Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реактор условия работы

    Цель расчета реактора обычно заключается в определении степени превращения, достигаемой в аппарате данной величины при принятых условиях работы, или в вычислении объема реакционного пространства, необходимого для достижения заданной степени превращения. Основой этих расчетов служат уравнения материального и теплового балансов реактора. [c.292]


    Система улавливания углерода схематически представлена на рис. 7. Аппаратура для извлечения углерода на установке, работающей на бензине в качестве топлива, связана с реакционной системой сплошными линиями- При такой схеме взвесь углерода в бензине возвращается в реактор. Условия работы последнего регулируют для полного подавления образования углерода. [c.196]

    Сведения, получаемые в Р, играют важную роль при выработке международных соглашений, направленных на полное прекращение испытаний ядерно о оружия, сокращение его произ-ва на них основаны нормативные документы, в т. ч. определяющие порядок захоронения радиоактивных отходов, безопасную работу ядерных реакторов, условия работы персонала возможность использования с.-х. и иной продукции населением и т.д. [c.173]

    Несмотря на отмеченные преимущества многоканальных реакторов, условия работы катализатора в них и в одноканальных реакто- рах идентичны, т.е. полученные этим методом результаты могут быть использованы лишь для сравнительной характеристики различных катализаторов. [c.223]

    Условия работы реакторов дегидрирования в способе Стандард Ойл компани [6] следующие [c.86]

    Исследование адиабатических реакторов дает естественный переход от реакторов идеального смешения, рассмотренных в предыдущей главе, к трубчатым и периодическим реакторам, которым посвящены последующие главы. Назвать реактор адиабатическим значит определить способ проведения процесса, но ничего не сказать о типе реактора. Как реакторы идеального смешения (в этом мы уже имели случай убедиться), так и трубчатые реакторы могут работать в адиабатических условиях, т. е. без подвода или отвода тепла. В этой главе мы воспользуемся результатами, полученными нами для реакторов идеального смешения, и введем только простейшую модель трубчатого реактора. [c.214]

    Название "замедленное" в рассматриваемом процессе коксования связано с особыми условиями работы реакционных змеевиков трубчатых печей и реакторов (камер) коксования. Сырье необходимо предварительно нагреть в печи до высокой температуры (470 — 510 °С), а затем подать в необогреваемые, изолированные снаружи коксовые камеры, где коксование происходит за счет тепла, прихо — дящего с сырьем. [c.55]

    Условия работы реактора установок каталитической очистки следующие. [c.162]

    Ниже приведены данные, характеризующие размеры я условия работы одного из реакторов рассмотренного типа [50]. [c.113]


    Стадия оксихлорирования проводится в реакторе 5 с псевдоожиженным слоем катализатора под давлением л 0,5 МПа при i 60—280°С. Этилен, рециркулирующий газ и хлористый водород смешивают предварительно в трубе, после чего в смесителе 4 к ним добавляют технический кислород. Способ смешения п состав смеси долл<ны обеспечить взрывобезопасные условия работы. В реакторе 5 выделяющееся тепло отводится за счет испарения водного конденсата под давлением в результате получается технологический пар, используемый на этой же установке. Реакционные газы, состоящие из непревращенных этилена, кислорода и хлористого водорода, а также паров дихлорэтана и примесей инертных газов, охлаждают в холодильнике 6 смесью воды и дихлорэтана, циркулирующей через холодильник 7. Частично охлажденную газо-паровую смесь очищают от НС1 и СО2 в горячем щелочном скруббере 9 и окончательно охлаждают в холодильнике 10. Конденсат отделяют от газа в сепараторе II, после чего рециркулирующий газ (смесь этилена, кислорода и инертных веществ) компрессором 13 возвращают на оксихлорирование. [c.156]

    Условия работы реактора  [c.268]

    В монографии в доступной форме рассмотрены вопросы химической кинетики применительно к промышленным технологическим процессам. В ней излагаются научные основы проектирования химических реакторов, позволяющие получить ясное представление о физических и химических основах расчета, а также условиях, при которых реакторы могут работать на режиме максимальной эффективности. [c.2]

    Формулы (УП1-275) и (У1П-276) применяются главным образом для анализа нестационарных состояний реактора полного вытеснения. Для целей проектирования реакторов достаточно уравнения, которое описывает стационарное состояние, соответствующее нормальным условиям работы аппарата (кроме периодов его пуска и остановки). [c.297]

