Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Температура также Точка

    На сероводородное растрескивание оказывают влияние такие параметры среды, как наличие водной фазы, ее pH, содержание сероводорода, присутствие хлоридов. Сероводородное растрескивание стали при низких температурах происходит только под действием водных растворов сероводорода. Ни сухой сероводород, ни насыщенные сероводородом нефтепродукты (бензин, керосин, дизельное топливо) не вызывают растрескивания сталей. В сероводородных средах при температуре выше точки кипения водной фазы также не наблюдалось случаев растрескивания металла. [c.148]


    Наряду с термодинамической применяется также международная практическая (стоградусная) температурная шкала. Она определяется посредством ряда реперных точек, расположенных в разных областях температуры (тройная точка воды, температуры плавления серебра, золота, нормальные температуры кипения кислорода, воды, серы и др.). Величина градуса в ней принимается равной /юо интервала температуры между точками плавления льда (0°С) и кипения воды (100° С), причем обе точки определяются при нормальном давлении и для воды нормального изотопного состава. Величина градуса этой шкалы практически совпадает с величиной градуса термодинамической шкалы. [c.214]

    Реакцию лучше всего проводить при температуре 16—20°. Но так как реакция сульфохлорирования, как и вообще фотохимические процессы, имеет очень незначительный температурный коэффициент, то она может быть осуществлена также и при О—10°. Работа при более низких температурах имеет то преимущество, что реагирующие вещества, особенно углеводород, лучше растворяются, а этим увеличивается выход. [c.393]

    Касание вблизи точки О (оно не показано на рис. 46) также отвечает критическому условию, но другого типа. Бесконечно малое перемещение от точки касания прямой теплоотвода влево или кривой выделения тепла вправо приводит к резкому падению темиературы, т. е. горючий материал, вместо того чтобы реагировать ири температуре, соответствующей точке Q или более высокой температуре, находится в устойчивом состоянии при температурах, отвечающих точкам иересечення, лежащим левее Ь. В связи с этим Франк-Каменецкий назвал эту точку критической точкой тушения, а Ван-Лун — минимальной температурой горения. Подобно температуре воспламенения, эта температура пе является постоянной величиной, поскольку она зависит от различных факторов. Например, значительное влияние на нее может оказывать скорость газа. В диффузионной области скорость газа, помимо влияния на коэффициент теплопередачи, может также определять положение кривой теило-выделения. Этот эффект обнаруживается в том случае, когда наиболее медленной стадией является ие диффузия внутри пор к поверхности взаимодействия и от нее, а диффузии через гидродинамический пограничный слой к наружной поверхности твердого вещества. [c.174]

    Система уравнений (VII.35), (VII.36) не решается аналитически даже для процессов с простейшей кинетикой. Тем пе менее, ее анализ позволяет установить некоторые особенности решения. При расчете экзотермического процесса наиболее интересной величиной является максимальный разогрев, достигаемый в горячей точке реактора. Если в реактор поступает исходная смесь с температурой, близкой к температуре теплоносителя Г,,, то в сечениях, близких к входному, теплоотвод окажется незначительным и процесс будет проходить в почти адиабатических условиях. В дальнейшем, по мере повышения температуры реагирующей смеси скорость теплообмена возрастает и в некотором сечении сравняется со скоростью тепловыделения. После этого температура реакции, пройдя через максимум, начнет убывать. Верхнюю оценку для достигаемой максимальной температуры можно найти, считая, что процесс протекает адиабатически вплоть до самой горячей точки . Тогда верхняя оценка температуры, при которой скорости тепловыделения и теплоотвода сравняются, может быть найдена по точке пересечения прямой теплоотвода q = а (Т — Т .) и кривой тепловыделения ф (Т) = hr (Т). Последнюю строят с учетом соотношения между концентрацией и температурой (VII.28), которое выполняется в адиабатическом процессе. Кривая тепловыделения и прямая теплоотвода изображены на рис. III.3 они пересекаются в нескольких точках, и верхнюю оценку максимальной температуры дает точка пересечения, соответствующая наименьшей температуре. По мере увеличения температуры теплоносителя прямая теплоотвода сдвигается вправо, и при некотором критическом значении низкотемпературная точка пересечения исчезает. При этом верхняя оценка температуры в горячей точке резко повышается. Формально значение максимальной температуры, конечно, не может измениться скачком. Из теории обыкновенных дифференциальных уравнений следует, что решение системы уравнений (VII.35), (VII.36) непрерывно изменяется с изменением всех параметров, в том числе и (см. также раздел VII.2). Однако в области значений параметров, близкой к той, где кривая тепловыделения касается прямой теплоотвода (рис. III.3, прямая 4), следует ожидать сильной чувствительности температуры в горячей точке к изменению параметров процесса. [c.288]


