Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Равновесие азеотропных смесей

    Если на кривой (— N или Р — N имеется максимум или минимум, то независимо от исходного состава жидкости последняя нацело не разгоняется могут быть получены лишь чистый компонент и постоянно кипящая (азеотропная) смесь. Прекращение процесса ректификации (или простой перегонки) в точках экстремума объясняется совпадением состава жидкости с составом пара, вследствие чего движущая сила разгонки — различие в составе фаз — становится равной нулю. Поэтому при равновесии азеотропная смесь испаряется как чистое вещество. В этом смысле можно представить рис. 101, IV и V как бы состоящим из двух диаграмм, подобных рис. 101,1—111 компонент 1 — азеотропная смесь и азеотропная смесь — компонент 2 . [c.295]


Рис. У-59. Равновесие азеотропных сме- Рис. У-60. Влияиие давления сей. на состав азеотропной смеси. Рис. У-59. <a href="/info/13765">Равновесие азеотропных</a> сме- Рис. У-60. Влияиие давления сей. на <a href="/info/149308">состав азеотропной</a> смеси.
    В области двухфазного равновесия азеотропная смесь с минимальным давлением будет существовать до той температуры, при которой линия азеотропов встретится с критической кривой. Изотерма Р—N1 в критической точке отрицательного азеотропа будет иметь те [c.118]

    Легко понять, что смеси, характеризующиеся одинаковым составом жидкости и пара, при разделении дают чистый компонент и азеотропную смесь. Прекращение процесса ректификации в точках экстремума объясняется совпадением состава жидкости с составом пара при указанном соотнощении компонентов, вследствие чего движущая сила разгонки — различие в составе фаз — становится равной нулю. Поэтому при равновесии азеотропная смесь испаряется как чистое вещество. Состав азеотропной смеси изменяется с давлением. [c.266]

    Обезвоживание пропана. Для обезвоживания жидкого пропана применяется одна из разновидностей азеотропной перегонки. В процессе получения и при последующем хранении жидкий пропан поглощает небольшое количество воды в растворенном виде. При полном насыщении и при температуре 27° в пропане содержится 0,092% мол. воды. Активность воды, растворенной в пропане, очень высока, однако эту воду можно отогнать в виде азеотропной смеси [12]. Схема этого процесса изображена на рис. 24. Влажный пропан непрерывно поступает в колонну для обезвоживания. Сухой пропан (температура кипения при атмосферном давлении —42°) получается в виде остатков, а отогнанный продукт представляет собой азеотропную смесь воды и пропана. После конденсации отогнанный продукт расслаивается на две фазы. Верхняя — углеводородная — фаза возвращается в колонну, а нижняя — водная — фаза сливается. Данные по равновесию системы жидкость — пар для пропана, насыщенного водой, приведены в табл. 26. При низких давлениях константа равновесия для испарения воды из раствора в пропане значительно превышает единицу. Это означает, что в данных условиях вода является более летучим компонентом. [c.129]


    Азеотропную смесь метанол—ацетон можно обогатить до концентрации, значительно превышающей азеотропную, если к 1 объему смеси добавить 3,5 объема водного раствора хлорида кальция плотностью 1,2 г/см (при 20 °С это соответствует 2,ЗЛ1 раствору) [86]. На рис. 234 приведены кривые равновесия смеси метанол—ацетон с добавкой соли и без нее, дана также упрощенная схема установки. [c.322]

    Процессы первой группы являются традиционными и наиболее распространенными в технологии этерификации. Их суть состоит в том, чтобы возможно полнее осуществить обратимый синтез сложного эфира, сдвигая равновесие за счет отгонки летучих продуктов (вода, сложный эфир или их азеотропная смесь). В этом отношении кислоты, спирты и их эфиры подразделяют на четыре айда  [c.212]

