Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия экспериментальное определение

    Зависимость (УП1-60) можно представить в виде уравнения, содержащего экспериментально определенную энергию активации эксп вместо энтальпии активации ДА. Если константу равновесия К выразить с помощью концентраций, то ее зависимость от температуры приобретает вид  [c.221]

    О п р е д е л е и и е А 2 п о константам равновесия химических реакций. Этот метод сводится к экспериментальному определению константы равновесия химической реакции К, при какой-либо температуре, вычислению свободной энергии ио уравнению [c.102]


    Если ионы расплавленной соли содержат электронные осцилляторы, характеризуемые частотой vo, то классическая теория дисперсии предсказывает существование прямой связи между величиной Vo и постоянной Верде или коэффициентом преломления [140]. Частоту vo обычно приписывают полосе переноса заряда с минимальной энергией. Экспериментально определенные значения vo для кристаллов галогенидов щелочных металлов практически совпадают с первыми максимумами поглощения в ультрафиолетовой области. [c.380]

    Энергия же ионной кристаллической решетки экспериментальному определению не поддается, так как при возгонке ионных кри- [c.166]

    Метод Бьеррума содержит те же упрощения, что и модель Дебая— Хюккеля, в частности в отношении точных методов подсчета энергии пар ионов на малых расстояниях, когда, несомненно, большую роль играет молекулярная структура.. Тем не менее эта теория представляет значительный шаг вперед и дает удобную основу для оценки взаимодействий между ионами. Фуосс [51] рассмотрел вопрос о произвольном выбо ре критического расстояния г в и показал, что любое расстояние, на котором сила взаимодействия ионов составляет величину около 2кТ, дает аналогичные результаты. Фуосс совместно с Краусом применили описанную выше теорию к случаю диссоциации сильных электролитов в среде с меняющейся диэлектрической проницаемостью [52]. Было получено весьма хорошее совпадение теоретических расчетов и экспериментальных определений электропроводности. [c.453]

    Экспериментальное определение теплоты адсорбции реагентов затруднено (тем более, что их величина вследствие неоднородности поверхности в значительной мере зависит от степени заполнения этой поверхности). Для многих случаев очень важным становится расчет действительной энергии активации. Опытным путем установлено, например, что для некоторых реакций гидрогенизации кажущаяся энергия активации близка к нулю, действительная же энергия активации составляет 20 ккал/моль. [c.282]

    Прямая рекомбинация молекулярного водорода с атомом кислорода на третьем теле с образованием Н О — это очень тяжелый процесс, причем основные затруднения имеют скорее пространственный (стерический фактор порядка 10- 10- ), чем энергетический характер. В то же время обратная реакция (диссоциация Н О на О и Hg) затруднена в основном энергетически, и теплота реакции практически целиком равна энергии диссоциации, будучи при этом чуть выше энергии диссоциации конкурирующей реакции 8 . Данные по экспериментальному и теоретическому определению значений кгв полностью отсутствуют, что в значительной степени объясняется почти единодушным мнением в том, что реакция 26 не играет важной роли в механизме окисления. Расчет значений /с = /(Т, М) по формулам (4.10), (4.11) не приводит к удовлетворительным результатам вследствие тех же причин, что и при расчете kjo, кгз- При экспериментальном определении Age следует учитывать два обстоятельства во-первых, наличие конкурирующей реакции 4 и, во-вторых, что имеется по крайней мере 4 линейные комбинации более быстрых маршрутов 13 10, 23 - 28, 2 -> 24, 21 29, сильно маскирующих основную медленную стадию 26. Из численного моделирования следует, что нигде термодинамическая доля 26 не выше предельных значений 0,01—0,02, что подтверждает справедливость предположения о ее незначительности. [c.291]


    В табл. 13 представлены кинетические константы гидрирования некоторых ароматических углеводородов. Из приведенных данных видно, что экспериментально определенная кажущаяся энергия активации реакции гидрирования бензола уменьшается в ряду [c.144]

    Экспериментальное определение функции активности позволяет найти стандартное значение химического потенциала растворителя в материале полимера которое не связано со свободной энергией Гиббса для растворителя. Напротив, является произвольной постоянной определяемой из условий равновесия [c.318]

    Экспериментальное определение энергии сольватации невозможно, но для ее расчета могут быть использованы циклы (Ф. Габер и М. Борн), основанные на термохимическом законе Г. И. Гесса. [c.15]