    Константа равновесия зависит от температуры по экспоненциальному закону. Вант-Гофф впервые обратил внимание на то, что из этого следует экспоненциальная зависимость от температуры также и констант скорости реакций. [c.10]

    Если температуры плавления двух исследуемых образцов близки или совпадают, этот факт еш,е не может служить доказательством того, что они представляют собой одно и то же вещество. Для более надежного установления их идентичности определяют температуру плавления смешанной пробы. Смесь готовят, тщательно растирая примерно равные количества того и другого вещества на часовом стекле. Депрессия температуры плавления, то есть понижение температуры плавления смеси по еравяению с исходными образцами одно значно указывает на то, что они представляют собой разные вещества. Отсутствие депрессии (смесь плавится при той, же температуре, что и исходные соединения) служит доказательством идентичности веществ при условии, что другие константы обоих веществ (например, положение пятен на тонкослойной хроматограмме) также совпадают. Исключения на-блюдаются, например, в тех случаях, когда исследуемые вещества, вступают в химическое взаимодействие друг с другом, образуя новое соединение с более высокой температурой плавления. Депрессии в этом [c.181]

    Сжигание стоков группы А. Принципиальная технологическая схема сжигания стоков приведена на рис. 64. Возможность применения в схеме котла-утилизатора зависит также и от свойств минеральных солей, определяющих степень заноса солями поверхности нагрева котельного агрегата. Высокие температуры процессов сжигания при жидком шлакоудалении значительно уменьшают занос золой конвективных пучков котла. Если зола имеет высокую (порядка 1500° С) температуру плавления, то для организации жидкого шлакоудаления следует предварительно подогревать воздух до 250—300 С. [c.102]

    Существующие схемы управления для отделения синтеза аммиака предусматривают ряд сепаратных контуров управления температура горячей точки регулируется изменением расхода циркуляционного газа по байпасу мимо встроенного теплообменника колонны синтеза температура циркулирующего газа (ЦГ) на выходе колонны синтеза используется для изменения расхода ЦГ по байпасу вокруг выносного теплообменника (данный контур управления имеет характер резервного и часто в практике ведения технологического процесса не используется). Предусмотрена автоматическая стабилизация уровней испарителя жидкого аммиака (ЖА) с помощью подачи ЖА, а также уровней в сепараторе и кубе конденсационной колонны регулированием отбора ЖА на склад. Отделение синтеза иногда функционирует при постоянной продувке. [c.342]

    Можно также предположить, что молекулы или атомы могут иметь и другие степени свободы. На них также приходится такое же количество энергии. Равное распределение энергии по степеням свободы доказывается следующей теоремой Больцмана если система частиц находится в тепловом равновесии при температуре Г, то средняя кинетическая энергия равномерно распределена между всеми степенями свободы и для каждой степени свободы она равна для частицы кТ/2 и для моля Я Т12. [c.26]

    Можно также провести отсчет непосредственно по диаграмме, если поместить на ней с правой стороны шкалу вязкости ц и нанести кривую ц — ц зависимости вязкости стандартного вещества (этанола) от температуры Тогда точка 5 пересечения прямой МЯ с кривой ц, — р,, соответствующая точке О на шкале вязкости, будет обозначать искомую вязкость хлорбензола Цдд oQ = = 0,52 сП. Вязкость хлорбензола, найденная экспериментально, тоже равна [c.88]

