Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Активированный уголь, катализ

    Из благородных металлов чаще всего в катализе используются платина и палладий. В несколько меньших количествах применяется родий, главным образом при гидрировании монооксида углерода в определенные одно-, двух- и трехатомные спирты. Благородные металлы часто наносят на активированный уголь в строго заданных условиях, тщательно определяя тин активи- [c.108]


    Алкены устойчивы к действию водорода в момент выделения. Их гидрирование осуществляют в присутствии катализаторов, в качестве которых чаще всего используют никель, платину и палладий в мелкодисперсной форме (например, только что полученные восстановлением оксидов), когда их поверхность наиболее развита и активна. Подобные катализаторы для придания им структурной устойчивости обычно наносят на так называемую подложку (носитель) - активированный уголь, оксид алюминия, силикагель, пемзу и т.д. Реакцию проводят при повышенной температуре. Механизм такого катализа, называемого гетерогенным, заключается в том, что на поверхности катализатора адсорбируются молекулы водорода и алкена, которые при этом не только пространственно сближаются, но и активируются. [c.63]

    В качестве носителей для катализаторов применяют широкий круг веществ, которые обычно специально не получают для целей катализа, а только подвергают некоторой очистке и активации. Сюда относятся, например, активированный уголь, пемза, кизельгур, асбест и др. Мы пе будем здесь касаться вопросов подготовки такого рода носителей, так как они носят узкий характер. Описание технологии получения или добычи этих веществ выходит за рамки настоящей книги. [c.335]

    В то же время поверхности органических материалов не обнаруживают кислотной активации при катализе, подобно силикатным материалам, у которых возможна ионизация. В этом отношении к органическим материалам близок активированный уголь. [c.123]

    Различные формы углерода, например графит и активные угли из разных источников, являются гетерогенными катализаторами разложения перекиси водорода, отличающимися рядом интересных особенностей. Активность углерода зависит от его происхождения [135] кроме того, ее можно изменять специальной обработкой, Фоулер и Уолтон [136] исследовали влияние добавки солей или желатины на каталитическую активность активированного угля из сахара [136] другие авторы изучали влияние температуры, размеров частиц, концентрации водородных ионов, излучения [137], концентрации перекиси водорода и химической природы поверхности угля. По-видимому, из всех описанных до настоящего времени свойств наиболее существенную роль играет адсорбционная способность поверхности [1381. Однако эффективность катализа не является прямо пропорциональной этой адсорбции. Обработка поверхности, например нагреванием или пропусканием над ней азота [139[, заметно изменяет активность. Чистый активированный уголь из сахара при взбалтывании с растворами перекиси водорода вызывает лишь слабое выделение кислорода, однако действие этого угля можно сильно интенсифицировать, если предварительно нагреть его в вакууме при 600°. Активированный уголь из целлюлозы и рисового крахмала, высушенный при 100°, обладает максимальной активностью более слабым действием отличается уголь из декстрина, инулина и пшеничного крахмала уголь из декстрозы, лактозы, мальтозы или картофельного крахмала едва ли обладает какой-либо активностью. Сырой костяной уголь или кровяной уголь вызывает лишь медленное разложение перекиси [c.399]


    Процессы адсорбции играют больщую роль при гетерогенном катализе с твердым катализатором. С помощью адсорбции очищают газы и растворы от нежелательных примесей или загрязнений, например активированный уголь в противогазах, процессы осветления и обесцвечивания растворов в производстве сахара, глюкозы, нефтепродуктов, фармацевтических препаратов и др. [c.92]

    На основании проведенных исследований при очистке сточных вод от сероводорода и его натриевых солей окислением кислородом воздуха в качестве катализаторов могут быть использованы гидроокиси или соли железа и меди и активированный уголь. При использовании гидроокиси и солей железа наряду с окислительным катализом имеет место кислотный катализ. Ионы гидроксония ускоряют процесс окисления сульфида железа. В сильнощелочной среде каталитическая активность гид- [c.74]