    Позднее эти выводы нашли подтверждение и в данных о других свойствах атомов. Были разработаны методы экспериментального определения количества энергии, необходимого для отделения того или другого электрона от атомов различных элементов. Эти методы большей частью приводят к определению не самой энергии связи электронов, а энергии последовательной ионизации атома в результате отделения от него сначала одного (наиболее легко отделяемого) электрона, затем второго, третьего и т. д. Энергии последовательной ионизации обычно характеризуются ионизационными потенциалами (потенциалами ионизации), т. е. потенциалами, которые надо приложить для отделения последовательно первого, второго, третьего и т. д. электронов от атома. Затрачиваемая на это энергия равна произведению потенциала [c.32]

    Абсолютные значения внутренней энергии различных веществ (но-видимому, очень большие) нам совершенно неизвестны. Однако разности между значениями внутренней энергии тех или иных веществ измерены во многих случаях с большей точностью. Основанием для этих измерений послужили экспериментальные определения тепловых эффектов различных химических реакций. Поскольку значения внутренней энергии зависят от температуры, от нее зависят и тепловые эффекты реакций. Поэтому для сравнительных расчетов используют стандартные значения тепловых эффектов, приведенные к определенной стандартной температуре. В качестве такой стандартной температуры условились принимать 25 - С (или 298,15 К). Тепловые эффекты реакций зависят также от агрегатного состояния участвующих в реакции веществ поэтому в термохимических уравнениях агрегатное состояние веществ обязательно учитывают Стандартным состоянием каждого данного вещества считается агрегатное состояние, присущее ему при температуре 25°С и давлении 101,3 кПа. [c.77]

    Поэтому для экспериментального определения энергии диссоциации связи С—С необходимо знать зависимость константы скорости распада молекулы по этой связи от температуры [c.113]

    Скорость fee разрыва одной из Пс равных и независимых связей равна произведению Пс на скорость кь разрыва отдельной связи. Если связи не остаются независимыми, то это будет означать, что не один, а несколько осцилляторов приобретает колебательную энергию, достаточную для диссоциации. В зависимости от связи подобная кооперативная область может насчитывать около 5 или более осцилляторов [35]. В данном случае экспериментально определенная величина i/o обозначает полную колебательную энергию, необходимую для всех (связанных) атомов, которые участвуют в одном акте разрыва цепи. Это могло означать, что потенциальный барьер между соседними положениями несвязанных атомов значительно меньше Uq. Подобный смысл Uo приходится иметь в виду, когда численное значение Uo сравнивается с другими энергиями активации. [c.150]

    Итак, если известны значения электродных потенциалов, то можно вычислить э.д.с. элемента и далее изменение энергии Гиббса в окислительно-восстановительном процессе. Э.д.с, гальванического элемента можно,с достаточно высокой точностью измерить и экспериментально. На этом основан один из очень немногих методов экспериментального определения АО. [c.58]

    Энергетические эффекты. Тепловые эффекты реакций определяют как экспериментально, так и с помощью термохимических расчетов . Следует отметить, что мы не можем оценить абсолютных значений энтальпии и внутренней энергии. Однако для термохимических расчетов и экспериментального определения тепловых эффектов это несущественно, поскольку нас интересует изменение состояния системы, т. е. изменение значений Н и и. [c.196]

    Энергия ионной кристаллической решетки экспериментальному определению не поддается, но ее можно вычислить из экспериментальных данных с помощью так называемого цикла Борна — Габера. [c.201]

    Е = —13,5 эВ. Это хорошо согласуется с экспериментально определенной энергией ионизации атома водорода. Собственному значению энергии соответствует экспоненциальная вероятностная функция. При этом необходимо помнить, что вероятность нахождения электрона в некотором объеме т равна Определим [c.47]


    Согласно этим традиционным представлениям, уменьшение свободной энергии системы при мицеллообразовании связано с падением энтальпии системы и, следовательно, мицеллообразование должно сопровождаться выделением тепла. Однако при экспериментальном определении теплот мицеллообразования было установлено, что эти теплоты малы, а в некоторых случаях даже имеют отрицательное значение, т. е, мицеллообразование сопровождается поглощением тепла. Этот результат можно объяснить особыми свойствами воды, обусловленными существованием в воде структур ближнего порядка. [c.406]

    Для решения проблемы абсолютного потенциала используют модельные расчеты. Такие расчеты всегда носят приближенный характер при этом степень приближения определяется тем, насколько хорошо принятая модель соответствует рассматриваемому объекту. Для определения гальвани-потенциала А ф удобнее всего использовать уравнение (20.7), в котором величина находится экспериментально, а поверхностные потенциалы и рассчитываются на основе тех или иных модельных допущений. Так, например, поверхностный потенциал раствора уУ можно рассчитать по уравнению (20.1), в котором величина (т. е. реальная энергия сольватации иона ) доступна экспериментальному определению, а химическая энергия сольватации рассчитывается на основе теории сольватации ионов. Возможны и другие модельные методы расчета величины х - Сопоставление различных методов оценки поверхностного потенциала воды показывает, что В. [c.101]

