Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Активность, катализаторов и их приготовление палладий

    Разработан метод приготовления палладиевого катализатора на угле путем постепенного добавления формальдегида к щелочной водной суспензии хлористого палладия [141 ]. Исследован вопрос о многократном использовании отработанного катализатора. Активность катализатора зависит от качества формальдегида, и этот вопрос требует дополнительного изучения. [c.278]


    Коллоидальный родий (более активный катализатор, чем катализаторы, приготовленные из благородных металлов, например платины и палладия) [c.256]

    Несмотря на большое число работ, посвящаемых изучению гетерогенного катализа, и, в частности, выяснению факторов, влияющих на активность катализатора, теория гетерогенного катализа не достигла еще такой степени развития, чтобы можно было дать законченные рецептуры получения активного катализатора для любой интересующей нас реакции. Поэтому разработка катализатора для требуемой реакции в значительной степени осуществляется с помощью подбора материала катализатора и условий его приготовления. Однако для многих групп реакций уже известны определенные типы катализаторов, как, например, металлические никель, палладий или платина для процессов гидрогенизации или дегидрогенизации органических соединений. [c.340]

    Наиболее типичным способом приготовления таких катализаторов является нанесение иа поверхность носителя какого-либо соединения каталитически активного металла, с последующим его восстановлением илн термическим разложением. Этим достигается резкое увеличение удельной активности металла и экономия его, что особенно важно, когда катализаторами являются такие дорогие металлы, как платина, палладий, осмий, иридий и др. Носитель не только способен в небольших пределах изменять активность катализатора ои является одновременно промотором, а иногда влияет и на избирательность нанесенных катализаторов (М, Е, Ададуров) и термическую сто11кость их. [c.351]

    Активность платиновых и палладиевых катализаторов, приготовленных в идентичных условиях, очень близка. По-видимому, палладий в большей степени вызывает протекание побочных реакций. [c.158]

    Для этого вышеуказанная фракция пропускалась над палладированным углем, который был приготовлен ио Н. Д. Зелинскому и М. Б. Туровой-Поляк [18]. Катализатор сушился сперва в термостате прп 120°, а потом помещался в стеклянную трубку электропечи и восстанавливался в токе водорода сперва ирн 160°, затем при 240 и 360° — по 6 часов. Катализатор сод ржал 14% палладия, его активность по циклогексапу равнялась 75%, при 300—310 . [c.77]

    Гидрирование проводят с любым гидрирующим металлическим катализатором — кобальтом, медью, платиной, палладием и др. Эти катализаторы можно применять и в смеси друг с другом или с другими металлами — железом, цинком, хромом, кадмием и др. Особенно рекомендуется использовать в качестве катализатора активный никелевый катализатор, приготовленный, например, нагреванием чистого нитрата никеля при температуре 350— 400° С с последующим восстановлением окиси никеля нри температуре 300-350° С. [c.172]


    Поступают так же, как и в случае приготовления 5%-ного платинированного угля, однако вместо платино-(1У)-хлористоводородной кислоты берут хлорид палладия. К 2 г угля добавляют такое количество хлорида палладия, чтобы при восстановлении получилось 100 л(г металлического палладия. Применяя продажный 5- и 10%-ный палладированный уголь, получают приблизительно такие же результаты, как при использовании наиболее активных палладиевых катализаторов, приготовленных этим методом. [c.197]

    В условиях приготовления катализатора восстановлением его при повышенной температуре (300 °С) образуется прочная связь водорода с палладием, и этот водород недостаточно реакционноспособен и трудно десорбируется [81]. Удаление его с поверхности в вакууме (10 мм рт. ст. при 300 °С, / = 20 ч) или при обработке воздухом (50-250 °С, / = 2 ч) вдвое повышает активность катализатора в реакции гидрирования 3-тиолен-1,1-диоксида (рис. 6.7) [82]. Сопоставляя величины удельной поверхности палладия, найденные по хемосорбции кислорода и методом отравления катализатора в процессе гидрирования, можно сделать вывод, что увеличение активности обусловлено ростом [c.252]

    Сильное влияние дисперсности палладия на носителях на активность катализаторов гидрирования установлено в работах [77, 79, 83]. Дисперсность палладия измерена несколькими независимыми методами рентгенографически (РФА), методом электронной микроскопии (ЭМ), по хемосорбции кислорода, оксида углерода и диоксида серы, а также методом отравления катализатора сернистым ядом в процессе гидрирования. Все эти методы дают близкие значения дисперсности палладия. Из полученных данных вытекает, что большая часть палладия находится в кристаллическом состоянии. Дисперсность палладия зависит от его содержания в катализаторе, природы носителя, его удельной поверхности, от способа приготовления образца и наличия некоторых добавок. [c.253]