    Поскольку решение уравнений Эйлера — Лагранжа само по себе неустойчиво, нужно непрерывно решать систему уравнений для существующих в реакторе условий и рассчитывать новый путь до того, как предыдущ,ий достиг своей точки отклонения. Учитывая, что для определения условий работы реактора и его системы управления требуется 14 уравнений, при современной [c.120]

    По мнению В. С. Бескова, В. П. Кузина и М. Г. Слинько [4,5], режим, близкий к идеальному вытеснению, наблюдается для многих промышленных реакторов. Условия, позволяюш,ие создать режим идеального вытеснения в проточном реакторе (числа Рейнольдса, соотношения диаметра и дливы реактора, соотношения диаметров реактора и зерна катализатора), описаны в монографии [6]. Теория изотермических проточных реакторов идеального вытеснения детально разработана в работах Г. М. Панченкова [7—8]. В трудах Г. М. Панченкова с сотрудниками [9—12] показано хорошее соответствие уравнений, выведенных на основе теоретических соображений, экспериментальным данным. Все это объясняет тот факт, что при изучении процессов нефтепереработки до настоян его времени используют главным образом интегральные проточные реакторы. [c.158]

    Известно, что состояние равновесия конвертированного газа зависит от давления, температуры и молярного соотношения компонентов исходной смеси. Изменяя указанные параметры, можно получать газ различного состава в зависимости от требований производства. В качестве катализатора используют активированный алюминием никель на огнеупорном носителе. Сажи в данном процессе не образуется. Процесс проводится в одну ступень при температуре 1200°. Срок жизни катализатора составляет несколько лет. Необходимым условием работы катализатора является равномерное и полное заполнение реактора катализатором (отсутствие пустот). При наличии последних возможно протекание гомогенных реакций, которые ведут к образованию сажи. [c.105]

    При температуре хладоагента 350°С максимальная температура в слое достигает 385°С, что превышает допустимую величину. При понижении температуры хладоагента до 315°С максимальная температура в слое опускается до 371 °С, а степень превращения при длине слоя 1000 см составляет 0,0902 моль моль. Таким образом, выход продукта удваивается по сравнению с предыдущим слоем, необходимое же количество труб возросло только на 10%. Изучая влияние изменения параметров, можно найти оптимальные условия работы реактора. [c.203]

    Часто из-за неоднородности условий протекания процесса в реальных условиях не достигаются расчетные показатели, потому что при проектировании контактных аппаратов не уделялось достаточного внимания вопросам равномерного подвода реагирующих веществ, смешения потоков на входе в реакционный объем, нагрева и охлаждения, засыпки катализатора и т. п. Создание однородных условий работы приобретает решающее значение при проектировании реакторов большой мощности. Без всестороннего исследования реакторов с помощью математической модели и машинного эксперимента невозможно надежно и однозначно определить влияние неоднородностей на эффективность работы реакторов, установить требования, ограничивающие отклонения от однородных условий в допустимых пределах. [c.15]


    Для оценки стационарных режимов зернистого слоя в целом необходимо, таким образом, хотя бы качественно исследовать характер решений уравнений (VI.144) и (VI.145). Заметим, что первые два члена этих уравнений описывают перенос вещества и тепла, соответственно в поперечном и продольном направлениях. Возможны два предельных режима теплопереноса [36]. Первый — почти адиабатический, когда отвод тепла на стенку незначителен и практически все тепло реакции уходит на нагревание реагирующего потока. В этом режиме первый член уравнения (VI.145) пренебрежимо мал повсюду, кроме ближайшей окрестности стенки реактора. Переход трубчатого реактора в почти адиабатический режим является крайне нежелательным, поскольку при этом не решается главная задача аппарата этого типа — обеспечение отвода тепла реакции на стенку — и температура в центре реактора быстро возрастает, вызывая угрозу перехода процесса в диффузионный режим. Желательным обычно является другой предельный режим работы реактора, который можно назвать почти изотермическим. В этом режиме тепло реакции отводится в основном на стенку, а изменение температуры по длине реактора мало. Соответственно второй член уравнения (VI. 145) мал по сравнению с первым и в первом приближении может быть отброшен. Из сравнительной оценки обоих членов ясно, что условие работы реактора в почти изотермическом режиме имеет вид  [c.254]

