Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рауля применение

    Уравнение (24) можно рассматривать как закон Рауля, примененный для неидеальных растворов  [c.24]

    Совершенно аналогично, применяя те же законы ко второму жидкому слою В, представляющему однородный, насыщенный, разбавленный раствор компонента а в ш, можно найти парциальные давления в нем обоих компонентов. Так, для компонента -гг , преобладающего в слое В, применение закона Рауля приводит к следующему соотношению для определения его парциальной упругости пара 7wв в слое В  [c.157]


    Вследствие того, что критическая температура метана равна —82° С, закон Рауля очень редко может быть применен для природных газовых смесей, содержащих метан. Для смесей пропана, бутанов, пентанов и т. д. закон Рауля справедлив при температурах до 66° С и абсолютных давлениях до 7 кГ см . [c.88]

    Для бинарных растворов неэлектролитов предел концентраций может быть принят равным /V --= 0,01 и достигает в некоторых случаях даже Mi = 1. Для растворов электролитов, где вследствие заряда частиц отклонения от идеальности проявляются нри ничтожных концентрациях, он снижается до /V,- == 10 . Для бесконечно разбавленного раствора, образованного летучим растворителем и нелетучим растворенным веш,еством, закон Рауля может б )Ггь применен только к растворителю [c.181]

    Удобство применения коэффициентов активности заключается в том, что по их значению легко судить о характере и величине отклонений от идеального поведения компонентов, не вскрывая, разумеется, природы этих отклонений. Для идеальных систем у,=1. Если у,>1, то парциальное давление компонента г превышает величину, следующую из закона Рауля. Такие отклонения от закона Рауля называются положительными. При уг<1 парциальное давление компонента меньше, чем над идеальным раствором. Такие отклонения от закона Рауля называются отрицательными. [c.20]

    Однако по экономическим или технологическим соображениям применение в качестве разделяющего агента гомолога одного из компонентов заданной смеси может оказаться нецелесообразным. В этом случае выбор может быть осуществлен следующим образом. По таблицам азеотропных смесей [45] выбирается вещество (промежуточный разделяющий агент), которое дает положительный азеотроп с низкокипящим компонентом и не дает азеотропа с высококипящим комлонентом. Выбранное таким образом вещество однако нежелательно применять в качестве разделяющего агента в процессе экстрактивной ректификации, так как оно образует азеотроп с одним из компонентов. В качестве разделяющего агента следует применить такой высококипящий гомолог этого вещества, который не дает азеотропов с компонентами заданной смеси. При этом принимается во внимание, что при такой замене степень отклонения компонентов смеси от закона Рауля мало изменяется. [c.57]

    Величина— была названа Гильдебрандом внутренним давлением, а из полученных соотношений им был сделан вывод, что отклонения от идеального поведения тем больше, чем больше разница внутренних давлений компонентов. Применение понятия о внутреннем давлении для объяснения отклонений поведения компонентов смесей от закона Рауля занимает центральное место в теории Гильдебранда. Однако такой подход приводит во многих случаях к противоречиям, что снижает практическую ценность теории Гильдебранда. Для иллюстрации этого положения заимствованные из книги [35] данные о внутреннем давлении различных веществ (табл. 6) сопоставляются с известным из литературы [31] характером отклонений от закона Рауля в бинарных системах, образованных этими веществами. [c.61]


    Жидкие растворы по своей природе, свойствам, характеру взаимодействий между частицами очень разнообразны, в связи с чем трудно создать единую количественную теорию, описывающую поведение различных растворов в широкой области концентраций. Наука о растворах —одна из наиболее старых областей естествознания, в развитие которой сделан вклад многими исследователями. В ходе развития учения о растворах были высказаны две точки зрения на природу растворов —физическая и химическая. Физическая теория растворов, возникшая главным образом на основе трудов Вант-Гоффа, Аррениуса и Оствальда, опиралась на экспериментальное изучение коллигативных свойств разбавленных растворов (осмотическое давление, новышение температуры кипения, понижение температуры замерзания раствора и т. п.), зависящих главным образом от концентрации растворенного вещества, а не от его природы. Количественные законы (законы Вант-Гоффа, Рауля) были открыты в предположении, что в разбавленных растворах молекулы растворенного вещества подобны молекулам идеального газа. Отступления от этих законов, наблюдаемые для растворов электролитов, были объяснены на основе теории электролитической диссоциации Аррениуса. Простота представлений физической теории и успешное применение ее как для объяснения свойств растворов электролитов, так и для количественного изучения электрической проводимости растворов обеспечили быстрый успех этой теории. Химическая теория растворов, созданная преимущественно Менделеевым и его последователями, рассматривала процесс образования раствора как разновидность химического процесса, характеризующегося взаимодействием частиц смешивающихся компонентов. Менделеев рассматривал растворы как системы, образованные частицами растворителя, растворенного вещества и неустойчивых химических соединений, которые образуются между ними и находятся в состоянии частичной диссоциации. В классических трудах Менделеева четко сформулированы основные положения теории растворов. Менделеев указывал на необходимость использования всей суммы химических и физических сведений о свойствах частиц, [c.344]