    Все величины в правой части уравнения (П.15) доступны экспериментальному определению, и это открывает путь для расчета реальной энергии сольватации отдельного вида ионов. Идея этого метода нахождения ДО Р -" была выдвинута А. Н. Фрумкиным. Ниже приведены величины для некоторых ионов, рассчитанные по наиболее [c.25]

    Необходимая удельная энергия, экспериментально определенная при шприцевании (полиэтилена высокой плотности хосталена G ) . [c.17]

    Для представления спектральных данных используют различные диаграммы энергетических уровней молекул. Рассмотрим их по порядку. Вид и количество информации, приводимой в каждой конкретной диаграмме, зависит оттого, что известно экспериментально и (или) теоретически вычислено, а также от того, что хотят подчеркнуть. Так, диаграмма состояний по Гротриану (например, рис. 2-10) изображает графически энергии экспериментально определенных энергетических состояний по отношению к основному состоянию и наблюдаемые переходы между этими состояниями. [c.208]

    Уравнения (4.66) — (4.68) для энергии взаимодействия справедливы и в классической и в квантовой механике. Различие состоит лишь в расчете моментов (г и 0, причем эти моменты могут быть вычислены только квантовомеханическими методами, тогда как с помощью классической механики этого сделать нельзя. Другими словами, плотность заряда р должна быть найдена с помощью квантовомеханических расчетов. Практически такие расчеты трудно выполнить с желаемой точностью, поэтому предпочтение отдается экспериментальному определению моментов. Дипольный момент можно определить по диэлектрическим свойствам или, например, по эффекту Штарка в микроволновом спектре. Молекулярным дипольным моментам посвящена обширная литература компактный обзор по этому вопросу приведен в работе Уэтерли и Уильямса [57]. Определить экспериментально квадрупольный момент гораздо сложнее. Для этого используются такие обусловленные давлением эффекты, как уширение микроволнового спектра и поглощение в инфракрасной части спектра. Обзор всех этих методов приводится в работе Букингема [55]. Около половины известных в настоящее время [c.196]

    Балакирев В. С., Дудаиков Е. Г., Цирлин А. С. Экспериментальное определение динамических характеристик промышленных объектов управления.- М. Энергия, 1967.- <37 с. [c.93]

    Зависимости VIII-55), VIII-68) разъясняют физический смысл записанного в общем виде уравнения (VIII-53) и разницу между экспериментальной энергией активации, определенной на основе уравнения Аррениуса, и энтальпией активации. [c.222]

    Структура литьевых эластомеров, полученных с применением диаминов, сложна (ароматические кольца, биуретовые звенья и водородные связи). Очевидно, связи с наименьшей потенциальной энергией диссоциации и обусловят пределы деформирования полимера. Экспериментально определенная мольная энергия активации диссоциации биуретовых звеньев составляет около 192 кДж/моль, а энергия диссоциации связи С—N в отсутствие разветвления (биуретов) 338 кДж/моль. Из этого можно сделать [c.546]

    Общепринятая точка зрения состоит в том, что реакция 22 не играет важной роли в механизме сложного нро-песса, поскольку ее коэффициент скорости много меньше коэффициентов скорости других возможных стадий зарождения. Энергия активации прямой реакции 22+ несколько выше ( па 20%) энергии активации обратной реакции из-за значительно большей деформации конфигурации исходных реагентов нри образовании активированного комплекса. Это означает, что в целом реакция должна быть слабо эндотермичной, так как значения Ем > Егг ЕГ при пониженном значении предэксно-нента. Экспериментальные данные об этой реакции отсутствуют. Следует иметь в виду, что при экспериментальном определении необходимо учитывать более предпочтительную реакцию 7 + с почти мгновенным выравниванием равновесных или квазиравновесных значений О и НаО через относительно быструю реакцию 5. Очевидно, что наиболее благоприятными условиями для определения значений кгг являются такие условия, когда б-предста-вительность системы реакций 2, 5 16—18, 22 низка, а концентрации ОН квазистациопарны. Однако и в этом случае, учитывая неопределенность значений коэффициентов скорости к 7, кх9, к2о, кгг в системе Г (/ = 1, 2, 11, [c.288]

    Балакирев B. ., Дудников Е. Г., Цирлин А. М. Экспериментальное определение динамических характеристик промышленных объектов управления. ЛГ., Энергия , 1967. 232 с. [c.221]

