Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водородная и вязкость

    Подобно воде, жидкий аммиак сильно ассоциирован, главным образом за счет образования водородных связей. Однако они в данном случае сравнительно слабы (энергия связи порядка 1 ккал/моль). Вязкость жидкого аммиака почти в семь раз меньше вязкости воды. Его плотность (0,68 и 0,61 г/см соответственно при —33 и [c.390]

    Не менее важное значение имеет водородный показатель в химической технологии. В частности, под влиянием pH могут изменяться растворимость, фильтрация. вязкость, поверхностное натяжение, осмотическое давление, набухание и другие свойства. Вот почему определение концентрации водородных ионов (точнее,, измерение pH) нашло применение во всех областях не только биологии, но и химии, агрохимии, биохимии, почвоведения, физиологии растений и животных, микробиологии, медицины и в других областях науки и практики. [c.206]


    Многие физические свойства веществ с водородной связью выпадают из общего хода их изменения в ряду аналогов. Так, летучесть ассоциированных жидкостей аномально мала, а вязкость, диэлектрическая постоянная, теплота парообразования, температура кипения аномально повышены. На рис. 68 представлена зависимость температур плавления и кипения в ряду Н2О—НгЗ—НгЗе—НгТе от молекулярной массы соединений. В рассматриваемом ряду с ростом молекулярной массы обе характеристики закономерно увеличиваются. Резкое отличие свойств воды от свойств ее аналогов обусловлено увеличением средней молекулярной массы агрегатов (Н20) за счет ассоциации молекул Н2О вследствие образования водородных связей. Если бы вода не была ассоциированной жидкостью, она имела бы температуру плавления не [c.140]

    Под молекулярным комплексом подразумевают ассоциат из двух или более молекул, в котором каждая молекула в значительной степени сохраняет свою химическую и физическую индивидуальность. Образование молекулярных комплексов часто наблюдают спектральным способом (появляется полоса поглощения, характерная для комплекса). Ассоциация молекул в жидкости меняет их физические свойства (вязкость, коэффициент самодиффузии, температуру кипения). Среди молекулярных комплексов достаточно хорошо изучены комплексы с водородной связью (Н-комплексы) и комплексы с переносом заряда (КПЗ). [c.145]

    Муса и от 9 до 11 ккал/моль для остальных грунтов) значительно превосходят значения энергии активации вязкости воды (от 3 до 6 ккал/моль) и подвижности водородных ионов (от 1 до 3 ккал/г-ион), что указывает на существенное различие процессов диффузии в жидкой фазе грунтов и почв и в растворах электролитов. gs Возможны и отступления от экспоненциальной зависимости скорости грунтовой и почвенной коррозии металлов от температуры, связанные с более быстрым высыханием или с меньшей аэрацией грунта или почвы при повышении температуры. [c.389]

    Особую роль играет внутримолекулярная связь для многих биоорганических соединений (белков, полипептидов, ДНК и др.), определяя равновеснь1е конформации молекул. Внутримолекулярная водородная связь проявляется в спектральных характеристиках системы, влияет на дипольный момент молекулы однако вещества, в которых образуются только такие связи, по своей температуре кипения, плавления, вязкости, диэлектрической проницаемости не обнаруживают заметной специфики по сравнению с системами без водородных связей. [c.125]


    Для описания структуры граничных слоев воды была предложена [71] модель анизотропных доменов, размеры которых вдоль осей а ъ Ь (вдоль плоских поверхностей частиц слоистых силикатов) существенно больше, чем вдоль оси с (перпендикулярно поверхности пластинчатых частиц). Такое строение граничных слоев позволяет объяснить, с одной стороны, их повышенную вязкость (при приложении внешней нагрузки текут не индивидуальные молекулы, а домены), а с другой,— меньшее число водородных связей, в которых участвует каждая молекула воды (этот вывод, естественно, вытекает из анизотропной структуры ассоциатов). [c.40]

    Энергия (теплота) активации вязкости воды и подвижности водородных ионов (но Глесстону, Лейдлеру и Эйрингу) [c.354]

