Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Торий перманганатом

    Определение органических веществ. Некоторые органические вещества можно определять посредством прямого титрования раствором перманганата калия. К их числу относится, например, щавелевая кислота, служащая для установки концентрации раствора перманганата. Титрование щавелевой кислоты можно также использовать для косвенного определения ряда металлов, образующих нерастворимые оксалаты кальция, лантана, тория, бария, стронция, церия, свинца, серебра. Чаще всего этот прием применяют для определения кальция. [c.409]


    Один из методов объемного определения тория в виде оксалата предусматривает титрование перманганатом щавелевой кислоты, связанной с торием, либо титрование непрореагировавшего ее избытка [884]. Точные результаты получаются лишь в том случае, когда начальное осаждение проводится путем медленного добавления раствора соли тория к избытку раствора щавелевой кислоты. При указанном порядке добавления реактивов ошибка определения при осаждении на холоду составляет примерно 0,1% если осаждение оксалата тория ведут при нагревании, то получающимися ошибками можно пренебречь. При обратном порядке прибавления компонентов и недостатке щавелевой кислоты образуются основные соли промежуточного состава. Метод успешно применяли [c.52]

    Отделение металлов группы сероводорода от тория осуществляют преимущественно двумя методами — осаждением НгЗ в кислом растворе или электролизом . Для некоторых металлов известны также специальные методы отделения. Так, например, для молибдена применяют хлорирование [1122], для вольфрама — селективное растворение пробы металла в смеси НР НМОз, а также хлорирование для отделения таллия используют гидролиз солей тория в присутствии нитрата аммония и метилового спирта [1519]. При анализе чистого ва-надата тория ванадий определяют в присутствии тория титрованием перманганатом калия, вычисляя содержание тория по разности. [c.152]

    Формамид Цианистый водород Си сплав Си—Мп латунь 450—600° С, для Си—Мп (1,4% Мп) оптим. 550° С [258] Латунь, окисленная воздухом или перекисью водорода, бихроматом калия, перманганатом, азотной кислотой 100 тор, 500° С. Выход до 94,6% [259] [c.1243]

    Надо помнить, что универсальных дезактиваторов нет и можно рекомендовать только несколько составов. Например, при загрязнении торием и фосфатом рекомендуется применять мыло с добавкой трилона Б, гексаметафосфата, порошка Новость . Для очистки от загрязнения радием — каолиновое мыло. В ряде случаев рекомендуется 1—2%-ный раствор лимоннокислого натрия, углекислого натрия, перманганата калия и др. [c.299]

    Много затруднений вызывают вещества, которые препятствуют осаждению или замедляют его, если они не удалены предварительно или не обезврежены, как, например, ванадий (V) при осаждении фосфора в вцде фосфоромолибдата аммония и фтор или органические вещества при осаждении алюминия аммиаком. Равным образом должно быть исключено присутствие веществ, вызывающих нежелательные реакции, как, например, нитратов или аммонийных солей при осаждении серы в виде сульфата бария, оксалата аммония при осаждении тория в виде оксалата, карбонатов при осаждении урана аммиаком, мышьяка при титровании сурьмы перманганатом калия и хлоридов при титровании ртути роданидом калия. [c.82]


    Титан можно осаждать в присутствии железа (II и III), алюминия, цинка, кобальта, никеля, бериллия, хрома (III), марганца (II), кальция, магния, таллия, церия (III), тория, натрия, калия, аммония, а также фосфатов, молибдатов, хроматов, ванадатов, перманганатов, уранила и ванадила. Мешают определению ионы циркония, церия (IV) и олова. Перекись водорода также должна отсутствовать. На осаждение циркония влияют церий (IV), олово, большие количества фосфата, а также титан при отсутствии в растворе перекиси водорода. [c.156]