    Реакторы для работы с кипящим слоем катализатора обычно представляют собой цилиндрические аппараты с распределительной решеткой внизу. В случае экзо- или эндотермических реакций аппарат снабжается внутренним теплообменником. Вследствие практического отсутствия перепада температуры по сечению аппарата и благоприятных условий тепловой устойчивости, в процессах с кипящим слоем можно допускать весьма значительную разность между температурами катализатора и теплоносителя. [c.270]

    Понятие устойчивости. Ни один реальный реактор не работает в строго стационарном режиме. Флуктуации состава исходной смеси, колебания внешних условий и другие малые случайные возмущения непрерывно выводят процесс из стационарного состояния. Очевидно, что процесс может протекать нормально только в том случае, если малые внешние воздействия ведут и к малым отклонениям режима процесса от стационарного в противном случае любое слабое неконтролируемое возмущение приведет к нарастающему удалению от заданного стационарного состояния, т. е. к немедленному срыву процесса. [c.324]

    Экспериментально найденные на лабораторной установке оптимальные условия работы катализатора можно непосредственно перенести на аппарат большого масштаба лишь в том случае, когда они определены для условий, очень близких к промышленным. Примером может послужить исследование хода процесса в трубке промышленных размеров на катализаторе обычной степени дисперсности с целью поиска оптимальных значений температуры реакции, скорости потока и пр. Эффективный поиск должен осуществляться с помощью статистических методов направленного движения к оптимальному режиму [1, 2]. Этот поиск должен быть более детальным, чем при первоначальном подборе катализатора. Результаты эксперимента поставленного по такой методике, могут быть непосредственно перенесены на промышленный трубчатый реактор. Это же имеет место при поиске оптимального режима в жидкофазных проточных реакторах идеального смешения. [c.400]

    Дифференциальные реакторы, работающие по принципу малых степеней превращения, конструктивно и по экспериментальной технике не отличаются от проточных интегральных реакторов, поэтому не будем на них останавливаться. Прочие варианты дифференциальных реакторов снабжены приспособлениями, обеспечивающими одинаковые условия работы всего слоя катализатора по всем кинетическим параметрам, в том числе и по концентрациям. [c.409]

    Рассмотрим экспоненциально затухающую функцию распределения в потоке идеального смешения. По условиям работы соответствующего реактора каждая вновь поступающая порция жидкости должна немедленно смешаться с его содержимым. Однако в данном. случае необходимо,кроме того, допустить существование глобул жидкости. [c.309]

    Проиллюстрируем сказанное на примере реактора с псевдоожиженным слоем. При переходе от лабораторных условий работы к промышленным в большинстве случаев уменьшается отношение высоты слоя к диаметру аппарата. На производстве это приводит к резкому снижению скорости реакции вследствие изменения структуры взвешенного слоя, возрастания средней концентрации продуктов реакции, снижения средней концентрации исходных веществ и к изменению избирательности процесса. [c.466]

    Однако, из рис. 11.25 видно также, как преодолеть указанный недостаток реакторов идеального смешения. Проведем реакцию от степени полноты до степени полноты с помощью двух реакторов, в первом из которых растет от до а во втором — от до Ер. Тогда время контакта в первом реакторе будет равно площади прямоугольника АРСН, а во втором — площади прямоугольника Н1СО. Очевидно, суммарное время контакта для двух реакторов будет меньше, чем для одиночного, потому что первый реактор теперь работает в условиях, когда скорость реакции выше. Если теперь пспользовать несколько реакторов, мы получим несколько таких прямоугольников с правыми верхними углами, лежащими на кривой. Чем больше число стадий, тем меньше суммарное время контакта, и в пределе мы достигнем площади под кривой, т. е. времени периодической реакции. [c.187]

    Чтобы показать возможность непрерывного перехода к реактору полного вытеснения, на рис. 11-12 представлены кривые функции распределения F(t) = = (АВ/АВо)у для разного числа т реакторов смешения. На практике встречаются аппараты, условия работы в которых очень сложные (например, вращающаяся печь, крекинговая установка и т. д.), поэтому их трудно сопоставить с тем или иным идеальным типом реактора. В этих случаях можно применить методы Гофманна [81 и Ше-неманна [9], основанные на графическом расчете. [c.212]

    Размеры реактора и соотношения между его линейными размерами зависят от мощности и типа крекинг-установки. На установках, перерабатывающих. 1600—2000 т1сушки сырья, применяются реакторы диаметром от 4 до 7 л и высотой до 18 м. Для снижения потерь тепла и улучшения условий работы реакторы снаружи изолированы. [c.127]

