Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алюминий окись как катализатор при на этилен

    Лабораторные способы получения олефинов в большинстве своем являются реакциями отщепления. Важнейший из этих способов— дегидратация спиртов (отнятие воды). При нагревании спиртов с водоотнимающими веществами (концентрированная серная или фосфорная кислоты) или пропускании паров спиртов над такими катализаторами как каолин, окись алюминия, окись тория, при повышенной температуре идет отщепление воды. Так из этилового спирта получается этилен  [c.67]


    В настоящее время известно, что в присутствии специальных катализаторов этилен может полимеризоваться при низком давлении и температуре. В качестве таких катализаторов используют, в частности, различные алкилпроизводные алюминия и окислы хрома на алюмосиликатах. Так, например, в качестве катализатора используется окись хрома (2,5%) на белой глине. Процесс полимеризации этилена проводят в растворе углеводорода при температуре 130—150° и давлении около 32 ати. Проведение процесса полимеризации этилена при низком давлении дает возможность сократить капитальные затраты на оборудование. Получаемый полиэтилен обладает молекулярным весом 40 ООО и выше и носит название марлекс-50. [c.420]

    Получение полиэтилена при среднем давлении. Способ получения полиэтилена при средних давлениях разработан в США фирмой Филлипс Петролеум Компани [61]. Процесс ведется при температуре 180—250° и давлении 35—105 ат. Этилен, предварительно полностью освобожденный от сернистых соединений, кислорода, водяных паров и углекислоты, растворяется под давлением при 20—30° в ксилольной фракции в количестве 7—9% вес. и подвергается полимеризации в трубчатом автоклаве над катализатором из окисей хрома и молибдена, нанесенных на окись алюминия или алюмосиликат. Целесообразнее применять большой избыток растворителя, чтобы полиэтилен оставался в растворе, а не отлагался на катализаторе, пассивируя его. Кроме того, при этом [c.223]

    Действие катализаторов отличается специфичностью, а именно данный катализатор, как правило, может влиять только на одну из реакций, не оказывая воздействия на другие. Наиример, этиловый спирт при нагревании может превращаться в этилен, ацетальдегид, дивинил, диэтиловый эфир и другие вещества. Если в качестве катализатора использовать окись алюминия или окись тория, то весь спирт превращается в этилен при наличии же медного катализатора из него образуется ацеталь- [c.130]

    Первые указания, касающиеся подбора катализаторов, смогла дать теория промежуточных соединений. Она считала, что, например, при гидрогенизации этилена над никелем сначала образуется гидрид никеля, который, взаимодействуя с этиленом, образует продукт гидрогенизации этан. Аналогично при дегидратации спирта над окисью алюминия сначала с выделением воды образуется алкоголят алюминия, который далее распадается, образуя продукт реакции — этилен. Однако исследования, проведенные в нашей лаборатории совместно с Б. В. Ерофеевым [2], показали, что гидрид никеля, который был получен и свойства которого были исследованы, совсем не обладает свойствами, постулируемыми теорией промежуточных соединений. Мы также изучили совместно с В. В. Щекиным [3] кинетику распада этилата алюминия, который получили по методу В. Е. Тищенко, и нашли, что он совсем не дает продуктов реакции, требуемых теорией промежуточных соединений именно, вместо этилена из него образуется этиловый эфир, причем алкоголят разлагается при более высокой температуре, чем происходит каталитическая реакция образования этилена из спирта. Недавно совместно с Г. В. Исагулянцем и другими соавторами [4] мы, пользуясь радиохимическим методом, сравнили скорость образования этилена 1) непосредственно из этилового спирта и 2) через этилен. При этом оказалось, что идут обе реакции, причем при высокой температуре преобладает первая из них. Значительным недостатком теории промежуточных соединений является предполагаемое образование промежуточного соединения только с одним реагирующим веществом, например при гидрогенизации — только с водородом. Главным же недостатком теории промежуточных соединений является то, что она рассматривает фазовые промежуточные соединения и совершенно неспособна объяснить чрезвычайной чувствительности активности и избирательности катализаторов от их способа приготовления, от их генезиса. Так, например, окись тория, если ее, как обычно, получать прокаливанием нитрата, служит типичным катализатором дегидратации спиртов, однако если окись тория осадить аммиаком, то она является катализатором дегидрогенизации. Этот вопрос был недавно подробно изучен в нашей лаборатории (А. А. Толстопятова [5]). [c.7]