    Химическую адсорбцию широко применяют для очистки, осущ-ки газов и разделения углеводородных газовых смесей, а такл<е в процессах гетерогенного катализа. В качестве адсорбентов используют пористые вещества с развитой внутренней поверхностью активированный уголь, силикагель, активный оксид алюминия, алюмосиликаты, цеолиты. В промышленности эксплуатируют установки по адсорбционному выделению на активированном угле пропана из природного газа, этилена из метано-водородных фракций и продуктов пиролиза метана. Наибольшее применение в промышленности находит гиперсорбция — непрерывное разделение газовых смесей избирательным поглощением отдельных компонентов газа медленно движущимся слоем активированного угля. [c.244]

    Взаимодействие хлора с окисью углерода может происходить в темноте, но при высокой температуре (около 125°) в условиях гетерогенного катализа. В промышленности катализатором служит активированный уголь. [c.809]

    Активированный уголь используется в виде тонкоизмельченного порошка для обесцвечивания жидкостей во многих производствах (производство сахара или глюкозы, масла, вина, медикаментов и др.). В виде гранул он используется для адсорбирования паров (например, для регенерации летучих растворителей в химической чистке, для удаления бензола из каменноугольного газа), для очистки воды или воздуха, в качестве защитного средства от токсичных газов, в катализе или для удаления накопившегося газа в приэлектродном слое во время электролиза (деполяризация). [c.363]

    Бауэр [14] для ускорения реакции при температуре около 0° применил фотохимическое освещение. Активированный уголь, один или в смеси с галоидными солями металлов [15], применялся в качестве катализа- [c.158]

    Ионообменный катализ — одна из важнейших и весьма быстро развивающихся областей применения ионитовых смол [1—3]. Однако наряду с несомненными и большими достоинствами синтетических ионитов как катализаторов процессов кислотно-основного типа в растворах (легкость отделения их от реакционной массы, простота регенерации, высокая избирательность, хороший выход, чистота получаемых продуктов и т. д.) они обладают и рядом существенных недостатков, прежде всего явно неудовлетворительной для многих целей химической и термической устойчивостью [4]. Это предопределяет необходимость поисков ионообменных катализаторов, свободных от указанных недостатков. Большого внимания заслуживают в этом отношении активированные угли, которые в зависимости от химической природы их поверхности, иначе говоря, от условий взаимодействия угля с кислородом, могут проявлять как анионообменные так и катионообменны е свойства [5—7]. Имелись, в частности, веские основания предполагать [8], что так называемый окисленный уголь Дубинина — Кройта, являющийся полифункциональным катионитом [9] , будет служить эффективным катализатором химических процессов, ускоряемых в растворах водородными ионами. Исходя из этого, в настоящей работе каталитическое действие активных углей исследовалось преимущественно на примерах протолитических реакций кислотного типа. Наиболее детально были изучены реакции инверсии сахарозы, гидролиза уксусноэтилового эфира и пинаколиновой перегруппировки, из которых первая и третья ускоряются только ионами водорода [10, 11], а вторая — как водородными, так и, особенно сильно, гидроксильными ионами [10]. [c.32]

    Гетерогенный катализ применяется главным образом при газофазном хлорировании. В качестве катализаторов используют активированный уголь, пемзу, отбеливающие земли и т. п., пропитанные металлическими солями, особенно медными. В соответствии с теорией Тэйлора их действие основано на способности их активных центров вызывать ионизацию хлора. Гетерогенное каталитическое хлорирование протекает по криптоионному механизму и нечувствительно к обрыву цепи, особенно если оп вызывается кислородом. Благодаря этой нечувствительности к кислороду становится возможной разработка такого процесса хлорирования, при котором хлор будет использоваться целиком именно потому, что процесс будет проходить в присутствии кислорода. При этом применяются такие контактные массы, которые делают возможным превращение образовавшегося хлористого водорода под воздействием кислорода в воду и хлор [,5]. [c.113]


