коллоидного раствора, поскольку изменение устойчивости, как правило, происходит симбатно с изменением электрокинетического потенциала. Но измерение электрофоретической подвижности может иметь более широкое значение. В настоящее время электрофорез является мощным средством для изучения фракционного состава сложных биологических систем — природных белков [c.407]

    А. Тизелиус разработал метод изучения электрофоретической подвижности белков. От прибора, предназначенного для изучения лиозолей (см. рис. 34, а), прибор Тизелиуса отличается некоторыми конструктивными особенностями. Наиболее существенное из них — применение разъемных кювет прямоугольного сечения. Этим достигается возможность наблюдения за движением неокрашенных в видимой области белков с помощью специальных оптических систем. Концентрация белков на различных участках прямоугольной ячейки регистрируется по изменению показателя преломления. Изучение градиента показателя преломления при электрофорезе дает возможность проводить качественный анализ смеси белков и их препаративное разделение по различию электрофоретической подвижности. Этот метод назван свободным электрофорезом. [c.216]

    Важнейшей областью применения электрофореза является анализ биоколлоидов, например анализ смесей белков в клиническом анализе. Белки, как амфотерные полиэлектролиты, обладают собственными зарядами, зависящим от pH среды. Регулируя значение pH, можно в широких пределах менять их подвижность и даже изменить направление движения в процессе электрофореза. Для каждого белка при определенном значении pH общее число положительных зарядов равно общему числу отрицательных зарядов. Эта иэоэлектрическая точка, при которой отсутствует движение частиц, является характерной величиной для определенного белка. Растворимость белка в этой точке минимальна. Подбирая соответствующие буферные растворы для установления определенной скорости движения и растворимости веществ, можно приспособить процессы электрофореза для решения разных проблем разделения веществ. Таким образом, электрофорез превосходит метод бумажной хроматографии. Кроме того, при помощи электрофореза, особенно при высоком напряжении, можно проводить разделение неионогенных веществ (например, сахар в виде боратного комплекса) [791. Методом электрофореза можно также определять изоэлектрические точки амфотерных веществ или заряды коллоидных частиц (по направлению движения). [c.387]


Смотреть страницы где упоминается термин Подвижность Электрофорез : [c.250]    [c.227]    [c.159]    [c.172]    [c.197]    [c.207]    [c.406]    [c.101]   
Химия коллоидных и аморфных веществ (1948) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Электрофорез



© 2025 chem21.info Реклама на сайте