    Гидратация этилового эфира 40% превращается в ацетон, 10% Б этиловый спирт и 18% в этилен 1 идроокиси, приготовленные из 100 г алюминия, 100 г тонкодиспергированной окиси железа (отфильтрованный и высушенный при 120—130° катализатор) Окись магния 252 [c.470]

    В 1904 г. Ипатьев [128] показал, что продуктами дегидратации этилового спирта являются как эфир, так и этилен, возможно, в результате последовательных реакций, и что повышение давления благоприятно влияет на образование эфира. Он показал, что при дегидратации в эфир может происходить и обратная реакция, а также что окись алюминия должна содержать некоторые минимальные количества воды, чтобы служить эффективным катализатором дегидратации. Последнее положение было высказано также Сабатье в 1903 г. [2341. [c.126]

    Катализатором является окись алюминия на кремневой кислоте. Процесс осуществляется в жидкой фазе при 310° С и давлении 63 ат (критическое давление этилбензола 38,1 ат и температура 346,4° С) при молярном отношении этилен бензол = 1 4. [c.273]

    Основными вредными веществами при производстве полиэтилена и его переработке являются этилен, пары метилового спирта и бензина, триэтилалюминий, четыреххлористый титан и продукты разложения катализатора — окись алюминия, гидроокись титана, хлористый водород [82, 83, 84]. [c.179]

    Молекулярный хлор может взаимодействовать по гомогенной или гетерогенной схемам с этаном, образуя этилхлорид, который в условиях реакции разлагается с выделением этилена и регенерацией хлористого водорода. Ускорение реакции в присутствии второго катализирующего компонента обусловлено, по-видимому, тем, что хлориды щелочно-земельных элементов, обладая высокой активностью в отношении реакции окисления хлористого водорода, способствуют его цикличному участию в реакции. Аналогичную схему механизма реакции дегидрирования этана в присутствии хлористого водорода можно предложить для результатов, представленных в работе [45]. На катализаторе, состоящем из гидратированных галогенидов Се, N(1, Рг и 0,5% СиСЬ, нанесенных в количестве 10 вес.% на окись алюминия, получен этилен с избирательностью более 80%. Расчеты показывают, что так называемая кратность цикличности, т. е. число повторных циклов молекулы НС1 в про- [c.18]

    Имеются два метода осуществления этого процесса — каталитический и радикально-цепной. При первом используются различные катализаторы кислотного типа (протонные кислоты, алюмосиликат, окись алюминия и др.). Например, с окисью алюминия на силикагеле процесс проводится при 100—150°С и 70 кгс/см (ж7 МПа) в жидкой фазе. При этом параметры зависят от реакционной способности олефинов, которая изменяется в обычном порядке изоолефины > н-олефины > этилен. Присоединение протекает по правилу Марковникова, в связи с чем из изоолефинов получаются грет-алкилмеркаптаны  [c.330]

    Для алкилирования бензола этиленом было предложено применять различные катализаторы. К их числу относятся хлористый алюминий, трехфтористый бор, фосфорная кислота на кизельгуре, окись алюминия на силикагеле и др. На первых двух катализаторах процесс алкилирования осуществляется в жидкой фазе, на остальных — в паровой. [c.196]

    Катализатор наносят на пористый носитель. Им может быть окись алюминия, силикагель, алюмосиликат. Активность и срок службы катализатора можно значительно увеличить с помощью промоторов, восстанавливающих окислы металлов и, кроме того, поглощающих следы воды и кислорода, которые могут присутствовать в этилене или растворителе. В качестве промоторов используются металлические натрий и кальций, их гидриды, некоторые другие щелочные и щелочноземельные металлы. [c.270]

    Опубликованы результаты лабораторных опытов с катализатором, состоящим из серебра, активированного перекисью бария и нанесенного на плавленую окись алюминия [10). Такой катализатор [111 получали, смешивая перекись бария с окисью серебра и нанося эту смесь на носитель окись серебра в процессе реакции восстанавливалась этиленом в металлическое серебро. Окислению подвергали газовые смеси, содержащие 84—94% воздуха, 6—16% этилена и следы паров дихлорэтана. При 270° С, атмосферном давлении и продолжительности контакта, равной 1 сек., за один проход в реакцию вступило 50% этилена выход окиси этилена составлял 50% от прореагировавшего этилена. [c.145]