    Катализаторы. Обычно для гидрирования при низком давлении в качестве катализаторов применяют окись платины, скелетный никель, палладий на носителе и в последнее время родий на носителе. Эти катализаторы отличаются простотой приготовления и высокой активностью при низких температурах и давлениях. Они катализируют восстановление различных функциональных групп. Для гидрирования при высоких давлениях широко применяют катализатор Адкинса (хромит меди) или никель, нанесенный на кизельгур. [c.79]

    Четыре приведенных выше прописи получения палладиевых катализаторов различаются между собой тем, что согласно первой из них (1) носителем является сернокислый (или углекислый) барий, тогда как согласно остальным— уголь, В прописях 1 и 2 в качестве восстановителя применяется щелочной раствор формальдегида, а в методиках 3 и 4 восстановление осуществляется водородом. Катализаторы, полученные по прописям 1, 2 и 4, приготовляются и хранятся до тех пор, пока не потребуются, причем палладий находится в них в уже восстаповлепном виде и готов к употреблению. В случаеже катализатора, полученного по способу 3 , восстановление палладиевой соли до металла осуществляют лишь перед употреблением и таким образом при хранении не имеет места потеря активности. Катализатор, приготовленный по прописи 1, подобен тому, который обычно рекомендуют для восстановления по способу Розенмун-да. Методику 4 в основном разработал Гартунг полученный с ее помощью катализатор широко применял в своих работах Коп , а также и другие исследователи. В катализаторе, приготовленном по прописи 4, относительное содержание палладия (по весу) в два раза больше, чем в остальных. [c.411]

    Джексон и Сэсс провели подробное исследование активности катализаторов, приготовленных из металлов VIII группы и меди и использованных для димеризации пиридина и хинолина. Ими установлено, что для синтеза 2,2 -ДП из пиридина эффективными являются только катализаторы на основе никеля и палладия. Среди никелевых катализаторов активным оказался только никель Ренея. Слабую активность показали катализаторы, приготовленные из никеля — магния и никеля на цинке. Полностью инертным оказался никель на носителях. Очень малая активность палладия на AI2O3, по сравнению с палладием на угле, указывает на важность природы носителя [326]. [c.16]

    Значительные успехи в разработке палладиевых катализаторов достигнуты благодаря интенсивным исследованиям, проводимым в последние два десятилетия в Институте органического катализа и электрохимии АН КазССР [26, 33]. Разработанный в этом институте метод приготовления катализатора основан, на взаимодействии соединений палладия с органическими восстановителями ца поверхности носителя. В результате такого взаимодействия ионы палладия восстанавливаются и осаждаются на поверхности в виде металла. Образование металлического палладия происходит за несколько минут, внешним признаком металлизации носителя является почернение гранул носителя. Подбирая соответствующие соединения палладия и органический восстановитель и меняя их концентрации, можно регулировать глубину проникновения палладия в гранулы носителя, что сильно отражается на удельной активности катализаторов (в расчете на грамм палладия). Суще- ственное влияние на свойства палладиевых катализаторов оказывает природа носителя среди них наибольшей активностью обладает катализатор на у-А120з (в расчете и на грамм катализатора, и на грамм палладия). [c.42]


    Активность алюмопалладийсульфидных катализаторов зависит от природы предшественника [39]. Так, сульфидный катализатор 2 % Р(3/А120з, полученный нанесением палладия из солянокислого раствора хлорида палладия, примерно в 4 раза активнее, чем аналогичный катализатор, приготовленный с использованием раствора ацетата палладия в толуоле (см. табл. 3.10). Увеличение концентрации соляной кислоты в пропиточном растюре от 0.7 до 6 мае. % приводит к увеличению активности в 3 раза. Хлористый водород, выделяю-ш ийся в процессе приготовления катализатора с использованием хлорида палладия, может адсорбироваться на носителе, образуя сильные кислотные центры. Кислотность носителя может влиять на электронное состояние активного компонента катализатора. Но этот эффект в случае сульфидных катализаторов не должен быть значительным, так как из-за большого размера частиц сульфида металла их сильное взаимодействие с носителем затруднено [59]. [c.138]