    Стехиометрические нарушения, а также инородные примеси неизбежно вызовут местные искажения геометрического порядка в кристалле. Все эти нарушения могут в ряде случаев привести к тому, что кристалл окажется разделенным трещинами на отдельные микрокристаллические блоки, в той или другой степени скрепленные друг с другом. Такое блочное строение характерно для многих кристаллических тел (например, различные силикагели, алюмогели, активированный уголь и др,), имеющих важное значение в гетерогенном катализе. Таким образом, в реальном кристалле, кроме обусловленных термодинамическими причинами тепловых дефектов, имеются необратимые нарушения, связанные с историей образования данного образца, так называемые биографические дефекты. Поскольку нарушения решетки приводят к энергетической неравноценности отдельных элементов кристалла, наличие этих нарушений облегчает образование и дополнительного количества тепловых дефектов, число которых может быть значительно больше, чем в идеальном кристалле. Отклонения от свойств идеального кристалла могут быть обнаружены и экспериментально. Так, сухие кристаллы поваренной соли разрушаются при натяжениях порядка 4 кГ/см , в то время как теоретический расчет дает величину порядка 200 кГ1см . Если же эксперимент проводить с кристаллом, погруженным в насыщенный раствор соли, т, е, в условиях, когда возможно залечивание микродефектов, опытная нагрузка приближается к теоретической. Изучение интенсивности отражения от кристалла рентгеновских лучей (Ч, Г. Дарвин) показало, что многие кристаллические тела состоят из совокупности микрокристаллов, повернутых друг к другу под различными углами. При этом было установлено, что для большинства кристаллических тел линейный размер отдельных блоков равен 10 -ь10- см. Такой же результат был получен и при исследовании лауэграмм механически деформируемых кристаллов (А. Ф. Иоффе). Объемная блочная [c.340]

    При гетерогенном катализе реакция происходит на поверхности раздела фаз, причем решающую роль играет строение поверхности твердого вещества-катализатора. В первую очередь она должна быть большой, чтобы обеспечивать достаточную величину реакционной зоны. Поэтому твердый катализатор стремятся приготовить как можно в более раздробленном состоянии. В то же время использование пылевидного материала непригодно по технологическим соображениям. И в качестве катализаторов применяются или высокопористые вещества (например, активированный уголь — уголь, приготовленный путем пиролиза из природного угля или чаще древесины, кости, так, что в нем сохраняется жесткий углеродный скелет, пронизанный большим числом пор силикагель — диоксид кремния, изготовленный осторожным обезвоживанием кремниевой кислоты, так что в нем сохраняется кремнекислородный скелет так называемый никель Ренея, получаемый обработкой щелочью никельалюмипиевого сплава, при которой растворяется алюминий и остается компактный, но содержащий большой объем пор никель, и т. д.), или вещества, нанесенные на высокопористые носители (медь на угле, палладий на асбесте и др.). [c.220]

    Как видно из табл. 2.3 и 2.4, плотности тока обмена восстановления Кислорода значительно ниже плотностей тока обмена ионизации водорода и предельных диффузионных плотностей тока кислорода. Поэтому выбор активного катализатора кислородного электрода для ТЭ исключительно важен. Катализ 1то-рами Кислородных электродов в щелочных растворах служат платина и палладий, их сплавы и серебро, а также активированный уголь. Каталитическую активность угля можно повысить введением оксидов некоторых металлов, например шпинелей №Со204,СоА1204,МпСо204 [10, с. 161 35, с. 131, 144, 145]. При температурах 200 С и выше активен литированный оксид никеля [7]. Катализаторами кислородного электрода в кислотных электролитах служат платина и ее сплавы и активированный уголь. Предложены также органические катализаторы - фтало-цианины и порфирины кобальта и железа, нанесенные на углеродистую основу [10, с. 161 11 47 66, с.60]. С помощью термообработки удалось значительно повысить их стабильность [11, 47]. Воздушные электроды, содержащие термически обработанные Органические комплексы, устойчиво работали при плотности тока 300 А/м свыше 3000 ч (9 10 А ч/м ) - [78, с. 157].,  [c.70]

    Степень использования каталитической массы в гетерогенном катализе можно повысить, применяя инертные носители, например активированный уголь, силикагель, оксид алюминия, цеолиты и т. д. Но и в этом случае на поверхности могут находиться не отдельные атомы катализатора, а их ахрегаты или даже микр мсристаллы с различными размерами. В результате этого активный компонент, нанесенный на поверхность, по большей части полидисперсен. [c.381]

    Электронная теория катализа. Работы Л. Б. Писаржевского. Взгляды Ф. Ф. Волькенштейна. Электронная теория адсорбции на полупроводниках и металлах. Работы Миньоле. Методы определения строения реальных позерхностей. Рентгеноструктурный метод, электронография, электронный микроскоп. Адсорбционные методы. Радиоактивные методы. Методы физико-химического анализа. Строение важнейших носителей. Силикагель. Активированный уголь. Работы Ринеккера. [c.218]