    В атмосфере углекислоты медь неустойчива. Хлор, бром и йод при температурах ниже точек илавления нх соединений с медью разрушают ее, а с повышением темлературы скорость коррозии сильно возрастает. Медь можно применять в газообразных НС1 и I2 при температурах ниже 225 и 260° С соответственно. Азот не действует на медь и ее сплавы, а окислы азота разрушают медные сплавы. Аммиак также вызывает окисление меди и ее сплавов. В условиях диссоциации аммиака наблюдается водородная коррозия меди. [c.255]

    Абсорбция при низких температурах позволяет значительно снизить кратность циркуляции абсорбента и применять в качестве абсорбента более легкие масла (молекулярного веса 155). В легком абсорбенте при низких температурах растворяется большее количество газа. Кроме того, удаление целевых продуктов из легкого абсорбента может быть осуществлено не отпариванием, а ректификацией. Это дает возможность получать обезвоженные продукты и регенерированный абсорбент. Преимущество абсорбции при низких температурах также то, что в процессе охлаждения из газа конденсируется часть углеводородов, подлежащих извлечению, в связи с чем значительно уменьшается нагрузка на абсорбер. [c.29]


    Если провести несколько таких расчетов и построить зависимость от температуры ОПК, то можно легко определять, какая температура ОПК будет отвечать любому тепловому состоянию сырья и каковы будут составы фаз последней, а также выход и составы продуктов разделения. [c.388]

    Гпббс применил принципы термодинамики при изучении равновесия между различными фазами (жидкой, твердой и газообразной), входящими в одну и ту же химическую систему. Например, вода как жидкость и как водяной пар (один компонент, две фазы) могут существовать вместе при различных температурах и давлениях, но если температура задана, то давление также определено Вода как жидкость, водяной пар и лед (один компонент, три фазы) могут существовать все вместе только при одной определенной температуре и давлении. [c.114]

    Таким образом, результат при 852 °С наилучший. Учитывая, что экстремум при осуществлении химических процессов обычно является пологим, а также то, что ошибка в измерениях температуры близка к 10 °С, дальнейший поиск прекратим. Таким образом, поиск по методу золотого сечения потребовал проверки результата всего в четырех точках. При использовании сканирования потребовалась бы проверка результатов в И точках, отстоящих друг от друга на 20 °С. [c.219]

    Для определения числа стационарных решений строят функциональное уравнение на основе теплового баланса аналогично процедуре при нахождении числа стационарных решений каталитического процесса на внешней поверхности зерен. Это уравнение характеризует начальные и конечные температуры в частице или в слое катализатора. Оно позволяет выявить области существования одного или нескольких решений исходных уравнений, а также точки ветвления, определяющие критические условия перехода от одного стационарного режима к другому. [c.514]

    Влияние параметров режима восстановления (температуры и длительности) оценивали по конечному результату обеих стадий, т. е. по степени удаления никеля с катализатора. В связи с этим опыты данной серии проводили при следующем постоянном режиме стадии образования карбонилов 75°С, 2 ч, объемная скорость подачи окиси углерода 200 ч . В опытах изучали влияние температуры восстановления в интервале 200—700°С при длительности 4 ч на двух образцах катализатора с содержанием никеля 0,14 и 0,64 вес. %, а также при длительности восстановления этих же образцов от 1 до 6 ч и температурах 600 и 400 °С. При температуре восстановления до 300 °С никель с катализатора не удаляется (рис. 98). При более высокой температуре степень удаления никеля резко возрастает и достигает 80—90% от его исходного содержания. Дальнейшее повышение температуры, с точки зрения сохранения качества катализатора, нецелесообразно. [c.244]