    Титрование солями титана (III). Применение хлорида титана (III) для определения железа было предложено давно Можно применять также и раствор сульфата титана (III). Титрование этими растворами отличается от описанных выше титрований тем, что в этом случае железо титрующим раствором не окисляется, а восстанавливается. Конечную точку титрования находят, применяя внутренние индикаторы метиленовую синюю, которая, восстанавливаясь при прибавлении избытка раствора соли титана (III), обесцвечивается, или же роданид аммония, окрашивающий раствор в красный цвет, пока в нем еще присутствуют ионы железа (III). В обычных случаях анализа следует предпочесть последний индика-. тор, потому, что метиленовая синяя не чувствительна при температурах ниже 35° С, если не ввести в раствор салициловую кислоту или ее натриевую соль , прибавление же органических веществ не дает возможности провести обратное титрование перманганатом. [c.449]

    Если в анализируемой пробе содержится пирит, смачивают навеску в дистилляционной колбе 2—3 мл насыщенного раствора перманганата калия и в соответствии с этим повышают концентрацию вводимой хлорной кислоты. Прибавляют к дистилляту несколько капель фенолфталеина и 1 М раствор едкого натра до щелочной реакции, а затем разбавляют точно до 250 мл. Отбирают 50 мл раствора, вводят 5 капель раствора индикатора (0,1 %-ный водный раствор ализаринсульфоната натрия), а затем 0,1 М соляную кислоту до исчезновения розовой окраски. После этого в раствор прибавляют 2,5 мл монохлоруксусной кислоты (0,4 М), буферный раствор едкого натра (0,2 М) и титруют 0,04 п. раствором нитрата тория. [c.826]

    Косвенные определения с применением железа(1П). Для определения сильных восстановителей, окисляющихся воздухом, рекомендуется вводить раствор восстановителя непосредственно в раствор железа (III), взятого в избытке. Определение выделившегося эквивалентного количества железа(II) не составляет труда. Церий (IV) имеет преимущество перед перманганатом в том отношении, что позволяет применять в качестве среды для восстановления сравнительно концентрированные растворы соляной кислоты. Таким методом можно определять медь, молибден, торий, титан и ниобий и др. [81]. [c.381]

    В среде 9 н. соляной кислоты анионитом наиболее энергично поглощаются, помимо обычных анионов (перманганат-, бихромат-, ванадат-ионов), также и комплексные хлоридные анионы железа (П1), олова (IV) и сурьмы (V). Менее энергично — хлоридные анионные комплексы урана (VI), циркония, молибдена, цинка, олова (II), сурьмы (III), железа (II), меди, кадмия, кобальта, вольфрама. Не поглощаются анионитом и остаются в растворе алюминий, марганец, хром (III), никель, индий, титан, торий, редкоземельные элементы, бериллий, свинец, ванадий (IV) и магний. [c.698]

    Из анионов, помимо перечисленных выше, на светопоглощение комплексного соединения тория с тороном заметное влияние оказывают также фосфат-ионы. Сернистая кислота, находясь в растворе, в условиях колориметрического определения, дает красную окраску, и следовательно, и сульфит-и тиосульфат-ионы также мешают определению тория. Их влияние можно устранить предварительной обработкой раствора нейтральным раствором перманганата калия до появления устойчивой розовой окраски. После этого прибавляют 0,5 г гидроксиламина и соответствующие количества кислоты и торона. Двуокись углерода и карбонаты ослабляют окраску и должны быть предварительно удалены кипячением кислого раствора. Органические кислоты, если они присутствуют в значительных количествах, должны быть разрушены. [c.557]

    Если читатель пожелает рассмотреть это альтернативное объяснение для случая хроматов, то он может найти термодинамические и электрохимические данные для различных реакций, указанных выше в работе [34]. Причины противоречивого поведения пертехнатов (которые являются более сильными ингибиторами, чем хроматы), и перманганатов (оба являются слабыми инги- торами и иногда стимулируют коррозию) объясняются в работе [35]. [c.147]