    Было обнаружено, что вода и некоторые другие полярные жидкости при конденсации насыщенных паров в щироких капиллярах образуют аномальные модификации, имеющие повыщенные вязкость и плотность и т. д. по сравнению с обычными жидкостями [164, 58, 165]. Авторы объясняют эти явления образованием структуры на основе водородных связей. [c.69]

    При необратимых изменениях в стали начинается интенсивная водородная коррозия, приводящая к резкому снижению прочности из-за образования многочисленных микроскопических трещин по границам зерен. Ухудшаются и пластические свойства, особенно ударная вязкость, причем они не восстанавливаются даже при нагреве стали выше 700 °С и полном удалении водорода. [c.259]

    В данное время все шире применяются приборы автоматического контроля таких показателей, как фракционный состав нефтепродуктов, вязкость, содержание воды и солей в нефтях, концентрация водородных ионов, состав углеводородных газов и т. д. Автоматизация [c.107]

    Связующее в эластическом состоянии представляет собой структурированное вещество, вязкость которого определяется для низкомолекулярной части пека силами Ван-дер-Ваальса, а для других его фракций, по данным [2-106], водородными связями. С переходом в вязкотекучее поведение структурирование на- [c.119]

    Увеличение количества гидроксильных групп в молекуле повышает температуру кипения и вязкость за счет возрастания интенсивности водородных связей. [c.228]

    МЕЖМОЛЕКУЛЯРНОЕ ВЗАИМОДЕЙСТВИЕ — взаимодействие двух элек-тронейтральных молекул, вызываемое силами притяжения или отталкивания. Межмолекулярные силы притяжения, называемые иногда силами Ван дер Ваальса, много слабее валентных сил, но именно М. в. обусловливает откло нения от законов идеальных газов, переходы от газообразного состояния к жидкому, существование молекулярных кристаллов, явления переноса (диффузия, вязкость, теплопроводность), тушение люминесценции, уширение спектральных линий, адсорбции и др. М. в. всегда представляет собой первую стадию элементарного акта химической бимолекулярной реакции. При больших расстояниях между молекулами, когда их электронные оболочки не перекрываются, преобладают силы притяжения при малых расстояниях преобладают силы отталкивания. Короткодействующие силы имеют ту же природу, что и силы химической (валентной) связи и возникают при условии, когда электронные оболочки молекул сильно перекрываются. Частным случаем М. в. является водородная связь. М. в. определяет агрегатное состояние вещества и некоторые физические свойства соединений. [c.157]

    Формирование физического контакта воды как жидкости с цементными минералами связано, с одной стороны, с возникновением водородных связей с поверхностными атомами твердого тела, с другой — с текучестью воды (малая вязкость). [c.83]

    Исследования показали, что по химическому составу металл отливки корпуса задвижки соответствовал стали А-352 I B по ASTM и в зоне разрушения находился в охрупченном состоянии ударная вязкость K V 4o при пониженной температуре составляла 12 Дж/см , относительное удлинение S — 23,8%. Металл имел ферритно-перлитную структуру с крупными равноосными зернами и включениями карбидов внутри зерен феррита. Охрупчивание металла отливки в зоне разрушения было вызвано наличием усадочных межкристаллитных несплошностей и проявлением водородной хрупкости. По значениям прочности, твердости и относительного сужения металл отвечал требованиям нормативных документов к отливкам, предназначенным для эксплуатации в средах с высоким содержанием сероводорода. Разрушение стенки корпуса задвижки произошло в результате быстрого развития трещин, образовавшихся в металле под воздействием напряжений, превышающих предел текучести, в зоне расположения усадочных несплошностей. Наличие высоких напряжений в металле в момент, предшествовавший разрушению, подтверждалось тем, что в зоне зарождения и нестабильного роста трещин преобладал вязкий характер разрушения. Характер излома корпуса задвижки в зонах зарождения и докритического роста трещины смешанный, а в зоне лавинообразного разрушения — хрупкий с шевронным узором. Охрупчивание металла, вызванное его пониженной ударной вязкостью, способствовало лавинообразному развитию разрушения. На гболее вероятной причиной разрушения задвижки явилось, по-видимому, размораживание ее корпуса. [c.52]