    Этернфикация синтетических жирных кислот метиловым спиртом осуще ствляется в колпачковой тарельчатой колонне. Пары метилового спирта, перегретые до 120—130 °С, поступают в нижнюю часть колонны, а сверху подаются нагретые до 115—120 С жирные кислоты вместе с 50%-ной серной кислотой в количестве 1—2% (масс.). Поскольку в данном случае не образуется азеотропная смесь, отгонка которой позволила бы смещать равновесие реакции, применяется большой (пятикратный) избыток метилового спирта. Глубина этерификации достигает 97—98%. Полученные метиловые эфиры имеют остаточное кислотное число 5—7 мг КОН/г, т. е. несколько больше, чем при этерификации бутиловым спиртом. [c.32]

    Азеотропную смесь метиловый спирт — ацетон можно также обогащать значительно выше азеотропной точки, добавляя 3,5-кратный объем раствора хлористого кальция (плотность 1,2 при 20°, что соответствует 2,3 М раствору) [39]. На рис. 235 показан ход кривой равновесия без добавки и с добавкой хлористого кальция, а также схема установки. Для смеси вода — фенол добавкой 17% хлористого натрия достигают смещения азеотропной точки с 91 до 84% вес.% воды это смещение можно использовать для разделения [40]. Большее обогащение, чем без добавки, получают также при насыщении смеси этиловый спирт — вода в области концентраций 15—70% нитратом калия [41]. [c.352]

    Допустим, требуется выделить компонент 1 из азеотропной смеси его с компонентом 2, причем азеотроп 12 в двойной системе образует или минимум, или максимум температуры кипения. Подберем такой компонент 3 — разделяющий агент, который приводил бы в тройной системе 1—2—3 к образованию двойного азеотропа 23 с самой малой температурой кипения зо всей тройной системе. Добавим разделяющий агент в азеотропную смесь 12 с таким расчетом, чтобы состав получившегося тройного раствора соответствовал точке д (рис. VI, 21). Тогда ректификация тройного раствора будет протекать следующим образом. В качестве первой фракции в соответствии с характером фазового равновесия будет отгоняться бинарный азеотроп 23 и точка <7 будет смещаться к точке 1. [c.175]

    Имеются, конечно, исключения расчет равновесия в тройных системах только по данным для бинарных систем оказывается, по-видимому, более успешным в тех случаях, когда область нерастворимости в бинарной системе АВ (для систем типа I или в обеих ограниченно растворимых парах для систем типа II) почти симметрична. В качестве исходных данных для тройных систем (в дополнение к данным для бинарных), которые удобно применять при расчете тройного равновесия, могут служить известная хорда равновесия или данные о равновесии пар — жидкость. Можно пользоваться также данными об азеотропных составах, исключая те случаи, когда азеотропная смесь образо- [c.111]

    Непрерывная противоточная перегонка в вакууме. Диаграмма фазового равновесия жидкость-пар бинарной смеси представлена на рис. 12.3. Из этой диаграммы видно, что вода и серная кислота образуют азеотропную смесь с максимальной температурой кипения 336,6 °С при атмосферном давлении, содержащую 98,3 % (мае.) Безводная серная кислота кипит при атмосферном давлении при температуре 296,2 °С, вьщеляя пары 80 и превращаясь при этом также в 98,3 %-ный водный раствор. Водные растворы, содержащие менее 70 % (мае.) Щ80 , при нагревании образуют пар, практически не содержащий серной кислоты. Ниже приведены температуры кипения 98 %-ной кислоты при различных остаточных давлениях  [c.412]

    Порядок работы перегонных колонн при азеотропной перегонке тот же, что и описанный в предыдущей части, за исключением того, что обычно к загрузке углеводорода в кубе добавляется избыток вещества, образующего азеотропную смесь, и перегонка производится до тех пор, пока в колонне не останется углеводорода, что определяется по подъему температуры равновесия жидкость— пар в головке колонки до величины, соответствующей температуре кипения чистого вещества, образующего азеотропную смесь. Оператору дается указание прекратить перегонку после того, как будут отобраны две фракции с температурой кипения, равной точке кипения вещества, образующего азеотропную смесь нри данном давлении. [c.57]


    Необходимо отметить, что как первый, так и второй законы Вревского относятся к равновесиям, далеким от критического состояния. Так как соотношение парциальных теплот испарения сохраняется во всех областях концентраций, то можно считать, что при повышении давления и температуры азеотропная смесь с максимумом давления и минимумом температуры обогащается труднолетучим компонентом, а азеотропная смесь с минимумом давления и максимумом температуры — легколетучим компонентом. [c.202]