    Определение кобальта в виде комплекса с пиридин-2,6-дикарбоновой кислотой С5Нз (СООН)2 [813]. Ионы двухвалентного кобальта легко окисляются броматом калия в азотнокислой или сернокислой среде в присутствии пиридиндикарбоновой кислоты, образуя окрашенный в красный цвет анионный комплекс трехвалентного кобальта, в котором на один ион кобальта приходится две молекулы реагента. Комплекс имеет максимум поглощения при 514 ммк и молярный коэффициент погашения при этой длине волны, равный 672. Можно определять 2—100 мг мл Со. Комплекс устойчив по отношению к ионам двухвалентного олова и тиогликолевой кислоте это позволяет определять кобальт в присутствии трехвалентного марганца, который также образует окрашенный комплекс, но легко восстанавливается при действии указанных восстановителей. Не мешают катионы меди, железа и никеля, а также щелочноземельных металлов, алюминия, кадмия, ртути, галлия, индия, свинца, сурьмы, мышьяка, висмута, титана, циркония, цинка, ванадия, церия, тория, хрома, серебра, анионы перманганата, молибдата, вольфрамата, хромата. [c.145]


    Трифторэтиловый спирт получают восстановлением эфиров трифторуксусной кислоты или ее хлорангидрида алюмогидридом лития в абсолютном эфире (выход 50—70%) [50, 51] гидрированием амида трифторуксусной кислоты водородом на платиновом ката-лиза.торе (вы5сод 77%) [52], окислением фтористого винилидена хромовым ангидридом, перманганатом калия или надуксусной кислотой Б безводном фтористом водороде (выход 20—30%) [47—49]. [c.22]

    Взаимодействие глицерина с перманганатом калия приводи к самовоспламенению. Глицерин термически неустойчив, при дли тельном нагревании (даже до 90-130 частично разлагается с образованием легко воспламеняющихся веществ, понижающиз температуру вспышки до 112 °С. Рекомендуется тушить тонкое распыленной водой, пеной. Глицерин безвреден для человека Благодаря гигроскопическим свойствам глицерин способен подави лять жизнедеятельность микроорганизмов. В разбавленных ра створах глицерина энергично развиваются микроорганизмы, ко торые при брожении образуют большое число продуктов разложения. [c.24]

    Максимумы светопоглощения экстрактов в изобутаноле находятся при 625 и 725 ммк. Оптимальные пределы концентрации фосфора составляют 0,2—1,5 мкг1мл. Определению не мешают ионы ацетата, бромида, карбоната, хлорида, цитрата, бихромата, фторида, йодата, нитрата, нитрита, оксалата, перманганата, сульфата, аммония, алюминия, бария, трехвалентного висмута, кадмия, кальция, трехвалентного хрома, двухвалентного кобальта, двухвалентной меди, двухвалентного железа, трехвалентного железа, двухвалентного свинца, лития, магния, двухвалентного марганца, двухвалентного никеля, калия, серебра, натрия, четырехвалентного тория, уранила и цинка. Концентрация ионов трехвалентного мышьяка, йодида и роданида не должна быть выше 50 мкг/мл, а концентрация силиката или четырехвалентного олова — выше 25 мкг/мл. Опре- [c.15]

    Ионы висмута, тория, арсената, хлорида и фторида замедляют развитие окраски. Если они присутствуют в заметных количествах, то для развития максимальной окраски требуется больше времени, например 30 мин. Концентрация ионов арсената не должна превышать 100 мкг1мл, а концентрация ионов хлорида и фторида — 50 мкг1мл. Висмут допустим в концентрации до 400 мкг/мл. Концентрация двухвалентного кобальта не должна превышать 100 мкг/мл, трехвалентного хрома — 10 мкг/мл. Ионы йодида, бихромата и перманганата должны отсутствовать. Четырехвалентный церий, четырехвалентное олово и серебро мешают определению вследствие образования осадка или мути. Когда в анализируемом растворе присутствуют большие количества силиката, хлорида или трехвалентного железа, то рекомендуется предварительное выпаривание с хлорной кислотой до получения почти сухого остатка. При этом удаляются ионы хлорида и происходит дегидратация кремневой кислоты, после чего она может быть отфильтрована. Трехвалентное железо в хлорнокислых растворах поглощает свет при 460 ммк не так сильно, как в солянокислых растворах. Следует также отметить воз-. можность компенсации помех от больших количеств трех-валентного железа путем измерения оптической плотности относительно соответственно разбавленного анализируемого раствора. [c.18]