    Принимая летучесть 1-го компонента относительно выбранного так называемого ключевого компонента (например, 2), в случае применения закона Рауля получим у, =  [c.427]

    IV.13. Практическое применение закона Рауля [c.213]

    Большое значение имеет применение закона Рауля в лабораторной практике. Остановимся на двух примерах методов химического анализа, разработанных с использованием обсуждаемого закона. [c.213]

    Применение закона Рауля. Рассчитать давление пара воды над 10%-ным раствором глицерина (Л1=92) в воде при 25°С давление пара чистой воды при 25 °С равно 3,16 кПа. [c.261]

    Применение закона Рауля (10.1) к компонентам А и В дает  [c.189]

    Применение закона Рауля. Давление пара растворителя понижается при растворении в нем нелетучего вещества. Чтобы давление пара раствора соответствовало давлению чистого растворителя, необходимо нагреть раствор выще температуры кипения чистого растворителя. На рис. 73 приведена зависимость [c.172]

    На применении закона Рауля основан один из основных методов определения молекулярной массы. Поскольку масса одного моля вещества в граммах по определению численно равна молекулярной массе вещества, то масса Л молей некоторого г-го компонента системы, имеющего молекулярную массу М , равна /п,- = ЛГ/Л,-. Следовательно, для определения молекулярной массы вещества достаточно определить число молей, содержащихся в определенной навеске этого вещества. Растворим навеску т а вещества с неизвестной молекулярной массой в опре- [c.206]

    Рассмотрим ряд примеров применения закона Рауля. [c.145]

    Новый метод определения молекулярных масс Ф. Рауля нашел широкое практическое применение. Особенно помогли усовершенствованию рау-левских методов работы немецкого химика Э. Бекмана (1853—1923), опубликованные в 1888—1890 гг. [c.307]

    С тех пор в учебной литературе сложилась традиция ограничивать теорию растворов законами Вант-Гоффа, Рауля, Генри, теорией Аррениуса и другими вопросами, связанными с применением методов термодинамики. Эта традиция поддерживалась тем, что работы по теории растворов долгое время развивались преимущественно термодинамическими методами. Но начиная с 50-х годов положение изменилось. Постепенно ведущую роль стали играть спектроскопия, дифракционные методы, рассеяние света, радиоспектроскопия, акустическая спектроскопия. Резко расширились возможности изучения структуры жидких систем. Стали доступны исследованию новые, ранее неизвестные молекулярные процессы, в том числе даже такие, которые протекают в жидкостях в течение 10 °—с. Не так давно об этом можно было лишь мечтать. [c.5]


    Константы равновесия k отдельных компонентов зависят от температуры и давления и берутся, как правило, из специально составленных графиков. Применение жидкого газа, его транспортирование и хранение основаны на законе Рауля. [c.55]

    Выбор оптимальной неподвижной фазы для решения данной задачи разделения всегда требует большого опыта, и не может быть дан универсальный рецепт на любой случай. Это объясняется тем, что теория растворов еще не разработана в такой степени, чтобы можно было охватить все взаимодействия, выражаемые математически коэффициентами активности. Хотя вклад дисперсионных и ориентационных сил может быть непосредственно вычислен (Мартире, 1961), при отрицательном отклонении от закона Рауля необходимы уже полуэмпирические определения. Взаимодействия между растворенным веществом и неподвижной фазой слишком сложны для того, чтобы можно было в настоящее время в каждом случае точно предсказать объем удерживания. Поэтому в разд. 1 и 2 эти взаимодействия описаны лишь качественно. В то же время по причине этих сложных взаимосвязей не существует простой последовательности неподвижных фаз, которая представляла бы единую модель величин удерживания для всех анализируемых веществ. Хотя полярность как неподвижных фаз, так и анализируемых веществ играет большую роль, между дипольными моментами и объемами удерживания не найдено соотношения, которое было бы пригодно для классификации неподвижных фаз. Газохроматографическая полярность может быть определена лишь следующим образом фаза считается тем более полярной, чем больше при ее применении отношение величины удерживания полярного растворенного вещества к величине удерживания сравни- [c.216]