    Гидрирование бензола протекает па различных катализаторах. Эта реакция лежит в основе весьма удобного метода оценки активности катализаторов. При не слишком высоких температурах (не выше 350°) гидрирование протекает с образованием только циклогексаиа при более высоких температурах протекают крекинг и перегруппировка с образованием многочисленных продуктов [44, 268, 294]. При комнатной температуре восстановление бензола можно проводить на платиновом, палладиевом и аналогичных катализаторах обычно для этого необходимо присутствие кислотного растворителя [1, 173, 368]. Как правило, для восстановления бензола водородом на таких катализаторах, как никель, медь и кобальт, требуются более высокие температуры [153, 197, 257, 328, 379, 386, 387, 400]. Весьма сильное влияние оказывают чистота и метод приготовления катализатора. Например, в первых работах [319] утверждали, что гидрирование бензола в присутствии меди не протекает, но спустя несколько. лет уда.лось провести восстановление бензола до циклогексаиа на медном катализаторе [283]. Было обнаружено также [153], что бензол можно гидрировать на меди при 225 — 350° и давлении водорода 100 ат в условиях достаточной ее чистоты и тонко дисперсности при температуре выше 350° активпость меди уменьшается. Гидрирован 10 бензола в различных условиях провод 1ли такн<е иа никеле, платине, иридии, рутензти и палладии [462]. [c.194]

    В первых работах Сабатье [320, 321] в качестве катализатора применял никель, который получали восстановлением окиси (на кизельгуровом носителе) водородом при 300—400 . Восстановленный никель получался в пирофорном состоянии. При аналогичных условиях приготовления активными гидрирующими катализаторами оказались также кобальт, медь, платина и палладий. Обзору этих работ начального периода носвящена монография Сабатье [318]. В настоящее время наиболее важными катализаторами гидрирования органических соединений, несомнеино, являются никель Ренея [302] и окись платины Адамса [3]. В обоих случаях природа каталитического вещества до сего времени точно не выяснена. [c.185]

    Наиболее активными катализаторами для восстановления нитрогруппы оказались палладий и платина, как осажденные на угле, так и без носителя. Уголь, как носитель, увеличивал скорость гидрогенизации в 4—5 раз. Катализаторы — платина и палладий на угле, приготовленные описанным выше методом, в два раза активнее тех же промышленных катализаторов, но приготовленных обычным методом. При гидрогенизации п-хлорнитробензола на платинированном угле, предварительно восстановленном боргидридом натрия, через 8 мин получали п-хлоранилин с выходом 86%. О прямом восстановлении нитроароматических соединений боргидридом натрия на палладированном угле сообщалось ранее Нейльсоном, Вудом и Вилем [134]. [c.26]

    Применение катализаторов в процессах гидрогенизациоппой очистки нефтяных фракций, вероятно, задержалось на много лет вследствие общеизвестного отравляющего действия сернистых соединений на катализаторы, обычно применяемые для гидрирования алкенов. В отсутствие серы алкены легко гидрируются на приготовленных различными способами платине, палладии, железе, кобальте, никеле, меди и других металлах даже при комнатной и более низких температурах. Металлические катализаторы отравляются серой, поэтому для промышленного гидрирования алкенового сырья, содержащего сернистые примеси, применяют окислы или сульфиды молибдена, вольфрама или хрома как самостоятельно, так и в сочетании с окислами или сульфидами металлов группы железа. Эти окисно-сульфид-ные катализаторы обладают высокой активностью при умеренных температурах и повышенных давлениях. [c.128]

    Катализаторами в этом процессе являются никель, медь, алюминий, вольфрам, палладий, платина, молибден и др. Для каталитических процессов большое значение имеет подготовка катализатора. Чтобы создать большую поверхность соприкосновения с компонентами реакции, катализатор наносят в мелкораздробленном состоянии на так называемый носитель — пемзу, асбест. Особенно эффективны катализаторы, приготовленные из металлических сплавов путем растворения одной из составных частей сплава. Например, при обработке щелочью сплава никеля с алюминием алюминий растворяется и образуется активный никелевый катализатор с очень развитой поверхностью (никель Ренея). [c.93]

    Изучение каталитических свойств дисперсных сплавов палладий—кадмий и палладий—медь в реакциях электрохимической ионизации водорода и кислорода в кислых и щелочных растворах является продолжением исследований физико-химических свойств бинарных систем на основе палладия. Для оценки электрохимиче-ккой активности катализаторов использовался метод измерения поляризации гидрофобных электродов нрн подаче в газовую камеру измерительной ячейки соответствующего газа. Подобная методика снижает до минимума влияние диффузии газа на кинетику изучаемых процессов. Подробно приготовление электродов и проведение измерений описано в работе [1] на примере исследования ионизации и выделения водорода на гидрофобизированной дисперсной платине. [c.52]