    Иногда кривая равновесия почти касается горизонтальной прямой, проведенной через точку /И (см. рис. ХП-5, а) тогда указанной точке также соответствует азеотропная смесь (так называемый тангенциальный азеотроп), и разделить исходный раствор невозможно. [c.477]

    Важное значение имеет азеотропная сушка. К высушиваемому соединению добавляют вещество, образующее с водой азеотропную смесь и по возможности мало смешивающееся с водой на холоду (например, бензол). Нагревают смесь до кипения. Вода образует с бензолом азеотропную смесь (т. кип. 69° С) и выделяется при охлаждении в виде капель. Выделившуюся воду замеряют и определяют как момент окончания отгонки воды, так и ее количество. Точно так же можно наблюдать за течением химических реакций, при которых выделяется вода. Постоянной отгонкой воды из реакционной смеси можно сместить равновесие химической реакции в желательном направлении. Наиболее часто для отделения воды при азеотропном высушивании применяют бензол, толуол, ксилол, хлороформ, I.  [c.55]

    Система, в которой хотя и образуется адсорбционная азеотропная смесь, но при некоторых концентрациях наблюдается значительное разделение компонентов, изображена на рис. 8. Данные рис. 8 относятся к системе бензол — этиловый спирт на активированном угле и были рассчитаны [201 Тригорном и Виэтом 146] по данным исследования равновесия жидкость — пар. [c.144]

    По достижении равновесия записывают температуру кипения жидкости, барометрическое давление и слегка открывают кран 10 для отбора дистиллята. При отборе дистиллята нужно не только поддерживать в колонке рен<им, близкий к только что установленному, но и следить за соотношением орошения, возвращаемого в кoJ[oнкy, и дистиллята, отбираемого в приемник, за один и тот же промежуток времени. Для хорошего погоноразделения важно, чтоб)л это сэотношение (флегмовое число) было высоким, но чтобы количество флегмы не достигало величины, прп которой колонка начинает захлебываться . Для описываемой колонки флегмовое число долйсно быть равно 20 1—45 1. Оно определяется по числу капе.ть и регулируется нри помощи крана 10 конденсатора. Пока температура пара остается постоянной (отгоняется индивидуальное вещество или азеотропная смесь), флегмовое число [c.151]

    Способность ограниченно смешивающихся жидкостей образовывать гетероазеотропы используется для разделения азеотропных смесей в системах с неограниченной взаимной растворимостью компонентов. Так, азеотропная-смесь в системе пиридин — вода, содержащая 57% пиридина и кипящая при 365 К, методом перегонки не может быть разделена на чистые компоненты. Однако если к такой азеотропной смеси добавить бензол, который образует с водой гетероазеотроп, кипящий при более низкой температуре (342 К), то при перегонке водных растворов пиридина в присутствии бензола можно получить чистый пиридин, а вода вместе с бензолом в виде гетероазе-отропа перейдет в дистиллят. Диаграмма на рис. 139 отвечает системе, в которой гетероазеотроп не образуется. В такой системе во всем интервале концентраций пар богаче жидкости компонентом Б, имеющим более низкую температуру кипения при заданном давлении. Такие системы характеризуются тем, что состав пара (точка О), равновесного с жидкими растворами (точки С и D), не является промежуточным между составами жидких растворов. Кроме того, температура равновесной трехфазной системы не будет самой низкой температурой, при которой существует равновесие пар—жидкость. Систему с ограниченной взаимной растворимостью компонентов второго типа перегонкой можно разделить на два чистых компонента. Примерами систем данного типа могут служить системы вода — фенол, гексан — анилин, вода — никотин, бензол — ацетамид, метанол — тетраэтил-силан и др. [c.398]