    Сами по себе принципы термодинамики являются логическими следствиями из двух эмпирических законов. Они не опираются на какие-либо молекулярные модели, а скорее, наоборот, образуют рамки, в которые должна укладываться любая удовлетворительная модель. Дополнение другими эмпирическими зависимостями, в частности законом идеальных газов и законом Рауля для разбавленных растворов, позволяет получить большое число выводов, крайне важных для химии. Развитие этих выводов являлось основным занятием физико-химиков в течение двухтрех десятилетий после 1880 г., а в дальнейшем их эффективность была увеличена дополнительным использованием других чисто эмпирических соотношений. Именно таким путем Льюис и Бренстед внесли важный вклад в описание и предсказание свойств растворов электролитов прогресс в этой области был еще более ускорен применением удачной модели Дебая и Хюккеля (1923 г.). Эту модель иногда используют не по назначению (разд. 7.6), но это не опровергает того принципа, что развитие науки происходит значительно быстрее, когда оно основывается на адекватной модели, а не только на эмпирических обобщениях. [c.51]

    Таким образом, в идеальной газовой смеси летучесть компонента смеси равна произведению летучести чистого компонента (при давлении, равном общ,ему давлению смеси) на его-мольную долю в смеси (правило Льюиса — Рендалла). Уравнение (I. 41) есть не что иное, как уравнение Рауля в применении к идеальным газовым растворам. [c.30]

    В результате длительных испытаний были установлены границы практической применимости закона Рауля, позволяющие вести технические расчеты с приемлемой точностью. Изомеры и члены одного и того же гомологического ряда, достаточно близкие друг к другу, обычно довольно точно следуют закону Рауля, равным образом как и некоторые другие частные системы типа четыреххлористый углерод — толуол. Кроме того, во всех случаях, когда содержание какого-нибудь компонента жидкого неидеального раствора приближается к 100%, к этому компоненту может быть применен закон Рауля. Если же содержание компонента близко к нулю, то к нему применяется [c.83]

    Если газ находится при температуре выше критической, то применение уравнения Рауля—Генри, строго говоря, невозможно. Однако, используя уравнение Клапейрона—Клаузиуса, при Х=сопз1 условно экстраполируют / до температур выше критической. [c.223]

    Применение закона Рауля. Давление пара растворителя понижается при растворении в нем нелетучего вещества. Чтобы раствор имел то же давление пара, что п чистый растворитель, необходимо нагреть раствор В1)Ш1с температуры чистого растворителя. На рис. 85 приведена зависпмость давления иасьпцеииого нара раствора и чистого растворителя от температуры. [c.182]

    Тепловые расчеты ректификационных установок базируются на законах фазового равнозеоия бинарных смесей (законы Дальтонч, Рауля). В практике нашли широкое применение графические мето ды расчета необходимого числа ректификационных тарелок. Методы расчета изложены в [Л. 3, 11, 21, 27]. В случаях, когда концентрация одного из компонентов бинарной смесн чрезвычайно мала (порядка 0,01—0,001%,) или когда дистиллят преимущественно содер- [c.29]

    Окончательная ректификация продуктов, полученных при гидроочистке. Глап-1 ой . дностью ректификации зтих продуктов оказывается отделение бензола о н ценных углеводородов. Практически невозможно отделение его от цикло- ексаиа ректификацией (температура кипения 81 °С). Трудно также отделить бензол от метилциклогексана и н-гептана. Эти соединения не образуют с бензолом азеотропных смесей, но системы "бензол-метилциклогексан" и "бензол-н-гептан" не подчиняются закону Рауля и коэффициент относительной летучести бензола уменьшается по мере увеличения содержания последнего в смеси. Для разделения названных продуктов ректификацией требуются колонны эффективностью 50—70 практических тарелок против 30—40 при обычной ректификации. Применение высокотемпературной гидроочистки снимает все проблемы, связанные с трудностями получения высокочистого бензола. [c.314]

    На рис. 13 приведены значения а для системы н-бутаи — 1-бутен [32]. Способ выражения, примененный на этом рисунке, особенно полезен в тех случаях, когда давления паров двух компонентов сравнительно близки. При высоких температурах отклонения от закона Рауля становятся более заметными. В этом случае давление ие является подходящей переменной, поскольку интервал давлений внутри гетерогенной области для данной смеси при постоянной температуре мал. Методы расчета состава фаз пз термодинамических данных, относящихся к отдельным фазам, описаны Бенедиктом [4, 51 в связи с использованием уравнения состояния. На рис. 14 представлен химический потенциал метана в жидкой и газообразной фазах для [c.62]