    Основным источником получения циклопентадиена служат бензольные фракции процесса коксования угля и фракции Сд пиролиза нефти. Для выделения циклопентадиена из этих фракций используется его повышенная (по сравнению с другими диенами С5) реакционная способность в диеновом синтезе — он димеризуется уже при комнатной температуре, в то время как изопрен и пиперилен полимеризуются в более жестких условиях. Циклопентадиен также легко окисляется воздухом, образуя смолы и перекиси. По этим причинам его хранят и транспортируют в виде дициклопентадиена, который при повышенной температуре легко распадается на исходный мономер  [c.345]

    В качестве приемников дистиллята можно использовать практически любые колбы (см. рис. 238). Очень удобны цилиндрические градуированные приемники (см. рис. 238, 15), которые позволяют непрерывно следить за объемом отбираемого дистиллята. Если получаемый дистиллят имеет высокую температуру плавления, то его собирают в приемник с обогревающим термостатирующим кожухом, который охватывает и сливной кран (рис. 319). При аналитических разгонках необходимо также устанавливать холодильник дистиллята и термостатировать приемник, чтобы можно было измерять объем дистиллята при постоянной температуре. При обычной перегонке приемники должны сообщаться с окружающей атмосферой, а при перегонке под вакуумом их соединяют с вакуумной линией. В приемном сосуде, изображенном на рис. 320, предусмотрено охлаждение штуцера, присоединяемого к вакуумной линии [100]. [c.390]

    Результаты решения уравнений (9.221) и (9.222) легко получаются также и из физических соображений. Если <0, т. е. до того, пока все частицы горючего, находившиеся первоначально при i = О в активной зоне, не покинут активной зоны, температура в точке z в момент времени t просто равна начальной величине при z — Vt плюс приращение температуры, которое возникает в потоке при его перемещении от z — Fi до точки z благодаря тепловыделению при делении. Ясно, что когда i > О, все горючее, первоначально находившееся в активной зоне, уйдет из нее. В этом случае начальным условием для уравнения (9.228) служит условие на входе o (0, t) = 0. Следовательно, суммарный рост температуры потока, который к моменту времени t достигает точки z, всецело определяется теплом, полученным им между точкой z — Fs, где он находился в момент i — s, и наблюдаемой точкой Z. [c.445]

    Отравление катализатора крекинга весьма специфично. Если для подавляющего большинства катализаторов сернистые соединения, окись углерода, кислород и другие вещества являются ядами, то присутствие их почти не влияет на процесс крекинга. Но зато некоторые азотсодержащие соединения резко снижают активность катализатора, вызывая обратимое отравление его. Необратимо отравляютка-тализатор соединения щелочных металлов. Длительное воздействие паров воды при высокой температуре также приводит к необратимой потере активности катализатора в основном за счет уменьшения удельной поверхности его. Все технологические схемы крекинга предусматривают тщательную очистку исходного сырья от щелочных металлов. Замечено, что степень отравления различными азотсодержащими соединениями симбатна их основным свойствам. Повышение молекулярного веса азотсодержащего соединения увеличивает отравляющую способность его. Степень отравления понижается с повышением температуры. Так, присутствие 1% хинолина снижает скорость крекинга нри 575° С на 30%, а нри 500° С уже на 80%. При этом полная потеря активности катализатора наступает при содержании хинолина, покрывающего лишь 2% всей поверхности катализатора. [c.238]

    С позиций термодинамики [17] кавитацию можно представить как фазовый переход на диаграмме (рис. 3.7) в системе координат (Т,Р). На рисунке показаны линии(Т) насыщенного пара и семейство кривых Pj (T), определяющее метастабильные состояния в жидкости. Переход из точки А(Т, Р) вдоль траекторий, параллельных координатной оси температур (в точку В, лежащую в области пара), называют кипением [17,18]. С понижением давления [Р<Р(р (Гц)] при Tq = onst жидкость также может перейти в парообразное состояние в точке С. Этот переход и называют кавитацией. Поскольку строгое выполнение условий Pq = = onst и To= onst в реальных системах не выполнимо, то и деление рассматриваемого фазового перехода первого рода на кипение и кавитацию очень условно. Реально траекторию процесса можно представить в виде перехода A- D. [c.58]