    Окись алюминия также эффективна при температурах порядка 300 °С, и ранее этилен получали в промышленности путем дегидратации этанола на этом катализаторе. Используются также окислы других металлов, но детали механизма такой реакции элиминирования не ясны. При еще более высоких температурах (500—700 °С) дегидратация не требует применения катализаторов. [c.340]

    Формированные окисные катализаторы, состоящие из окислов металлов VIA и VA групп, например окись молибдена на окиси алюминия или окись ванадия на окиси алюминия, используются как в присутствии промоторов, так и без них для полимеризации этилена и пропилена или смесей, содержащих этилен и пропилен в молярных соотношениях от 0,1 до 20. Из других мономеров, упоминаемых в патентах, можно назвать к-бутилен, изобутилен, т/ ете-бутилэтилен, ацетилен, бутадиен и изопрен, которые обычно применяют в количествах от 1 до 25 вес.% на этилен. В патентах, касающихся применения карбидов щелочноземельных металлов [36], в качестве промоторов к окислам металлов VIA группы дополнительно упоминаются перфторэтилен, 3,3,3-трифторпропен-1 и перфторбутадиен. Однако эти патенты касаются преимущественно полимеризации этилена и в незначительно степени пропилена. [c.334]


    Позднее реакцию между этиленом и четыреххлористым кремнием Si l изучали многие авторы. Реакция проводилась в автоклаве при давлении от 600 до 1000 ат и температуре 75—300°. В качестве катализаторов применяли перекиси ацилов или алкилов (например, перекись бензоила), окислы и хлориды металлов (например, хлористый алюминий, окись ртути) в количестве 5—25% мол., использовали также ультрафиолетовое облучение и др. Хорошие результаты были получены и при применении других галоидсиланов, например четырехфтористого кремния, диметилдихлорсилана и т. п. В качестве главного продукта реакции получалось воскообразное вещество с молекулярным весом 4 000—15 ООО. [c.93]

    В 1964 г. впервые было установлено [1], что пропилен можно диспропорционировать в этилен и С4-олефины (наряду с высшими олефинами). В качестве катализатора для этой реакции была взята пропитанная Мо(СО)в или W(GO)e окись алюминия Al Os, которая затем активировалась при 540—580 °С. Кроме того, эффективными катализаторами являются МоОд на AljOg и активированный катализатор на основе 3,4% СоО, 11,0% MoOg и 85,6% Al Oj [2—4]. [c.325]

    При алкилировании бензола этиленом в реакторах с неподвижным слоем в качестве твердых катализаторов, вьшускаемых промышленностью, используется система окись алюминия - фтористый бор /5 /. Фирма Universal Oil Produ ts o. [c.147]

    В промышленном масштабе фирма Коннерс Ко инк, Питтсбург [23] уже с 1943 г. применяет каталитический процесс со стационарным катализатором кремневая кислота-окись алюминия. Активным компонентом катализатора является окись алюминпя, нанесенная на кремневую кислоту. Условия работы аналогичны условиям нри нрпмепении твердой фосфорной кислоты . Однако превращение здесь происходит в жидкой фазе при температуре около 310 и давлении СЗ ат. Жидкий бензол вместе с этиленом, предварительно нагретые в трубчатой печи до температуры реакции, пропускают над катализатором. Продукт из реактора дросселируют примерно до 3,1 ат и в колонне отгоняют из него этилен и избыточный бензол. После компримирования они оба снова проходят через теплообменник и трубчатую печь и вместе со свежим этиленом и бензолом возвращаются в алкилатор. Разгонка продуктов реакции осуществляется аналогично описанной выше. [c.630]

    Необходимая четкость разделения и чистота газовых фракций зависят от условий их дальнейшей технологической переработки. Так, для получения полиэтилена глубокой полимеризацией под давлением выше 1000 ати требуется необычайно высокая чистота исходного этилена (99,9%). Однако новейшие способы полимеризации при низком давлении над гетерогенными катализаторами и в присутствии растворителей позволяют снизить чистоту сырья до 95% [24]. Для получения этанола гидратацией над фосфорнокислым катализатором требуется этилеп 97 %-ной чистоты, а старейший способ производства этилового спирта и эфира при помощи серной кислоты позволяет использовать газ с 35—95%-пым содержанием С2Н4. При алкипирова-пии бензола этиленом в присутствии хлористого алюминия желательна чистота этиленового сырья не ниже 90%, а с фосфорнокислым катализатором может использоваться этан-этиленовая смесь. Окись этилена получается и 95%-ного этилена. [c.158]

