Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбция на катализаторе этилена

    Механизм реакции полностью не выяснен. В настоящее время экспериментально установлено, что как этилен, так и водород взаимодействуют с поверхностью никеля с выделением энергии (250 и 125 кДж/моль соответственно). Это дает право утверждать, что собственно реакции предшествует активированная адсорбция алкена и водорода на находящихся на поверхности катализатора атомах металла, в результате чего происходит ослабление п-связи в алкене и связи Н—Н в молекуле водорода, вплоть до полного разрыва. Последнее можно подтвердить тем, что в присутствии никеля в смеси газообразных водорода и дейтерия быстро наступает равновесие  [c.34]


    Продукты реакции на выхода из реакционной печи охлаждаются сначала в трубчатом холодильнике до 300—350°, а затем в водяном скруббере до 60—70°, после чего подвергаются промывке натронной известью для удаления из них органических кислот. Охлажденные и очищенные газы пиролиза направляются в ацетиленовый конвертор, в котором на хромо-никелевом катализаторе при температуре около 200° ацетилен гидрируется до этилена. На выходе из ацетиленового конвертора газы компримируются до 18—20 amu, подвергаются промывке маслом, адсорбции углем и обработке щелочью для освобождения от бензиновых углеводородов и СОг и направляются в секцию низкотемпературной ректификации, где из них выделяют этилен, пропилен, бутилен, бутадиен, этан и горючие газы (метан, водород). Горючие газы используют в качестве технологического топлива, а этан возвращают в процесс. [c.53]

    Если предположить, что катионы РЗЭ + являются активными центрами алкилирования или источником протонов, можно объяснить разницу в активности указанных образцов неодинаковой локализацией катионов a + и РЗЭ +. Последние размещаются в основном в центрах 5ц цеолитного каркаса, доступных для реагирующих молекул, но под действием высоких температур (при регенерации) мигрируют в недоступную для углеводородов область ( 1) [4]. Этим объясняется падение активности образцов с высоким содержанием катионов РЗЭ + после регенерации. Катионы Са +, локализуясь в центрах 5ь мешают миграции туда катионов РЗЭ +, тем самым увеличивая стабильность катализаторов. Указанные представления подтверждаются прямой корреляцией между теплотой адсорбции бензола и кислотностью цеолитов и их активностью в алкилировании изопарафинов этиленом [5]. [c.83]

    Теория гетерогенного катализа основана на явлении адсорбции молекул реагирующих веществ отдельными точками поверхности катализатора. Точки, в которых происходит адсорбция, называют активными центрами катализатора. Адсорбированные молекулы образуют в этих точках химические связи с катализатором, при этом связи в молекулах ослабевают и активность их повышается. Так, этилен загорается на воздухе при 600 °С. В присутствии же металлического серебра окисление этилена протекает с измеримой скоростью уже при 280 °С. [c.62]

    Присоединение водорода к алкенам, которое осуществляется только под действием соответствующих металлических катализаторов, таких как, например, Ni, Р1 и Рс1, приводит обычно к образованию г ггс-продуктов. Нескомпенсированные валентности тех атомов металла (например, никеля), которые расположены на поверхности кристалла, в отличие от скомпенсированных валентностей атомов металла, расположенных внутри кристалла, направлены преимущественно в стороны от поверхности. В результате, и это существенно, как этилен, так и водород реагируют с поверхностью металла экзотермически и обратимо. Молекулы этилена адсорбируются на поверхности металла за счет своих я-электронов, чего не происходит с этаном. В молекулах водорода нет таких я-электронов, но экзотермическая адсорбция водорода на поверхности металлов свидетельствует о значительном ослаблении связи между атомами. [c.186]


    С целью выяснения природы активных центров MgO, aO, 8Ю и ВаО в гидрировании этилена, пропилена и бутена-1 изучено [310] влияние температуры прокаливания этих катализаторов и их отравления аммиаком, пиридином, нитробензолом и диоксидом углерода. Найдено, что указанные оксиды становятся активными в реакции гидрирования после предварительного прокаливания их при температурах выше 600 °С. При этом максимальную активность ВаО, MgO и SrO проявляют в результате прокаливания при 1100°С, а СаО - при 800 °С. По своей максимальной активности в реакции гидрирования изученные катализаторы располагаются в ряд MgO < aO < ВаО < 5Ю. А скорости гидрирования различных олефинов на MgO и СаО возрастают следующим образом бутен-1 < < пропилен < этилен. Результаты опытов по отравлению указывали на то, что гидрирование олефинов и реакции изомеризации, этерификации полимеризации или дейтерообмена протекают на разных центрах поверхности. Так, адсорбция аммиака, пиридина, нитробензола и Oj полностью подавляет реакцию гидрирования бутена-1, в то время как в изомеризации этого углеводорода активность катализатора после адсорбции, например, ЫНз снижается лишь наполовину. [c.118]