    Эти данные свидетельствуют о том, что с повышением концентрации растительных дубильных веществ в них возникают типичные для полуколлоидов ассоциированные частицы. Ассоциация молекул таннидов с образованием коллоидной фракции осуществляется за счет водородных и более слабых межмолеку-лярных связей. Различные виды связей между растворенными молекулами таннидов проявляются не только в том, что образуется большее или меньшее количество ассоциированных частиц, но и в том, что возникает пространственная сетка, которую можно обнаружить, определяя вязкость при различных перепадах давления для достаточно концентрированных растворов растительных дубильных материалов. [c.160]

    Полипептидные цепи фибриллярных белков имеют форму спирали, которая закреплена расположенными вдоль цепи внутримолекулярными водородными связями. В волокнах фибриллярных белков закрученные пептидные цепи расположены параллельно оси волокна, они как бы ориентированы относительно друг друга и имеют высокую степень асимметрии. Фибриллярные белки плохо растворимы или совсем нерастворимы в воде. При растворении в воде они образуют растворы высокой вязкости. К фибриллярным белкам относятся белки, входящие в состав тканей и покровных образований. Это миозин — белок мышечных тканей коллаген, являющийся основой седимента-ционных тканей и кожных покровов кератин, входящий в состав волос, роговых покровов, шерсти и перьев. К этому же классу белков относится фиброин натурального шелка, хотя по своей структуре он отличается от других фибриллярных белков. Пептидные цепи фиброина имеют не спиралевидную, а линейную форму они соединены друг с другом межмолекулярными водородными связями, что и определяет, по-видимому, высокую механическую прочность натурального шелка. [c.374]

    Серная кислота вязкая жидкость. Это ковалентное соединение, структура его показана на рис. 21.13, а. Вязкость и высокая температура кипения (270 °С) кислоты объясняются водородными связями между молекулами (рис. 21.13, б). С водой серная кислота образует нераздельно кипящую смесь (разд. 8.4.3), содержащую 98,3% кислоты. [c.454]

    Полимер с эпоксиуретановыми группами обладает значительно более высокой вязкостью, чем аналогичный полимер, не содержащий таких групп. Зависимость вязкости от температуры — нелинейна (в координатах Аррениуса), т. е. энергия активации вязкого течения изменяется с температурой, что указывает на обратимый распад физических связей между полимерными цепями при повышении температуры. С уменьшением молекулярной массы вязкость возрастает. Это можно объяснить увеличением концентрации концевых групп, что приводит к увеличению густоты квазисетки , образованной за счет ассоциации концевых фрагментов полимерных цепей (рис. 3). Связь между полимерными цепями осуществляется за счет водородных связей, что было доказано путем изучения ИК-спектров этих полимеров. Разрушение ассоциатов разбавителями сопровождается резким падением вязкости полимера. Это особенно сильно проявляется, если разбавитель содержит протонодонорные или электроноакцепторные группы, способные взаимодействовать с водородными связями в ассо-циате [65]. [c.439]

    Разрушение граничных слоев воды происходит также и при повышении температуры, когда тепловое движение размывает упорядоченную под влиянием гидрофильной поверхности сетку водородных связей. На рис. 1.3 показана температурная зависимость вязкости воды в тонких гидрофильных капиллярах (кривые / и 2) в сравнении с температурной зависимостью вязкости объемной воды (пунктир). При повышении температуры до 65—70 °С отличия вязкости от объемных значений перестают ощушаться, что означает резкое уменьшение толщины граничных слоев. Как было показано ранее, при этом прекращается также термоосмос воды в тонких порах [23] и заметно растет (из-за снижения вязкости) скорость фильтрации воды в пористых телах и мембранах [18, 20]. [c.10]

    Расплавленная Н3РО4 и ее концентрированные растворы обладают большой вязкостью, что обусловлено образованием межмолекулярных водородных связей [c.419]