    Фосфорномолибденовая кислота экстрагируется селективно, и ионы силиката, арсената и германата не мешают, в то время как при обычном методе определения по образованию фосфорномолибденовой кислоты названные ионы мешают определению. Уэйдлин и Меллон [26] исследовали зкстрагируемость гетерополикислот и установили, что 20%-ный по объему раствор бутанола-1 в хлороформе селективно извлекает фосфорномолибденовую кислоту в присутствии ионов арсената, силиката и германата. Предложенный ими метод позволяет определить 25 мкг фосфора в присутствии 4 мг мышьяка, 5 мг кремния и 1 мг германия. Более того, при экстракции удаляется избыток молибдата, поглощающего в ультрафиолетовой области. Измерение оптической плотности экстракта при 310 ммк обеспечивает увеличение чувствительности метода. Для получения надежных результатов необходимо строго контролировать концентрацию реагентов. Определению не мешают ионы ацетата, аммония, бария, бериллия, бората, бромида, кадмия, кальция, хлорида, трехвалентного хрома, кобальта, двухвалентной меди, йодата, йодида, лития, магния, двухвалентного марганца, двухвалентной ртути, никеля, нитрата, калия, четырехвалентного селена, натрия, стронция и тартрата. Должны отсутствовать ионы трехвалентного золота, трехвалентного висмута, бихромата, свинца, нитрита, роданида, тиосульфата, тория, уранила и цирконила. Допустимо присутствие до 1 мг фторида, перйодата, перманганата, ванадата и цинка. Количество алюминия, трехвалентного железа и вольфрамата не должно превышать 10 мг. [c.20]

    Сульфиды урана — кристаллические вещества серого или черного цвета с металлическим блеском они изоморфны с соединениями тория такого же формульного состава и обладают значительным парамагнетизмом. Высшие сульфиды в принципе термически неустойчивы по сравнению с US. Тем не менее все они достаточно стойки к нагреванию и могут использоваться как огнеупорные материалы. Все сульфиды растворяются в неорганических кислотах, взаимодействуют с йодной водой, растворами перманганата и перекисью водорода устойчивы к действию растворов щелочей. При хранении на воздухе при комнатной температуре не изменяются, однако уже при относительно небольшом нагревании они медленно превращаются в окислы. Сульфид уранила 1UO2S в виде бурого осадка образуется при добавлении сульфида аммония к растворам солей уранила. Прн таком способе получения продукт загрязнен примесями. UO2S сравнительно нестоек при прокаливании на воздухе выделяет SO2 и превращается в UsOg. [c.272]

    Как сообщают Кэтцин и Стотон [96], хорошее извлечение протактиния из растворов I—4-н. азотной кислоты достигается с помощью нагревания и обработки двуокисью марганца в количестве 1,5 г/уг. Двуокись марганца осаждается при добавлении к нитрату марганца избытка перманганата калия. Присутствие тория в растворе ниже 0,65-м. не мешает хорошему разделению выход протактиния при одном осаждении достигает 95%. После повторного растворения осадка (применяя при этом восстановители, такие как гидроксиламин) вторичное осаждение позволяет осуществить концентрирование протактиния по отношению к носителю примерно в сто раз. После двух таких восстановительных циклов общий выход протактиния равен 85%, при этом примесь урана-233 очень мала. Окончательное извлечение урана, после распада, достигается путем повторного растворения осадка, повторного осаждения двуокиси марганца (не содержащей практически урана-233) и обработки жидкости экстракционным или ионообменным методами. [c.161]

    В качестве амперометрического индикатора применяют также соли меди(П) [14] и перманганат калия [15]. При титровании без индикатора налагают очень большое напряжение, порядка 1,5 В [16]. Известны также методы титрования при помощи ЭДТА с одним индикаторным электродом [17, 18]. Авторы работы [19] вернулись к методу Флащке [20], т. е. к методу, заключающемуся в вытеснении ионами тория ионов другого элемента из его комп-.цексоната, менее прочного, чем комплексонат тория, в частности ионов свинца [20] и висмута [1 9]. [c.275]