    Взаимодействие этилена и водорода, например, с никелем на его поверхности приводит к образованию взаимно ориентированного состояния более низкой энергии вследствие частичного связывания лг-электронов двойной связи и а-электронов Н-Н связи вакантными орбиталями никеля (рис 10 2) Адсорбция этилена и водорода активирует С-Ся и Н-Н связи, то есть разрыхляет их, удлиняет (см раздел 5 2 5), делает более активными Взаимная ориентация позволяет реализовать синхронный механизм реакции В отличие от этана этилен действительно экзотермично реагирует с поверхностью кристалла никеля (ДЯ 240 кДж/моль) Водород также образует комплекс с никелем (ДЯ 120 кДж/моль) Образовавшийся в результате реакции этан десорбируется, освобождая место для следующей пары Понятно, что в таком случае скорость реакции тем выше, чем больше поверхность катализатора [c.262]

    Поверхностные соединения, образующиеся при адсорбции углеводородов на различных металлах, не одинаковы. На серебре при взаимодействии с этиленом возникают формы, которые не обнаружены на платине. При адсорбции насыщенных углеводородов на металлах возникают формы, близкие по строению к радикалам при окислении они превращаются только в СО2 и Н2О. Природа поверхностных соединений влияет на направление окисления углеводородов. Поэтому возможность регулирования структуры поверхностного соединения, возникающего при взаимодействии различных углеводородов с поверхностью катализатора, позволит управлять селективностью окисления. [c.51]

    Кинетика окисления этилена на серебряном катализаторе исследовалась в изотермическом режиме (при 218 °С) в безгра-диентном реакторе в широком интервале концентраций этилена, кислорода, окиси этилена, воды и двуокиси углеро-дд87, 88, 08, 110, 111 j pjj выводе кинетических уравнений было учтено стационарное течение процесса, использованы представления теории адсорбции Лангмюра и сделано несколько предположений относительно механизма процесса, близкого к иредлол< ен-ному ранее . Считается, что адсорбированный молекулярный кислород быстро распадается иа атомы, покрывающие большую часть поверхности катализатора. Затем атомарный кислород взаимодействует с этиленом, образуя одновременно окись этилена, двуокись углерода и воду. Эти продукты адсорбируются на поверхности катализатора и уменьшают каталитический эффект серебра. [c.285]

    Резко выраженный максимум в кривой теплоты адсорбции водорода на активном медном катализаторе Энергия активации должна быть меньше нет данных для теплот адсорбции Указание на энергию активации при адсорбции водорода, хотя теплота адсорбции была лишь 10 ООО кал для водорода в сравнении с 15 000 кал для этилена опыты показывают, что адсорбированный этилен удаляется легче водорода При 0° от 10000 до 30 000 кал [c.159]

    На рис. IV.1 представлена типичная вулканообразная кривая для случая зависимости логарифма скорости полного окисления пропилена от теплоты адсорбции кислорода на окисных катализаторах. Как видно из рисунка, катализаторы максимальной активности располагаются около значения теплоты адсорбции кислорода 105 кДж/моль. В работах [9—12] показано, что для полного окисления целого ряда органических соединений, таких, как метан, пропан, этилен, изобутилен, ацетилен, циклогексан, метанол, бензол, наиболее активными являются окислы кобальта, марганца и меди, теплоты адсорбции кислорода на которых составляют 100—125 кДж/моль. Поскольку теплоты сгорания углеводородов, отнесенные к одному атому углерода, находятся в интервале 200—250 кДж/моль, то оптимальным катализаторам окисления как раз и должна [c.79]