    В общем случае понижение давления сказывается таким образом, что азеотропная смесь обогащается легкокипящим компонентом. Во многих случаях в конце концов при некотором вакууме, азеотропный состав исчезает. В качестве примера можно указать на разделение смесей этанол—вода и вода—фенол (рис. 226). Вакуумной перегонкой при 70 мм рт. ст. получают абсолютный спирт и без разделяющего агента. Азеотропная точка на кривой равновесия смеси вода—фенол исчезает при остаточном давлении 32 мм рт. ст. Шнайнкер и Пересслени [45] установили, что азеотропная точка смещается следующим образом азеотроп смеси муравьиная кислота—вода при 55 мм рт. ст. содержит 66% (масс.) муравьиной кислоты, а при 200 мм рт. ст. — 72% (масс.) кислоты азеотроп смеси бутанол—бутилацетат при 50 мм рт. ст. содержит 37% (мол.) бутанола, а при 760 мм рт. ст. — 79% (мол.) спирта. [c.306]

    Равновесие в трехкомпонентной системе можно представить на треугольной диаграмме, дающей проекции изотерм жидкости и пара (для Р = сопз1). На рис. У1-47 (один азеотроп) сплощные линии обозначают изотермы жидкости, а пунктирные — изотермы пара. На каждой стороне треугольника можно построить диаграмму изобар системы из двух компонентов. Изотермы пара соединены с изотермами жидкости рядом отрезков, указывающих, какие фазы находятся в равновесии друг с другом. В случае периодической ректификации трехкомпонентного раствора с одной азеотропной смесью из двух компонентов состава 5 (рис. У1-47), происходят хара терные изменения температуры дистиллята. Сначала отгоняется летучая азеотропная смесь при температуре /а- После ее отгонки в кубе по правилу прямой линии остается смесь состава В. Теперь будет отгоняться более летучий компонент, например С, при температуре с- Затем отгоняется почти чистый компонент О при температуре перегонки tD. [c.507]

    Азеотропные смеси разделить на оба чистые компонента при постоянном давлении не удается., Они характеризуются равенством составов жидкой и паровой фаз, находящихся в равновесии (см. 6.7). В итоге можно получить в чистом виде один компонент и азеотропную смесь. В чистом виде выделяется тот компонент, содержание которого в разделяемой смеси больше, чем в азеотропной смеси. Например, любой жидкий раствор состава от О до х (рис. 6.14) содержит по сравнению с азеотроппым больше компонента А, поэтому при ректификации компонент А будет выделяться в чистом виде. [c.103]

    До разделения азеотропной смеси рекомендуется снача.та исследовать, в какой степени изменение давления может оказать влияние на фазовое равновесие. В большинстве случаев понижение давления делает азеотропную смесь более богатой нижекиня-1ЦИМ компонентом. Во многих случаях нрп определенном вакууме азеотропная точка исчезает. В качестве примера можно назвать смеси этиловый спирт — вода п вода — фенол (рис. 226). Вакуумной ректификацией при 70 мм, рт. ст. получают абсолютный спирт без добавки постороннего вещества. Азеотропная точка для смеси вода — фенол исчезает при 32 мм рт. ст. (см. главу 5.41). Но можно также привести случаи, когда азеотропная точка исчезает с повышением давления. [c.338]

    В качестве примера смеси близкокипящих компонентов уже было рассмотрено разделение смеси н-гептан — метилциклогексан с помощью добавки анилина. Система метилциклогексан — толуол — неидеальная смесь (без азеотропной точки) кривая равновеспя асимптотически приближается к диагонали, и относительная летучесть Р и с. 231. Кривая равно- с повышением концентрации метил-весия для смеси метилцик- циклогексана стремится к 1 (рис. 231). логексан—толуол (неиде- Для получения чистого метилцикло-альная с есь без азеотроп гексана обычной ректификацией практически потребовалось бы бесконечно большое число теоретических тарелок. При добавлении 55 мол.% полярного растворителя (анилина) кривая равновесия становится по форме близкой к идеальной, и разделение очень упрощается. Экстрактивная ректификация также выгодна для разделения азеотроп ных смесей. Например, с помощью экстрагирующего агента (анилина) можно воздействовать на азеотропную смесь циклогексан — бензол таким образом, чтобы в дистиллате получить чистый циклогексан. Экстрактивную ректификацию целесообразно применять для разделения многокомпонентных смесей, содержащих компоненты, относящиеся к различным классам. [c.344]