    Большое техническое значение имеет дегидрирование алифатических и али-циклйческих углеводотзодов для получения низших олефинов и аренов. Эту реакцию проводят над катализаторами, состоящими из смесей окисей хрома и алюминия или окисей железа и магния. Термически проводят лишь дегидрирование этана в этилен. Для дегидрирования циклопарафинов и циклодегидрирования алифатических углеводородов с образованием аренов (реформинг-процесс) применяют главным образом окись молибдена или платину на окиси алюминия (гидроформинг или платформинг). [c.44]

    Ацетамидин, употребляемый в подавляющем числе синтезов пиримидинового компонента тиамина, может быть получен из ацетамида через ацето-иминоэфир. Ацетамид, с прекрасным выходом получаемый насыщением уксусного ангидрида или уксусной кислоты аммиаком или при отгонке воды из смеси уксусной кислоты и углекислого аммония 1205 ], дегидратируется при взаимодействии с хлорокисью фосфора при 100—150° С, образуя ацетонитрил. Его также получают непосредственно из уксусной кислоты и аммиака при пропускании смеси их паров над окисью алюминия или окисью тория при температуре 400—500° С [206], над селикагелем при 500° С с выходом 95% [207] или над смесью селикагеля и фосфорной кислоты при 280—300° С с выходом 87% [208]. Для получения ацетонитрила можно подвергнуть парофазной конденсации пентан и аммиак при 520° С над алю-момолибденовым катализатором (выход 43,8%) [209] или этилен и аммиак над окислами металлов, нанесенных на окись алюминия [210]. [c.399]

    При получении этилена из спирта по методу Ипатьева окись алюминия играет роль катализатора. Дегидратация спирта в присутствии А12О3 начинается уже при 240°, однако при этом процесс идет с образованием только этилового эфира этилен не образуется  [c.143]

    Дояренко наблюдала изомеризацию метилциклопропана в 2-бутен и изо-бутилен, а Розанов провел изомеризацию этилциклопропана в метилэтил-этилен. В обоих случаях в качестве катализатора применялась окись алюминия. [c.99]

    Окись алюминия превращает спирт в этилен и воду (С2Н5ОН -> С2Н4-1-Н2О). Здесь проявляется химическое направляющее действие катализатора. При определенных условиях возможны две реакции  [c.301]

    Можно получить органические соединения из карбида кальция, минуя, промежуточное образование ацетилена или цианамида кальция. В одной из работ [53] утверждалось, что при воздействии сухого водяного пара при 130° С степень превращения составляет только 20% за два часа и что не происходит никакого взаимодействия при 450° С, однако при пропускании водяного пара в смеси с азотом над кдрбидом [54] при 100—650° С образуются метан, этилен, ацетилен, пропилен, циклопропан, бутилены, диацетилен и другие насыщенные и ненасьпценные углеводороды. Катализаторами этого процесса являются пемза, окись алюминия, двуокись кремния, ВаО, СаО или сажа скорость реакции зависит также от кристаллического состояния карбида кальция [55]. [c.248]

    Фирма Филлипс петролеум Ко, США, разработала метод получения полиэтилена под низким давлепием. Наиболее благоприятным оказалось давление 35 ат, температура 160—250° [30]. По этому методу чистый этилеп, не содержаш ий кислорода, водяного пара и углекислоты, в присутствии растворителя, нанример ксилольной фракции, при 35 ат и соответствуюш ей чемнературе приводится в соприкосновение с катализатором, состояш,им из окиси молибдена или хрома, нанесенной на окись или силикат алюминия. Реакция проходит в автоклаве с мешалкой, в котором обеспечивается тесное вонрикосновение между этиленом и катализатором. Растворитель играет ван ную роль, лучше работать с максимально возможным избытком его (применяют такое количество ксилольной фракции, чтобы раствор содержал 7—8% вес. этилена). Растворитель предотвраш ает обрыв цени и дает возможность получить полимер высокого молекулярного веса. Растворитель поддерживает активность катализатора, так как он растворяет большую часть полимера, осаждаюш егося па катализаторе. Кроме того, растворитель служит для поглош ения тепла реакции. Процесс проводится непрерывно. Установка находится в стадии строительства. [c.582]