    Полимеризация ненасыщенных углеводородов при комнатной температуре ацетилен реагирует медленно, при 100° адсорбция и реакция протекают очень быстро, но не образуется жидких продуктов в присутствии паров серного эфира получается жидкий продукт ацетилен барботируют через серный эфир и затем пропускают над катализатором, наступает чрезвычайно экзотермическая реакция, идущая с образованием жидких продуктов, которые бурно разлагаются водой с образованием соляной кислоты и темнокоричневого продукта, похожего на купрен этилен медленно адсорбируется хлористым алюминием, давая красное масло комплекс серного эфира или диметиланилина с хлористым алюми- [c.463]


    Практического применения в катализе элементы подгруппы Сг в виде свободных металлов не имеют, и исследование их каталитических свойств обычно носит теоретический характер. Бик с сотрудниками [230] изучал механизм гидрирования этилена на различных металлических катализаторах и в связи с этим исследовал адсорбцию этилена и водорода. Авторами показано, что для гидрирования этилена при комнатной температуре и атмосферном давлении водород должен быть адсорбирован в виде атомов этилен до акта гидрирования не адсорбируется [50], а отрывает от поверхности два атома водорода. В момент отрыва водорода от поверхности [c.85]

    В то время как обмен этилена идет со сравнимыми скоростями на всех четырех металлах, скорости обмена этана заметно различаются для различных катализаторов. Например, Ре-пленки неактивны в реакциях обмена вплоть до 370° С, при этой же температуре наблюдается диссоциативная адсорбция этана. Различие в поведении одних и тех же металлов в реакциях этан — Ог и этилен — Оз говорит о том, что медленной стадией в реакции обмена этана с Ог является диссоциативная адсорбция углеводородов. [c.87]

    Каталитическую активность кобальтового, никелевого, железного, медного и серебряного катализаторов авторы [287] связывают со способностью указанных контактов адсорбировать водород и гидрируемые соединения. Адсорбция водорода на N1 и Со намного сильнее, чем на Ре, Си и Ag, что коррелирует с каталитической активностью. Железо больше других металлов адсорбирует этилен и, по-видимому, поэтому является более активным катализатором, чем медь и серебро. [c.97]

    Наряду с исследованием адсорбции полимеров на катализаторе и изучением превращения газовой смеси на катализаторе представляло интерес исследовать характер адсорбции чистых газов дивинила, этилена, псевдобутилена, водорода, а также ацетальдегида и этилового спирта. Было установлено, что при 400—420° этилен, псевдобутилен и водород химически обратимо адсорбируются на катализаторе, что подтверждалось практически полным удалением адсорбированных газов с катализатора. [c.195]

    Хорошо известно, что на данной поверхности никеля адсорбция водорода будет более сильной, чем адсорбция этилена. Различные авторы давали для соотношения Нп/СгН значения от 2 до 3. В описанной работе установлено, что данное отношение равно приблизительно 3 (причины этого явления обсуждались на многочисленных дискуссиях, и магнитные данные не вносят ничего нового). Если мы введем на образец катализатора N /5102 достаточное количество этилена (чтобы давление достигло приблизительно 0,Глл), то этилен, введенный в условиях разрыва связи, адсорбируется слабо. Во время пуска этилена намагничивание уменьшается наклон изотермы намагничивание — объем показывает, что на молекулу этилена образовалось немногим больше двух связей. Если мы теперь на поверхность никеля, уже покрытую этиленом, введем водород до давления 1 атм, то увидим, что водород (не учитывая водорода этилена) адсорбируется на никеле нормально, как если бы этилена не было. (Напомним, что этан не хемосорбируется в присутствии хемосорбированного водорода.) В газовой фазе можно обнаружить небольшие количества этана, но большая его часть остается на поверхности, связанная силами Ван-дер-Ваальса. [c.30]

    Если в качестве разбавителя используется не один из компонентов реакции (например вода или этилен), а такой инертный газ, как аргон, в количестве б, то его адсорбцией на катализаторе можно пренебречь, и тогда  [c.144]