    Влияние растворенного водорода на механические свойства технического титана показано на рис. 4.57, а изменение ударной вязкости титановых сплаьов при различной концентрации водорода — на рис. 4.58. Водородная хрупкость особенно резко проявляется, если содержание водорода превышает определенную величину. Для технического титана содержание водорода не должно превышать 0,010% (масс.). В а-титановых сплавах можно допускать содержание водорода до 0,02% (масс.). [c.264]

    В опытах латексы характеризовались размером глобул, величиной электрофоретической иодаижиости, степенью яд- сорбцио нного покрытия поверхности глобул эмульгатором, величиной поверхностного натяжения, вязкостью, удельной электропроводностью и концентрацией водородных ионоз. [c.149]

    По данным элементного состава, остаточные нефти отличаются от нативных и отбензиненных более высокой молекулярной массой, значительным содержанием гетероатомных соединений, более высокой степенью водородной ненасыщенности. Содержание кислородорганических соединений в остаточной нефти на порядок выше, что указывает на ее высокую окисленность. Повышенное содержание элементов серы, азота, кислорода и золы указывает на значительное количество в остаточной нефти соединений сложной структуры и металлов [71]. Это хорошо согласуется с работами [71-73], где говорится, что при заводнении легкие компоненты нефти вымываются водой, при этом происходит увеличение плотности, вязкости нефти за счет процессов окисления и хроматографического эффекта на породе. А с ростом содержания смол, асфальте-нов и нафтеновых кислот увеличивается вероятность прилипания капель нефти к породе, что приводит к появлению аномалий вязкости [74]. В связи с вышеизложенным при разработке новых технологий повышения нефтеизвлечения важное значение приобретает знание химического состава и физико-химических свойств остаточных нефтей разрабатываемых месторождений. [c.59]

    В.— одно из важнейших и наиболее полно изученное соединение. Некоторые из свойств В. положены в основу определения единиц измерения фундаментальных физических величин массы, плотности, температуры, теплоты и уде гьной теплоемкости. По ряду физических свойств В. обнаруживает аномалии, например, по летучести соединений водорода с элементами подгруппы кислорода, по изменению плотности при увеличении температуры, зависимости вязкости от давления и теплопроводности от температуры. Эти аномалии В. обусловлены наличием водородных связей. Они играют важную роль в природе. [c.55]

    Спиральная структура макромолекул может сохраняться в растворителях, слабо действующих иа Н-связн даже при полной сольватации индивидуальных молекул. В сильно взаимодействующих растворителях водородные связи нарушаются и форма спирали переходит в статистический клубок. Переход спираль-клубок на- блюдают по изменению оптического вращения и вязкости растворов в зависимости от состава смеси слабого (например, хлороформа) и сильного (например, дихлоруксусной кислоты) растворителя. При увеличении концентрации дихлоруксусной кислоты правое вращение сменяется на левое. Вязкость растворов при этом резко падает. [c.288]

    Выражение (3.3) показывает, что зависимость логарифма коэффициента вязкости от обратной температуры должна быть римолинейной. Это действительно наблюдается для неассоциированных жидкостей типа бензола и тетрахлорида углерода. Для воды зависимость коэффициента вязкости от температуры не описывается приведенным соотношением, что обусловлено частичным разрушением структуры водородных связей с повышением температуры. [c.77]

    Эта реакция заключается в образовании последовательностей водородных связей между макромолекулами. Взаимное связывание полярных групп макромолекул приводит к гидрофобнзации частиц поликомплекса и сворачиванию их в компактные клубки. Поэтому за реакцией можно следить по изменению вязкости системы. При добавлении к водному раствору полиметакриловой кислоты раствора полиэтиленгликоля вязкость системы резко падает, достигает минимального значения при эквимольном, считая на моль звена, соотношении компонентов и вновь возрастает при добавлении избытка полиэтиленгликоля (рис. IV. 6). [c.125]