    Опыт показывает, что при растворении в данном растворителе какого-нибудь вещества равновесное давление пара растворителя понижается. Количественную связь между понижением давления пара и составом раствора открыл в 1887 г. Ф. Рауль. В отличие от своих предшественников он исследовал не только растворы кислот, щелочей и солей, но также растворы органических соединений, применение которых позволило исключить из рассмотрения усложнение картины, вызываемое диссоциацией солей и кислот. В 1882 г. Рауль определил Тзам около 30 органических веществ в водных растворах. Он показал, что независимо от природы веществ растворение одного моля вещества в 1 кг растворителя (воды) приводит к понижению точки замерзания на одну и ту же величину (1,85°С). Затем Рауль заменил воду бензолом, в котором он растворял целый ряд органических соединений. Оказалось, что все они показывали в бензоле одинаковое молярное понижение Т зам рЗВ-ное 5,2 °С. От измерений точек замерзания Рауль перешел в 1886 г. к определениям давления паров неводных растворов. Это привело его к открытию эмпирического закона, который был впервые опубликован в 1887 г. в работе Об упругости пара эфирных растворов . [c.112]

    Во второй половине XIX в. новая наука, название которой впервые дал Ломоносов — физическая химия, — стала бурно развиваться, благодаря трудам блестящей плеяды химиков (Бекетов, Оствальд, Вант-Гофф, Менделеев, Аррениус, Коновалов, Габер, Ле Шателье, Рауль, Фарадей, Сен-Клер Девиль, Гульд-берг, Вааге и многие другие). Особенно большую роль в этом развитии сыграло успешное применение термодинамики [c.5]

    Более полное улавливание винилхлорида из абгаза достигается применением абсорбции. При использовании этого способа большое значение имеет выбор абсорбента. Главное требование успешной фи зической абсорбции - хорошая растворимость ВХ в абсорбенте. Про цесс абсорбции идет при условии, что парциальное давление Компонента в смеси р больше его равновесного давления над раствором р (т.е. р>р ). При р<р происходит десорбция, а при р = р наступает равновесие. Последнее равенство можно использовать для подбора абсорбента. При низких давлениях закон Рауля, описывающий равновесие в идеальных растворах, можно представить в виде [c.150]

    Представляет интерес выяснить применимость к данной системе общетермодинамических подходов, которые успешно используются для аппроксимации свойств огромного массива других систем и являются основой для расчета процессов ректификации и перегонки с помощью стандартизованных программ. Уже первые попытки расчета коэффициентов активности компонентов показали, что ставшие традиционными методы проверки и предсказания данных о равновесии жидкость — пар Редлиха — Кистера, Херинг-тона и т. п. к данной системе неприменимы, так как один компонент— вода, в широком диапазоне концентраций по своему поведению близок к идеальному, а другой — формальдегид — проявляет сильно отрицательные отклонения от идеального поведения [292, 293, 294]. Однако последующий анализ показал, что применение методов этого типа, основанных на сравнении свойств реального раствора с результатами расчета на основе закона Рауля, не вполне корректно. Поведение мономерного негидратированного формальдегида как вещества в чистом виде газообразного при всех температурах существования водных растворов в принципе не может подчиняться закону Рауля, поскольку растворимость газообразных веществ в жидкостях коррелируется законом Генри. [c.144]

    В начальный период развития научных взглядов на термодинамические свойства веществ путем обобщения опытных данных были установлены такие сравнительно простые закономерности, характеризующие их поведение, как, например, газовые законы, законы идеальных растворов или закон действующих масс. Эти обобщения сравнитёльно скудных, приближенных и полученных в узкой области экспериментальных данных обладали преимуществом формальной простоты, допускающей удобную математическую интерпретацию. Однако существенный их недостаток заключался в ограниченности пределов применения, не позволяющей охватить с практически приемлемой точностью все более расширяющуюся массу опытных фактов и данных. Так, применение законов идеального газового состояния допустимо лишь с небольшой степенью точности в условиях, далеко отстоящих от критических. Закон действующих масс, выраженный через обычные концентрации, приводит к серьезным ошибкам и лишь для весьма разбавленных растворов может считаться приемлемым. Подавляющее большинство концентрированных растворов весьма заметно отклоняется в своем поведении от закона Рауля, являющегося лишь первым приближением в установлении соотношений, выражающих свойства растворов. [c.41]


Смотреть страницы где упоминается термин Рауля применение: [c.535]    [c.535]    [c.58]    [c.60]    [c.182]    [c.110]    [c.237]    [c.148]    [c.248]    [c.12]   
Химическая термодинамика (1963) -- [ c.255 ]




ПОИСК





Смотрите так же термины и статьи:

Рауль



© 2025 chem21.info Реклама на сайте