    На одной из заводских установок с тремя последовательно соединенными реакторами при гидроочистке сравнительно легкого вакуумного газойля (до 463 °С выкипает 98% масс.), выделенного из арланской нефти, за полтора года работы (второй цикл) температура в реакторах была повышена с 350 до 385— 390 °С в течение этого же периода суммарный перепад давления возрос с 0,18 до 0,45 МПа, в том числе в первом реакторе с 0,08 до 0,23 МПа при общем избыточном давлении в реакторном блоке около 3,3 МПа. Остальные условия работы реакторов данной установки следующие объемная скорость подачи сырья 0,9— 1,2 ч 1 отношение циркуляционный газ сырье 400—600 м м концентрация водорода в циркуляционном газе 75—85 % (об.), а содержание в нем сероводорода после моноэтаноловой очистки 0,05—0,10 % (сб.) катализатор — алюмокобальтмолибденовый, регенерированный после первого цикла работы. Содержание серы в газойле — сырье для каталитического крекинга — уменьшилось с 2,5—3,5 до 0,4—0,6 % (масс.), а коксуемость с 0,17 до 0,04 % (масс.) [16]. [c.54]

    В процессах обессеривания лигроинов и газойлей при давлении 18— 30 ат и температуре 260—427° [4, 13] в качестве катализатора широкое применение нашел молибдат кобальта на активированной окиси алюминия. При этих условиях происходит гидрогенизация олефиновых углеводородов, но практически не идет гидрогенизация присутствующих в сырье ароматических углеводородов. Добавление солей щелочных металлов к этому катализатору подавляет гидрогенизацию олефиновых углеводородов, ие тормозя, однако, гидрогенизации сернистых соединений 5]. При более высокой температуре или при более низком давлении становится заметной реакция дегидрогенизации присутствующих в лигроине нафтенов до ароматических углеводородов и водорода (как в гидроформинге). При регулировании рабочих условий процесса можно обеспечить образование небольшого избытка водорода сверх того количества его, которое необходимо для обеспечения гидрогенизации олефинов и обессеривания [2] процесс становится независимым от внешнего поступления водорода. При этих условиях управление тепловым режимом реактора осуществляется легче, так как теплота, выделяющаяся при экзотермической реакции гидрогенизации олефинов и сернистых соединений, почти компенсируется теплотой, поглощаемой при эндотермической реакции дегидрогенизации. Однако при таких, более жестких условиях работы скорость гидрогеиизации олефинов [5] может снижаться, приближаясь к равновесию олефин — парафин, и появляется тенденция к отложению угля на катализаторе. Необходимость чередования процесса с регенерацией путем продувки воздухом для удаления с катализатора углеродистого осадка ограничивает процесс, сокращая продолжительность рабочих периодов по сравнению с процессом типичной обычной гидрогенизации. [c.279]

    Эффективность работы батареи реакторов зависит от числа ступеней, объема каждой ступени и интенсивности смешения. При идеальном смешении концентрация одинакова во всем объеме каждой ступени и равна концентрации в отводимом потоке (так называемая теоретическая, или идеальная, ступень). Практически можно лишь в той или иной степени приближаться к идеальным условия1у1, причем степень приближения зависит от особенностей каждой отдельной системы. Конечно, всегда происходят локальные циркуляции перемешиваемой среды, что сокраш,ает время пребывания части материала в данной ступени. Несмотря на то, что для другой части материала время пребывания в указанной ступени больше по сравнению со средним временем, средняя степень превращения вещества несколько ниже, чем при идеальном смешении. Отношение разности концентраций на входе и выходе из ступени в практических условиях работы к разности этих же концентраций в идеальной ступени называется коэффициентом полезного действия ступени. В реакторах смешения к. п. д. обычно составляет от 60 до 90% однако никаких общих соотношений между переменными, влияющими на к. п. д., для расчета этого важного показателя работы реакторов не выведено. [c.119]

    Проведено сравнение [92] эффективности трубчатого реактора и колонны в оптимальных (или близких к оптимальным) условиях работы для каждого аппарата (соответствующие каждому аппарату нагрузки по воздуху и т. д.). Сопоставитель ный расчет проведен для окислительного блока производительностью 500 тыс. т в год битумов (в том числе 400 тыс. т в год дорожных и 100 тыс. т в год строительных), работающего на гудроне наиболее массовой в стране товарной западно-сибирской нефти, из которого, как показал практический опыт, стандартные дорожные и строительные битумы можно получать как в колонне, так и в трубчатом реакторе. [c.69]