    Степень ионизации, а в случае полиамфолита — удаленность от ИЭТ сильно влияет на конфигурационные свойства обычных линейных полиэлектролитов, приводя к развертыванию макромолекул и увеличению их линейных размеров (явление полиэлектро-литного набухания). Поскольку о размерах макромолекул можно судить по характеристической вязкости [т]], пропорциональной объему клубков, оценку полиэлектролитного набухания молена произвести по изменению ["п] в зависимости от степени ионизации. Так, при полной ионизации полиметакриловой кислоты [т]] может возрасти на два порядка, чему соответствует увеличение линейных размеров клубков в 5—6 раз. В известных условиях (при полном подавлении ионизации) можно наблюдать эффекты, противоположные полиэлектролитному набуханию, обусловленные наличием в ионогенных группах подвижных атомов водорода, способных образовывать водородную связь. Возникновение таких связей (например, карбоксил-карбоксильных) [c.155]

    Наличие водородных связей сказывается на температурах кипения и плавления (так, метан — газ, а метиловый спирт — жидкость) на растворимости и растворяющей спссобности (вещества с водородными связями легко растворяются друг в друге и не растворяют, как правило, веществ, не имеющих водородных связей) на структуре кристаллов вещества с водородными связями почти всегда образуют в твердом состоянии молекулярные кристаллы на плотности н вязкости веществ. Свойства веществ, образующих водородные связи, в газообразном состоянии значительно отличаются от свойств идеальных газов и т. д. [c.52]

    По данным рентгеноструктурного анализа кристалла Н3РО4, молекула фосфорной кислоты характеризуется ядерными расстояниями Р = 0 и Р—ОН соответственно 1,52 и 1,57 А при углах . 0 = Р—ОН = 112° и НО—Р—ОН = 106°. Известное выравнивание обоих расстояний обусловлено наличием в кристалле коротких [d(0-"0) =2,53 А] водородных связей типа РО—Н-"0 = Р. Сохранением таких связей и в жидком состоянии обусловлена вязкость крепких растворов фосфорной кислоты. [c.449]

    Нормальные спирты — класс органических соединений, содержащих в молекуле гидроксильную группу ОН, связанную с атомами углерода. В отличие от н-парафинов, силоксанов и жидкостей со сферически симметричными молекулами они имеют ту особенность, что в них наряду с ван-дер-ваальсовым взаимодействием молекул осуществляется водородная связь. В первом приближении можно считать, что вклад водородной связи в общую энергию взаимодействия молекул разных спиртов одинаков. В то же время при переходе к высшим спиртам полная энергия межмолекулярного взаимодействия увеличивается, о чем свидетельствует возрастание вязкости, теплоты испарения и критической температуры. [c.236]

    Ортофосфорная, или просто фосфорная, кислота HjPOi — одно из наиболее важных производных фосфора (+5). Это бесцветные, легкоплавкие, расплывающиеся на воздухе кристаллы, смешивающиеся с водой в любых соотношениях. В твердой кислоте и концентрированных растворах действуют межмолекулярные водородные связи. Поэтому крепкие растворы Н3РО4 отличаются высокой вязкостью. В более разбавленных растворах (менее 50 мае. долей, % Н3РО4) возникают водородные связи между молекулами воды и кислоты  [c.274]


Смотреть страницы где упоминается термин Водородная и вязкость: [c.354]    [c.441]    [c.25]    [c.25]    [c.271]    [c.325]    [c.435]    [c.34]    [c.108]    [c.446]   
Водородная связь (1964) -- [ c.164 , c.165 ]




ПОИСК





Смотрите так же термины и статьи:

Азото-водородная вязкость

Азото-водородная смесь вязкость

Белки, Водородная связь, внутримолекулярная, Вязкость, Диэлектрические

Белки, Водородная связь, внутримолекулярная, Вязкость, Диэлектрические веществ

Белки, Водородная связь, внутримолекулярная, Вязкость, Диэлектрические длина. Стереохимия, Теория, Энтальпия, ЯМР

Белки, Водородная связь, внутримолекулярная, Вязкость, Диэлектрические свойства, спектры, Кинетика, Кристаллы, структура. Поверхностное натяжение, Рентгеновские лучи. Связи

Влияние концентрации водородных ионов на вязкость растворов желатины

Водородная связь вязкость

Водородная связь роль в вязкости жидкостей

Характер вязкости смесей водородных глин III



© 2025 chem21.info Реклама на сайте