    Уместно упомянуть, что альтернативный подход, описанный в одном нз разделов этой главы, можно также использовать при определении температуры, соответствующей точке перегиба, однако он будет базироваться на уравнении (11,66), которое представляет собой иную функцию, чем (11,53). Альтернативная точка перегиба дается уравнением (11,67). Сравнение с уравнением (11,90) показывает, что метод I в случае С/Со — 0,5 и Q/Ti I т отличается от [c.48]

    Поведение окисленных битумов выражается двумя пересекающимися линиями. Температура, соответствующая точке пересечения, всегда выше температуры раз1Лягчения битумов и ниже температуры, при которой вязкость достигает 30 Па-с. Излом линий, соответствующих окисленным битумам, являef я следствием выбора шкалы консистенции, при которой остаточные битумы описываются прямолинейной зависимостью. В физическом смысле и для окисленных битумов нет переходной точки излома. Парафинистые битумы (окисленные и остаточные) также описываются двумя линиями — в области пенетрации и в области вязкости,— но расположение их иное. Обе линии имеют почти одинаковый наклон и сдвинуты относительно продолжения друг друга. Между двумя линиями имеется зона перехода, которая шире зоны плавления парафина, так как кристаллизация парафина в битуме замедлена. В переходной зоне заметен большой разброс экспериментальных точек, зависящий от температурной предыстории битума. [c.31]

    Изменение температуры незначительно отражается на распределении изомеров в равновесных смесях, причем, как всегда, увеличивается доля относительно менее устойчивых углеводородов. Весьма интересно также то, что свыше /з циклогексановых углеводородов состава Сщ, присутствующих в равновесных смесях, представлено гел-замещенными структурами. [c.115]

    Точка р2 — сходящаяся. Точка Pi — несходящаяся, но по мере возрастания температуры перемещается вправо, при t = 32° лежит за диагональю, соединяющей вершины NaH Oa — NH4 I, и выше этой температуры также становится сходящейся. На основе диаграммы (рис. УП-16), дополненной данными о количестве воды в растворах, выполняются очень важные расчеты процесса карбонизации при получении соды по методу Сольвея — устанавливаются оптимальные выходы и т. д. [c.202]

    Равным образом, при случайном возмущении, вызвавшем снижение температуры ниже точки Гг, реактор будет самопро-извольпз охлаждаться до тех пор, пока система не придет в устойчмюе состояние при температуре Ti. Этот переходный процесс м(1-кет вызвать остановку или замедление основной реакции, появление побочных реакций, изменение соотношения ре-агируюиитх веществ и их агрегатного состояния, что также приведет к аварийному положению. [c.235]

    Рассмотрим, например, сечение, соответствующее температуре Т1 на рис. XV, 2 (рис. XV, 3). Фигуративной точке т системы, лежащей на линии ху, г также точкам, лежащим в области АСух, соответствует при этой температуре одна жидкая фаза переменного состава. Фигуративная точка п системы, которая, как видно из рис. XV, 2, расположена ниже поверхности кристаллизации, отвечает сосуществованию двух фаз, а именно расплава и твердой фазы В. Этим фазам отвечают соответственно фигуративные точки т и В. [c.427]