    Мешающие вещества. Определению фосфора не мешают ионы аммония, натрия, калия, лития, магния, стронция, бария, бериллия, кадмия, кальция, хрома(III), кобальтл, меди(II), марганца (II), никеля, ртути (П), а также анноны — ацетат, борат, бромид, хлорид, иодат, иодид, нитрат и селенит. Ионы золота(III), висмута, бихромата, свинца, нитрита, роданида, тиосульфата, тория, уранила и циркоиила должны отсутствовать. Могут присутствовать в количестве до 1 мг ионы фторида, перйодата, перманганата, ванадата и цинка. Наличие алюминия, железа(III) и вольфрамата не должно превышать 10 мг в пробе. [c.104]

    Если веш,ества, подвергаемые хроматографированию на бумаге, бесцветны, то для обнаружения образовавшихся зон следует, после высушивания хроматограммы, применить соответствующий реагент, раствором которого обрызгивают бумагу при помощи пульвериза-тора. В случае хроматографирования смеси аминокислот обычно применяют нингидрин, вещества кислотного или основного характера обнаруживают соответствующим индикатором, иногда пользуются разбавленным раствором перманганата и т. п. Нередко лучшие результаты можно получить при рассматривании хроматограммы в ультрафиолетовом свете. [c.291]

    Этим способом кальций четко отделяется от ртути, свинца, висмута, меди, кадмия, мыщьяка, сурьмы, железа, хрома, алюминия, титана, урана, бериллия, молибдена, вольфрама, церия, тория, никеля, кобальта, марганца, цицка, магния и фосфат-ионов. (Бериллий и уран образуют комплексные растворимые соединения с оксалат-ионами, прибавленными в избытке.) Единственным элементом, мешающим определению, является олово (IV), которое выделяется в риде гидроокиси, однако осаждение гидроокиси олова (IV) мешает весовому определению кальция, но не объемному, титрованием осадка перманганатом. [c.652]

    Считается, что наиболее трудно окисляющимися ртутьорганичеки соединениями являются галогениды метилртути, поэтому эффективно методов деструкции связанных форм ртути чаще всего оценивают по фективности деструкции растворов метилртути [229, 230, 317, 594]. Од ко имеются сведения, что фенилртуть разрушается труднее, чем мет ртуть [294, 532]. Краткий обзор методов деструкции приведен в табл. Выбор оптимального варианта зависит от объектов изучения (пресн морские, минеральные, сточные воды, рассолы, биологические жил сти), их состава, приборного оснащения, необходимой чувствительно определения ртути, а также ассортимента реагентов-окислителей с не ходимой степенью чистоты. Последнее условие является иногда реш щим, поскольку примеси ртути в реактивах резко повышают велич "холостого опыта", а следовательно, снижают чувствительность опред ния. Кроме того, окислительные реагенты и их смеси могут активно < бировать атомарную ртуть из атмосферного воздуха, что может приво, к существенному повышению величины "холостого опыта" (реактив фона) и понижению чувствительности определения ртути. Например торы [239, 266] не рекомендуют использовать окисление органиче форм ртути перманганатом калия и персульфатом калия в кислой j так как этот способ разложения характеризуется, как правило, выс( реактивным фоном, низкой воспроизводимостью и трудоемкостью. I зарегистрированы случаи загрязнения ртутью питьевых вод при воде готовке с использованием перманганата калия в качестве окислител удаления запаха и привкуса. Содержание ртути в этом реагенте дост1 0.3 мг/кг [272]. Однако для деструкции проб с высокими концентрац [c.78]


Смотреть страницы где упоминается термин Торий перманганатом: [c.53]    [c.573]    [c.264]    [c.230]    [c.131]    [c.502]    [c.95]    [c.250]    [c.211]    [c.560]    [c.215]    [c.101]    [c.50]    [c.154]    [c.73]    [c.309]    [c.96]   
Химическое разделение и измерение теория и практика аналитической химии (1978) -- [ c.323 ]




ПОИСК





Смотрите так же термины и статьи:

Перманганаты



© 2024 chem21.info Реклама на сайте