    Азеотропвая Р. Для нек-рых бинарных смесей кривые равновесия у = ф(х) при определенных условиях пересекают диагональ >>-х-диаграммы в точке пересечения составы пара и жидкости одинаковы (азеотропная смесь), вследствие чего подобные смеси обычной Р. разделить невозможно. Поэтому к исходной смеси добавляют р-ритель-т. наз. разделяющий агент, образующий с одним из компонентов азеотропную смесь, к-рая прн Р. выделяется в виде дистиллята кубовая жидкость представляет собой высококипящий компонент с миним. содержанием разделяющего агента. Однако его выделение из азеотропной смеси (дистиллята) затруднено. Один из методов, позволяющий осуществить рецикл р-рителя, заключается в применении таких разделяющих агентов, к-рые обладают ограниченной взаимной р-римостью в компонентах, отбираемых в виде дистиллята. При этом благодаря его расслаиванию в разделит, сосуде слой, обогащенный ЛЛК, поступает в среднюю часть регенерац. колонны, откуда в результате Р. в виде кубового продукта отбирается ЛЛК исходной смеси, а в виде дистиллята-азеотроп, направляемый в разделит, сосуд (рис. 7). [c.233]

    Пример кривой равновесия в такой смеси приведен на фиг. 13.6,6. Состав Ха1=Уаг называется азеотропным, а точка (ХагуУаг)—азсотропной ТОЧКОЙ. Азеотропную смесь можно рассматривать, как две смеси  [c.457]

    Формы диаграмм х — у и Р — х, Т — х довольно разнообразны. Вероятно, наиболее важной представляется классификация систем на 1) не содержащие азеотропную смесь, 2) содержащие азеотропную смесь, 3) содержащие две жидкие фазы. Многочисленные примеры систем всех указанных видов можно найти в перечисленных публикациях, однако данных о равновесия пар — жидкость для несмешивающихся жидкостей опубликовано меньше всего. Так, в справочнике Лан-дольда-Бернштейна [73] приведено лишь 9 (№60, 62, 65, 68, 90, 152, 378, 634 и 635) диаграмм, на которых имеются такие области, где входящие в исследуемую систему жидкости не смешиваются. [c.344]

    Азеотропные смеси (азеотропы). Азеотропная смесь ведет себя подобно чистому веществу, поскольку она перегоняется без изменения состава или температуры кипения до тех пор, пока давление остается постоянным. Перемена давления приводит как к изменению температуры кипения и состава азеотропа, так и формы кривой равновесия пар—жидкость. Эти изменения почти всегда малы, если только давление не изменится значительно. Так, раствор хлористого водорода и воды, содержащий 20,2% (весовых) хлористого водорода, кипит при 110° (при 760 мм рт. ст.), давая дестиллят того же состава (рис. 7). При нагревании смеси любого другого состава один из компонентов отгоняется в различных количествах до тех пор, пока в кубе не останется азеотропная смесь, которая затем перегоняется при постоянной температуре. Все смеси, содержащие меньше 20,2% хлористого водорода, можно рассматривать как составленные из воды и азеотропа, причем более летучим компонентом будет вода. Те же смеси, в которых содержится более 20,2% хлористого водорода, можно рассматривать аналогично как состоящие из хлористого водорода и азеотропа более летучим компонентом будет хлористый водород. Подобно тому, как это происходите системами, не содержащими азеотропа, перегонка, если только она достаточно эффективна, приводит к разделению на воду и азеотроп для систем, содержащих менее 20,2% хлористого водорода, и на хлористый водород и азеотроп для систем, содержащих более 20,2% хлористого водорода. Система вода— хлористый водород является типичной для систем, образующих смеси с максимальной точкой кипения. Аналогичные положения применшмы к системам, образующим смеси с минимальной точкой кипения, за исключением того, что в них азеотроп более летуч, чем любой из компонентов. Так, все смеси толуол—спирт, содержащие менее 41 % толуола, могут быть разделены на азеотроп и спирт, а смеси, содержащие более 41% толуола,—на азеотроп и толуол. Изложенную характеристику двойных азеотропных систем можно свести в следующие положения  [c.26]