    При расчете ХТС методом PRIT решение было получено примерно за 1000 итераций, что составляло около 30 минут машинного времени ЭВМ ЕС-1033. При столь больших затратах машинного времени на расчет одного стационарного режима ни о какой оптимизации режимов говорить не приходится. Поскольку в моделях ректификации при расчете одной итерации основное время затрачивается на вычисление расхода по уравнению (II, 157), для сокращения времени счета был применен следующий прием. До полного сведения материального и теплового балансов системы в моделях ректификации рассчитывались отборы дистиллята D и кубового продукта W. В точке решения по уравнению (II, 157) вычислялось значение V", соответствующее заданному качеству продуктов разделения. Аналогичным образом, расходы теплого теплоносителя в рекуператор 1 и холодного в холодильник 16, [рассчитываемые итерационно по уравнениям (II, 151)—(11,154) ], обеспечивающие заданные температуры, также рассчитывались только после сведения" материального и теплового балансов. Значение неизвестной выходной температуры теплого теплоносителя в рекуператоре 1 до полного расчета схемы не играет роли, так как в уравнении (II, 156) модели ректификации, используемом на каждой итерации, агрегатное состояние Питания не учитывается. Описанный подход позволил сократить время расчета схемы более чем на 30 %. [c.58]

    Преимуществом РВВ является также то, что минимальная температура его иасадки всегда выше, чем в рекуперативных подогревателях при тех же эксплуатационных и температурных условиях работы печи. Это объясняется большей длительностью контакта дымовых газов с насадкой РВВ, чем с атмосферным возду.хом, так как газовая зона ротора больше воздушной кроме того, листы насадки попеременно омываются с обеих сторон газом или воздухом и, следовательно, в отличие от рекуператоров, всегда осуществляетс5[ симметричный теплообмен в любом месте листа насадки. Поэтому в РВВ быстрее нагреваются металлические элементы вьпле точки росы уходящих газов, и оии меньше подвержены коррозии. Применение в конст- [c.85]

    Температуры и теплоты плавления кристаллов. Температура плавления кристаллов данного вещества зависит от внешнего давления, от присутствия примесей и для высокодисперсных порошков— также от степени дисперсности. Эт11 зависимости мы будем рассматривать позднее здесь же ограничимся температурами плавления только чистого вещества и только при атмосфер-> ном давлении. Температура плавления при атмосферном давлении называется также точкой плавления. Ее называют иначе температурой (или точкой) отвердевания данного вещества. Для веществ с низкой температурой плавления (ниже 15—20° С) ее называют также температурой (точкой) замерзания. [c.150]

    Первые попытки синтезировать метанол были предприняты в начале XX в. после того, как было обнаружено каталитическое действие металлов и их оксидов в отношении образования соединений из более простых веществ, например аммиака из азота и водорода, а также после разработки основ физикохи-мии и создания подходящего оборудования для проведения процессов при высоких давлениях и температурах. В то время при синтезе метанола использовали результаты исследований по синтезу аммиака Ф. Габера, В. Периста и др. [c.209]

    Значительно более совершенным как в отношении однозначности интерпретации получаемых результатов, так и в отношении количественной оценки влияния гетерогенного фактора на скорость реакции является так называемый метод раздельного калоримотрирования, предложенный Ковальским. Сущность этого метода состоит в том, что при помощи двух тонких термопар, одна из которых помещается в центре реакционного сосуда, а другая у его стенки, измеряют температуру соответствующих точек зоны реакции. Разность показаний обеих термопар дает величину разогрева газа в центре сосуда относительно его стенок, ДГ. Величина ДГ может быть также вычислена из уравнения теплопроводности. При этом, если реакция частично идет в объеме (разогрев ATy), частично па стенках (разогрев ДГа), суммарный разогрев выразится уравнением [c.20]

    То обстоятельство, что в определенном интервале параметров температура горячей точки очень чувствительна к изменению этих параметров ( параметрическая чувствительность ), было отмечено также Билоусом и Амундсоном . С помощью аналоговых машин эти авторы исследовали профиль концентрации и температуры для экзотермических реакций первого порядка А Р при различных условиях. Некоторые из их результатов представлены на рис. 1У-9 и 1У-10. Из первого видно, что очень высокий максимум на кривой Т прак тически исчезает, когда скорость отвода тепла на входе, пропорциональная разности (Го удваивается. Рис. 1У-10 показывает, что в определенном интервале при небольшом увеличении Т , АТ,  [c.130]