    Как уже подчеркивалось, изучение температурной зависимости величины, стоящей справа (159), дает нам относительную энергию активации реакции продолжения цепи и относительное значение стерического фактора этой реакции. Если для сравнения между собой однотипных реакций с участием одного и того же радикала Можно удовлетвориться относительным значением динамических параметров реакции, то для вычисления абсолютной величины к р необходимо знание констант скоростей реакций рекомбинации и диспропорционирования. Кроме того, знание величин последних позволяет определить концентрацию радикалов, принимающих участие в процессе и, следовательно, вычислить абсо -лютные величины скоростей радикальных реакций. Однако экспериментальное определение констант скоростей реакций рекомбинации и диспропорционирования радикалов требует постановки независимых опытов и является в экспериментальном отношении очень сложным. Поэтому до сих пор для реакции рекомбинации было принято считать, что эти реакции происходят при каждом столкновении радикалов. Поименно это предположение в свете выше изложенных результатов расчета стерических факторов реакций рекомбина- ции кажется неверным, хотя энергии активации дей Стви-тельно малы. То же самое относится и к реакциям диспропорционирования, как будет пока-адно в следующем разделе. [c.258]

    Адсорбцию можио рассматривать как взаимодействие молекул адсорбата с активными центрами поверхности адсорбента. Такое рассмотрение этого явления оказалось достаточно общим и удобным, особенно для адсорбции на твердых адсорбентах, когда возникают трудности в экспериментальном определении межфазного натяжения. Кроме того, такая интерпретация адсорбции открывает возможность нсслелвдвания природы адсорбционного взаимодействия. Если отсутствует химическое взаимодействие адсорбата с адсорбентом, то адсорбция, как правило, является результатом самопроизвольного уменьшения поверхностной энергии системы, выражающегося в компенсировании поля поверхностных сил. При наличии специфического сродства адсорбата к адсорбенту, адсорбция возможна вследствие самопроизвольного уменьшения энергии Гиббса всей системы, что может привести даже к увеличению поверхностной энергии. Это возможно в том случае, если изменение химической составляющей энергии Гиббса системы больше изменения поверхностной энергии. При химической адсорбции между адсорбентом и адсорбатом образуется химическая связь, и их индивидуальность исчезает. [c.108]

    Экспериментально определенные к настоящему времени значения энергий активации элементарных реакций радикалов с молекулами оказались лежащими в пределах от 3—4 до 10—12 ккал1моль (см. табл. 15). [c.65]

    В соотношении (7.20) разность 1ёГтах—i/maI/ 4,6 7) =Л представляет собой коэффициент А в уравнении (7.16). Уравнение (7.19) позволяет определить энергию активации элементарного акта перескока по экспериментально определенным значениям V и Го. Таким образом, КЭФ в карборансодержащих полиарилатах заключается в том, что разные образцы, отличающиеся по структуре, но при этом имеющие примерно одинаковые гщах и /шах, имеют разные и разные температурные зависимости А/ г - [c.191]

    Более сложные модели позволяют устранить различия между рассчитанными и экспериментальными величинами АЯ -" . Однако при детальной проверке этих моделей встает задача экспериментального определения энергии сольватации отдельного иона, так как при суммировании рассчитанных величин AHt и АЯг ошибки, обусловленные недостатками моделей, могут скомпенсироваться. [c.24]


Смотреть страницы где упоминается термин Энергия экспериментальное определение: [c.25]    [c.226]    [c.256]    [c.24]    [c.150]    [c.161]    [c.112]    [c.21]    [c.10]    [c.180]    [c.18]    [c.107]    [c.247]    [c.161]    [c.171]   
Электрохимия растворов издание второе (1966) -- [ c.187 ]




ПОИСК





Смотрите так же термины и статьи:

Ионных кристаллов энергия, прямое экспериментальное определени

Истинная энергия активации определение из экспериментальных данных

Определение инкрементов стандартного мольного уменьшения свободной энергии адсорбции элементов структуры и функциональных групп органических молекул по экспериментальным измерениям адсорбции из водных растворов

Экспериментальное определение уровней энергии атомов

Экспериментальное определение характеристической энергии раздира

Экспериментальное определение энергии активации

Экспериментальное определение энергии гидратации и сольватации

Экспериментальное определение энергии резонанса

Экспериментальные методы определения изменения энергии Гиббса

Экспериментальные методы определения стандартных энергий Гиббса переноса электролитов между растворителями

Экспериментальные методы определения стандартных энергий Гиббса сольватации индивидуальных ионов



© 2024 chem21.info Реклама на сайте