    Расчет процесса азеотропной дистилляции , т. е. определение флегмового числа в колоннах, числа теоретических тарелок ж т. д., может быть выполнен также по определяющим парам -разделяемых компонентов. Так, в новую азеотропную смесь, образованную той или иной добавкой , разделяемые компонеп--гы входят в ином количественном соотношении, чем в исходную. Поэтому при отгонке нового азеотропа, если он имеет иинимум температуры кипения, один из компонентов исходной разделяемой смеси будет полностью переходить в дистиллят. Следовательно, в каждом случае азеотропной дистилляции достаточно (тем же экспериментальным путем отбора проб по вы-t OTe колонны) найти кривые фазового равновесия всех тех разделяемых пар, в которых отгоняемый нацело в дистиллят компонент является легколетучим, а все остальные тяжелолетучими компонентами. [c.158]

    Процесс протекает в жидкой и в паровой фазе в качестве инициатора применяют перекись водорода или какую-нибудь другую перекись, дающую щелочную реакцию. Жидкофазное окисление нужно вести так, чтобы между количествами абсорбированного кислорода и полученной перекисью водорода поддерживалось равновесие. Процесс идет непрерывно его осуществляют при температурах 100—105° С и давлении 2—3 ат, несколько большем, чем необходимо для поддержания изопропилового спирта в жидком состоянии. В этих условиях получается перекись водорода концентрацией 15—25% вес. В качестве стабилизатора перекиси водорода применяется метастанат натрия или ацетанилид. В качестве сырья применяется технический изопропиловый спирт (азеотропная смесь, содержащая 88% спирта и 12% воды) и кислород концентрацией не менее 95%. [c.450]

    Разновидности процессов фракционирования. Процессы фракционирования, основанные на термодинамическом равновесии между двумя фазами, включают дистилляцию, экстракцию, адсорбцию и кристаллизацию. Каждый из этих процессов имеет один или большее число вариантов, как например дистилляция может быть (а)обычной при одном фиксированном давлении (б) периодической при двух различных давлениях (в)азео-тропной при добавлении подходящего вещества (имеющего примерно такую же общую летучесть, как и подлежащая разделению смесь), образующего азеотропную смесь или, наконец, (г) экстрактивной перегонкой при добавлении значительно менее летучего вещества, которое оказывает влияние на соотношение, тенденцию к удалению обоих компонентов только в жидкой фазе. Экстракция может проводиться (а) с различными рас-творителями или (б) при различных температурах. [c.17]

    На кривой равновесия азеотропной смеси имеется точка, в которой составы пара и жидкости одинаковы, т. е. кривая касается диагонали (специальная точка). Известным примером азеотропной смеси является смесь 96% спирта и 4% воды, ведущая себя, как жидкость с единой температурой кипения. Такую смесь можно разделить только при помощи всполюгатель-ных жидкостей (стр. 193) или, в некоторых случаях, перегонкой при повышенном или пониженном давлении. Азеотропные двух-и многокомпонентные смеси приходится разделять очень часто, и ректификация их, например отделение алифатических углеводородов от ароматических, сильно затруднена. [c.133]


Смотреть страницы где упоминается термин Равновесие азеотропных смесей: [c.201]    [c.197]    [c.201]    [c.233]    [c.197]    [c.122]    [c.437]    [c.452]    [c.424]    [c.46]    [c.46]    [c.293]   
Основы процессов химической технологии (1967) -- [ c.414 ]




ПОИСК





Смотрите так же термины и статьи:

Азеотропная смесь

Определение числа теоретических ступеней разделения по методу Мак-Кэба и Тиле для смесей с кривыми равновесия, имеющими точку перегиба и азеотропную точку

Равновесие взаимно растворимых двухкомпонентных систем, образующих азеотропные смеси

Равновесия смесях

Расчет равновесия жидкость — пар по свойствам азеотропной смеси с использованием уравнения Ван-Лаара

Расчет равновесия между жидкостью и паром по свойствам азеотропной смеси

Расчет равновесия по данным о свойствах азеотропной смеси

Смесь азеотропная Азеотропные рас



© 2024 chem21.info Реклама на сайте