    Книга является монографией, наиболее полно освещающей и обобщающей вопросы теории и практики процессов химического взаимодействия газов и жидкостей. В ней рассмотрены физикохимические основы и дано математическое описание этих процессов, их кинетика в различных гидродинамических условиях работы газожидкостных реакторов, абсорберов и их лабораторных моделей, элементы расчета соответствующих аппаратов. В книге приведено большое количество числовых примеров. Ряд разделов может спужить ценным пособием для экспериментаторов в области процессов массопередачи. [c.4]

    Поэтому следует иметь 1в виду, что предлагаемая инита является всего лишь вводным курсом, главная задача которого — помочь читателю выработать физическую интуицию относительно факторов, воздействующих на реакцию, протекающую в реакторе. Автор считает, что еще до изучения математических методов, столь важных для точного инженерного расчета, студенту следует хорошо разобраться в условиях работы промышленных реакторов. [c.5]

    Мгновенный выход измеряли в небольшом одноступенчатом реакторе смешения. В такой системе мгновенный выход, типичный для условий работы аппарата, равен экспериментально определяемому суммарному выходу, что следует из уравнения (4.22) (Ф =ф1), хотя достаточно очевидно и так. Выход опре-деля.111 в большом числе опытов, каждый из которых соответст-вова. 1 различным стационарным условиям в реакторе. Значения наносили на график в функции от о (весовое отношение гексамина к азотной кислоте при постоянных значениях температуры и начальной концентрации кислоты). Такая кривая для температуры 25° С показана на рис. 29, из которого видно, что с возра-.станием р, т. е. с увеличением разбавления кислоты, значение ф вначале несколько возрастает, а затем резко падает. Очевидно, существует определенная оптимальная концентрация кислоты, по-видимому, более низкая, чем принятая за исходную в рас- [c.124]

    Найденное уравнение скорости реакции с вычисленными константами можно применять для расчета реакторов любых типов. На основе этого уравнения могут быть рассчитаны необходимое количество катализатора и профили концентраций компонентов при разных условиях работы реактораа также проведен анализ влияния различных параметров. [c.131]

    Поэтому выбор концентрации изобутана в продуктах на выходе, пз реактора должен проводиться с учетом конкретных условий работы каждой установки и поставленных задач (качества вырабатываемого продукта). В зарубежной практике считается, что эта величи- ца должна быть не менее 50—55%. При повышении концентрации изобутана с 55 до 70% увеличивается октановое число алкилата примерно на Г пункт, а сортность — на 2 пункта. Выход алкилата при этом практически не изменяется. [c.100]

    Импульсная установка представляет собой в частном случае сочетание микрореактора с хроматографом. В последние годы стали широко применять импульсные установки с препаративной секцией [24], служащей для выделения индивидуальных веществ, направляемых далее в реактор. Однако условия протекания реакций в импульсном режиме отличаются от условий работы в проточных установках, так как в первом случае в реакции участвуют наиболее активные центры катализатора и происходит доочистка сырья. [c.45]

    Экспервиевтальный поиск оптимальных условий— обычный этап, следующий за первоначальным исследованием катализаторов. До настоящего времени такие эксперименты часто ставят по неверной методике. Всегда следует помнить, что оптимальные условиянайденные опытным путем, относятся лишь к той установке, на которой проводили эксперимент. Между тем, в ряде случаев при выборе типа установки для поиска оптимальных условий работы катализатора исходят главным образом из удобства экспериментальной работы. Но оптимальное условие, найденное на удобной лабораторной установке, могут не совпадать с наилучшими условиями работы промышленного реактора. [c.400]

    Реактор охлаждается иарафини-стым маслом (Г = 245 С при низшей скорости потока). Требуется рассчитать распределение температуры п превращения при следующих условиях работы данном содержании сырья (рис. V-16), массовой скорости подачи 0,314 кг/(л1 сек) и температуре на входе Т = 245 °С. [c.193]


Смотреть страницы где упоминается термин Реактор условия работы: [c.82]    [c.226]    [c.729]    [c.11]    [c.178]    [c.145]    [c.240]    [c.36]    [c.444]    [c.230]   
Научные основы химической технологии (1970) -- [ c.195 ]




ПОИСК





Смотрите так же термины и статьи:

Реактор работы



© 2025 chem21.info Реклама на сайте