    Дегидратация этилового спирта с помощью серной кислоты была уже давно отвергнута промышленностью и заменопа каталитической дегидратацией. В качестве катализатора дегидратации этилового спирта обычно применяется окись алюминия, рабочая температура реакции находится в пределах 250—400°. Процесс проводится в реакторе, снабженном рубашкой для обогрева. Обогрев производится парами ртути. Газ, выходящий из реактора, охлаждается, компрнмируется, сушится и подвергается низкотемпературной ректификации. В результате получается весьма чистый этилен [167]. При дегидратации спирта в производстве бутадиена но Лебедеву этилен получается в качество побочного продукта с выходом около 5—8% [77]. Этот этилен, так же как п этилен, полученный предыдущим способом, вполне пригоден для полимеризации, поскольку он не содержит прерывающих ее цримесей. Необходимо только этилен, получающийся в производстве бутадиена по способу Лебедева, очистить вымораживанием от содержащегося в ном ацетальдегида, поскольку последний препятствует полимеризации. [c.42]

    Метилат алюминия довольно устойчив, он может быть перегнан в вакууме. Этилат алюминия также может перегоняться в вакууме, но при обычном давлении полностью разлагается в окись алюминия, этилен и спирт. Амилат алюминия ведет себя подобным образом. Точка зрения Сабатьеотносительно действия катализатора, такого как алюминий или торий, является стимулирующей, хотя она неполна. Об этом упо-мин тся здесь потому, что автор предполагает кратковременное существование промежуточного вещества, которое сразу разлагается при т-ре реакции, благодаря чему катализатор восстанавливается. Например, для разложения спиртов предлагает следующую схему  [c.180]

    Катализатором в реакции И. И. Штеттера являются хлористый алюминий или смеси его с хлоридами ртути, меди, магния, цинка, никеля, железа и др. В присутствии этих катализаторов в реакцию с Si U вступают этилен, пропилен, бутадиен, ацетилен, винилаце-тклен, окись углерода и др. [c.117]

    Результаты этой работы показывают, что наряду с изучением структуры хемосорбированных образований ИК-спектроскопия позволяет получать важные сведения об условиях их стабильности на поверхности катализаторов. Даже в том случае, когда на поверхности образуются одинаковые соединения, стабильность их может меняться в широких пределах в зависимости от природы катализатора. Недавно с помощью ИК-спектроскопии было продемонстрировано, в частности, резкое различие в стабильности одинаковых по своему строению поверхностных соединений этилена на А1аОз и А1аОз, содержащей небольшое количество платины [21 ]. Было показано, что хемосорбированный этилен гидрируется и полностью удаляется с поверхности А1аОз при значительно болйе низкой температуре, если окись алюминия содержит небольшие добавки платины. Дальнейшее развитие работ в этом направлении представляется весьма перспективным. [c.42]

    Исследована возможность совместного диспропорционирования различных гексенов с низшими олефинами (этиленом, пропиленом или бутеном-2) на алюмо-рениевом катализаторе [82]. Катализатор приготавливали, пропитывая предварительно измельченную и осушенную окись алюминия А-1 водным раствором пер-рената аммония, с последующей осушкой и активированием при 390 °С воздухом и азотом. Исходные изогексены получали димеризацией пропилена. Совместное диспропорционирование проводили в кварцевом трубчатом реакторе. Низший олефин дозировали в газообразном состоянии из баллона через реометр, пропуская поток через обогреваемую на водяной бане градуированную стеклянную ампулу с жидким гексеном. Последний в виде паров уносился потоком низшего олефина в реактор. Продукты реакции конденсировали и анализировали методом газо-жидкостной хроматографии. [c.159]


Смотреть страницы где упоминается термин Алюминий окись как катализатор при на этилен: [c.225]    [c.233]    [c.107]    [c.551]    [c.342]    [c.18]    [c.102]    [c.21]    [c.175]    [c.338]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.332 ]




ПОИСК





Смотрите так же термины и статьи:

Катализаторы окиси этилена

Этилен окись



© 2025 chem21.info Реклама на сайте