    Изучались реакции сочетания алкилгалогенидов с другими металлоорганическими соединениями [1031]. Натрий- и калий-органические соединения более реакционноспособны, чем реактивы Гриньяра, и поэтому вступают в реакции даже с менее активными галогенидами. Сложность заключается в их приготовлении и достаточно долгом сохранении, чтобы успеть прибавить алкилгалогенид. Алкены можно синтезировать сочетанием виниллитиевых соединений с первичными галогенидами [1032] или винилгалогеиидов с алкиллитиевыми соединениями в присутствии палладия или рутения в качестве катализатора [1033]. При обработке медьорганическими соединениями п кислотами Льюиса (например, н-ВиСи-ВРз) аллилгалогениды вступают в реакцию замещения с практически полной аллильной перегруппировкой независимо от степени разветвления обоих концов аллильной системы [1034]. [c.191]

    Эти типы катализаторов отличаются способом приготовления (табл. 1.8) и по активности (производительности) значительно превосходят используемый в промышленности алюмо-палладийсульфидный катализатор МА-15 (табл. 1.9—1.11). Катализатор пев был испытан в двух модификациях ПСВ-С и ПСВ-М в первой палладий присутствовал в виде металла, во второй — в виде сульфида [13, с. 48 49]. [c.59]

    В каталитических реакциях, при которых глинозем мсжет быть активен, он заменяется алундом, т. е. искусственно приготовленным корундсд . Сналлинг [378] считает алунд подходящим носителем для медного катализатора при приготовлении формальдегида из метилового спирта. Паннет [301] рекомендует пользоваться алундом как носителем для пятиокиси ванадия при приготовлении малеинового ангидрида. В некоторых случаях активность никеля, как дегидрогенизирующего катализатора, можно понизить осаждением металла на глиноземе, применяемом в качестве носителя [329, 430] в этом случае катализатор по своему действию похож на палладий и платину. Зелинский и Комаревский [430] готовили катализатор следующим образом  [c.500]

    Характерная особенность всех изложенных опытов — работа с искусственно приготовленными системами, для которых метод приготовления в значительной мере предопределяет химический результат. Возникает естественный вопрос, как все это применимо к генезису катализаторов в обычных условиях в отсутствие таких химически активных агентов, как металлоорганические соединения, сильные минеральные кислоты и т. д. Экспериментальные работы в этой области очень трудны, так как дело идет о захвате очень небольших количеств обычных веществ высокодисперсными твердыми телами, анализ которых представляет сам по себе трудную задачу. Из работ в этой области следует упомянуть работы Левиптова по спектральной методике определения металлоидов в твердых телах, использование полярографии Жабровой и другими. Однако па этом пути результаты будут получены не так скоро, так как мало обнаружить по линиям спектра или по полярографической волне наличие определенных примесей следует узнать, какие из них влияют на активность, какие — нет. Весьма перспективен другой путь введения в генетическую систему веществ в виде меченных молекул, за которыми можно следить непосредственно в сколь угодно сложной обстановке. Разведочные работы в этом направлении мы вели в 1940—1941 гг., и они оказались успешными. Ограничимся упоминанием о наблюдениях Брежневой и Озиранера над захватом и промотированием металлической платины и палладия следами фосфата. Для этого из серы нейтронным облучением приготовляли высококонцентрированный препарат радиофосфора, который в виде фосфат-иона вводили в раствор муравьинокислого натрия, применявшегося для выделения платины и палладия из их хлоридов. Концентрацию фосфат-иона легко было при этом менять в очень широких пределах, а захват наблюдать по р-изпучению катализатора. [c.42]


Смотреть страницы где упоминается термин Активность, катализаторов и их приготовление палладий: [c.308]    [c.406]    [c.216]    [c.206]    [c.216]    [c.206]    [c.264]    [c.257]    [c.227]    [c.60]    [c.200]    [c.143]    [c.95]    [c.107]    [c.192]    [c.95]    [c.216]    [c.558]    [c.16]    [c.121]    [c.287]    [c.107]   
Катализ в неорганической и органической химии книга вторая (1949) -- [ c.260 , c.262 ]




ПОИСК





Смотрите так же термины и статьи:

Катализатора активность

Катализаторы активные

Палладий

Палладий палладий



© 2024 chem21.info Реклама на сайте