    Изотермический дроссель-эффект ф может быть определен путем измерения количества тепла, необходимого для поддержания во время дросселирования постоянной температуры. Преимуществом при измерении ф является меньшее влияние тепловых потерь на результаты, а также то, что при их обработке не надо знать Ср. К недостаткам относятся необходимость точного измерения расхода и тот факт, что метод можно использовать только при отрицательных значениях ф. Кейс и Коллинз [156], а также Эйкен, Клузиус и Бергер [157] в 1932 г. независимо разработали метод измерения ф с использованием в качестве дроссельного устройства сначала длинного капилляра, а позже вентиля. Гусак [158] использовал метод Эйкена с некоторыми усовершенствованиями. Затем этот метод был улучшен в работе Ишкина и др. [158а]. В этих работах, как и в работе Андерсена [c.110]

    Наиболее широко используемая методика приготовления катализатора начинается с растворения необходимых солей металлов. Это является оптимальным путем смешивания компонентов катализатора на атомном уровне. Твердый предшественник катализатора получают испарением растворителя, высушиванием при распылении или сушкой при температуре ниже точки замерзания, а также соосаждением или путем образования 1еля. Способы испарения, высушивания при распылении и сушки при замораживании будут описаны в разд. УП.Б. Ниже дан краткий обзор факторов, влияющих на морфологию и размер получаемых частиц. [c.19]

    Известная большая устойчивость углеводородов ряда циклогексана при низких температурах и ряда циклопентана при повышенных температурах также является хорошей иллюстрацией к этим общим закономерностям. Действительно, при низкой температуре доминирующее значение имеет энтальпия соединений ряда циклогексана, относительно низкая величина которой связана с отсутствием в системе каких-либо напряжений. В то же время соединения ряда циклопентана испытывают значительные пит-церовские напряжения, возникающие] за счет заслоненных кон- [c.104]

    Наряду с указанными причинами снижения активности катализаторов в реакции Клауса, большую роль играет также так называемая сульфатация оксида алюминия и хемосорбция SOj, Особенно значительно сульфатация снижает активность алюмооксидных катализаторов в низкотемпературных процессах, используемых для проведения реакции при температурах ниже точки росы серы (Сульфрен, СВА, Максисгшф) [7]. [c.155]

    В простом случае конденсации при постоянных температуре и коэффициентах теплоотдачи, а также прн одноходовой схеме течения теплоносителя используется средний логарифмический температурный напор. Прн последовательном расчете в каждом сечении конденсатора используются локальная разность температур и значения коэффициентов с последующим численным интегрированием. При многоходовом течении потока необходимо использовать локальные коэффициенты и разности температур для каждого хода. Для того чтобы определить температуры в точках поворота потока, необходимы итерационные расчеты, которые могут быть выполнены с помощью ЭВМ. Для конденсации в межтрубном пространстве в предположении, что коэффициенты теплоотдачи постоянны на каждом выбранном прямом участке идоль кожуха, в 127) предложена следующая последовательность расчетов. [c.64]

    При конденсации парообразного теплоносителя величины /, и /2 в уравнении (11-1) представляют собой соответственно энтальпию поступающего пара и уходящего конденсата. Если пар поступает перегретым с температурой Г), то величина GI складывается из энтальпии жидкости при температуре насыщения 7 , тепла, расходуемого на испарение жидкости и равного теплу конденсации пара С кон1.> а также тепла С пер.> необходимого для перегрева пара, т. е. [c.367]


Смотреть страницы где упоминается термин Температура также Точка : [c.161]    [c.282]    [c.257]    [c.174]    [c.12]    [c.26]    [c.149]    [c.28]    [c.230]    [c.159]   
Методы сравнительного расчета физико - химических свойств (1965) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Температура также Точка азеотронной смеси

Температура также Точка дегидратации

Температура также Точка диссоциации

Температура также Точка кипения

Точка также Температура азеотропная

Точка также Температура кристаллизации

Точка также Температура критическая

Точка также Температура плавления



© 2025 chem21.info Реклама на сайте