    Однако в последнее время стали появляться указания на то, что уголь сам по себе является катализатором дегидрогенизации и деалкилирования углеводородов. Так, Рабинович, Снегирева и Теснер в 1953 г. показали, что активированный уголь и сажа катализируют разрыв С — Н- и С — С-связей и реакции циклизации [31]. Дегидрогенизация декалина при 520° С на активированном угле протекает бурно, на саже в 12 раз медленнее. Октан при 500° С на угле при объемной скорости 0,7 мл1час дает катализат с содержанием 8—10% ароматики и 10—12% олефинов. В реакциях дезалкилирования порядок активности катализаторов следующий активированный уголь > алюмосиликатный катализа- [c.120]

    Адсорбция широко применяется для очистки, осушки газов и разделения углеводородных газовых смесей, а также в процессах гетерогеняого катализа. В качеств е адсорбентов используют пористые вещества с развитой внутренней поверхностью активированный уголь, силикагель, активная окись алюминия, алюмосиликаты, цеолиты. В промышленности эксплуатируются установки пс адсорбционному выделению на активированном угле  [c.8]

    К числу модификаторов можно отнести и носители (трегеры), особенно часто применяемые в случае дорогостоящих металлических катализаторов (Pt, Pd, Ni, Со). Роль носителей состоит в повышении активной поверхности, увеличении термостойкости и механической прочности катализатора и т. д. В качестве носителей используют алюмосиликаты, окиси алюминия, хрома или кремния, активированный уголь, пемзу, кизельгур и другие природные и синтетические материалы. Роль носителей кислотного типа при бифункциональном катализе уже рассматривалась раньше. Их влияние на каталитические свойства можно иллюстрировать и таким примером дегидрирование метилциклопентана на платине, нанесенной на активированный уголь, ведет к образованию метил-циклопентена и пентадиена, а при дегидрировании на Pt-AbOs образуются бензол и циклогексан. В других случаях носители изменяют активность и избирательность катализатора и т. д. Следо- [c.163]

    В специальных случаях для катализа реакций серы применяются металлы Си, Zn, Pt, активированный уголь, сульфид цинка, фтористый калий (см. гл. 4 и 7). Многие реакции серы с органическими соединениями мягко протекают в присутствии акцепторов сероводорода (HgO, MgO, РЬО, меркурамидов и имидов, аммиакатов ртутных солей) (ср. [120], см. гл. 7). [c.43]

    Основные стадии гетерогенного катализа, как правило, осуществляются на поверхности катализатора, поэтому активность катализатора зависит от его поверхности. Чем больше поверхность катализатора, приходящаяся на единицу его объема, тем более активен катализатор. Зачастую катализатор наносят тонким слоем на вещества, обладающие большой поверхностью. Эти вещества называются носителями или трагерами. Наибольшее распространение в качестве носителей получили силикагель, активированный уголь, окись алюминия, асбест и др. [c.28]

    Наиболее важным и наиболее распространенным видом гетерогенного катализа является катализ газовых реакций на поверхности твердых катализаторов. Так как в гетерогенном катализе большое значение пмеет поверхность, то катализаторы обычно приготавливаются путем распределения его на твердом носителе с высокоразвитой поверхностью. Такими носителями чаще всего служат силикагель, активный уголь, окись алюминия, асбест и др. Примерами гетерогенного катализа могут служить следующие реакции 1) контактный способ получения серной кислоты путем окисления сернистого газа кислоррдом воздуха па катализаторах Р1 и У20д 2) синтез метилового спирта (метанола) из водорода и окиси углерода на катализаторе ХпО (активированном СгзОд, У О,,) 3) реакции гидрогенизации непредельных соединений (Сабатье и Зелинский), имеющие значение и производстве душистых веществ и жиров, например гидрогенизация этилена и ацетилена на катализаторах N1, Со, Сп, Ге  [c.187]


Смотреть страницы где упоминается термин Активированный уголь, катализ: [c.185]    [c.193]    [c.190]    [c.12]    [c.270]    [c.290]   
Химия свободных радикалов (1948) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Активированный уголь

Уголь активирование



© 2025 chem21.info Реклама на сайте