    Селективность адсорбции, требуемая при определении удельной поверхности металла в многокомпонентных (например, нанесенных) металлических катализаторах, достигается при условии, что газ в основном хемосорбируется на поверхности металла, а адсорбция на поверхности неметаллического компонента относительно мала (в идеальном случае равна нулю). Если катализатор состоит только из металла, вопрос о дифференциации компонентов, естественно, не возникает и удельную поверхность металла, равную общей удельной поверхности образца, можно измерить методом физической адсорбции или хемосорбции. Однако каждому методу присущи свои особенности. Если используется хемосорбция, должен быть хорощо известен химический состав поверхности, с тем чтобы можно было говорить об определенной стехиометрии адсорбции. В то же время, если удельная поверхность невелика, неточность из-за поправки на мертвый объем при хемосорбцин меньше, так как значительно ниже давление газа. Наиболее широко исследована хемосорбция водорода, окиси углерода и кислорода, иногда применяются и другие вещества, например окись азота, этилен, бензол, сероуглерод, тиофен, тиофенол. [c.300]

    Совместный каталитический крекинг меченых этана, этилена и пропилена (радиоактивный изотоп С) с н-гексаном и изооктаном показал, что превращение молекул не завершается за один акт адсорбции на поверхности катализатора. Продукты первичного распада исходного сырья после десорбции в газовое пространство могут вновь адсорбироваться и претерпевать вторичные реакции гидрирования, деструктивного алкили-рования, полимеризации и др. При этом установлено, что этилен не вступает в реакции гидрирования, а пропилен гидрируется хорошо. [c.16]

    На основании предположения, что полимеризация метиленовых радикалов на поверхности катализатора происходит по дублетному механизму и в соответствии с принципом сохранения валентного угла при катализе и адсорбции [4], был сделан вывод, что этилен, прибавленный к исходной смеси окиси углерода и водорода, должен легко включиться в процесс полимеризации метиленовых радикалов, а следовательно, — в синтез углеводородов. [c.616]

    Интересные наблюдения, непосредственно связанные с гетерогенностью реакции, были сделаны ] 1едведевым и сотрудниками [46] при изучении полимеризации в системе этилен—Ti lg—AIR3 в присутствии небольших количеств других мономеров (бутадиена, стирола и др.). Эти мономеры, не участвуя в нолимеризации в силу значительно меньшей реакционноспособности по отношению к данному катализатору, понижают скорость полимеризации этилена, причем молекулярный вес полимера не меняется. Причина этого состоит в экранировании поверхности катализатора. По-видимому, процессу полимеризации этилена препятствует адсорбция катализатором других углеводородов. [c.428]

    Хочется еще раз подчеркнуть, что так называемые простые реакции гидрирования чрезвычайно сложны. Это доказывает класспческий эксперимент, много раз воспроизведенный и описанный в советской литературе в 1980 г. Над дейтерирован-ным никелевым катализатором пропускали недейтерированный этилен. После того как он адсорбировался на катализаторе, реагировал и десорбировался, в продуктах находили вое формы этана этан с шестью атомами обычного водорода и этан с шестью атомами дейтерия, а также все возможные промежуточные комбинации. Это говорит о том, что при адсорбции молекулы этилена на дейтерированном центре атомы водорода переходят от этилена к поверхности катализатора, а атомы дейтерия — в молекулу этилена. Следовательно, процесс адсорбции является намного более сложным, чем предполагалось до этих, ставших классическими, экспериментов. Их результаты приведены с единственной целью показать сложность реакции гидрирования, которую мы считаем очень простой. [c.117]

    Предполагается, что вид кинетических уравнений может меняться в зависимости от соотношения количеств атомарного и молекулярного ионов кислорода, заполняющих поверхность катализатора, от характера взаимодействия кислорода с этиленом, окисью этилена и другими промежуточными и конечными продуктами - 1 . При выводе к инетического уравнения, вероятно, необходимо учитывать одновременную адсорбцию на поверхности катализатора компонентов реакционной газовой смеси, в частности этилена и кислорода, и учитывать торможение процесса окисления образующимися продуктамн  [c.285]

    Согласно второй точке зрения, происходит одновременная хемосорбция кислорода и этилена на поверхности катализатора, поэтому кислород и этилен должны конкурировать между собой в борьбе за поверхность катализатора. Это представление согласуется с кинетическими данными об адсорбции этилена и о его тормозящем действии и подтверждается специально поставленными экспериментами Так, например, этилен даже при тех температурах, когда его окисление не происходит, адсорбируется на катализаторе и снижает работу выхода электронов серебра - Уменьшение работы выхода не удается объяснить уменьшением количества хемосорбированного кислорода при его реакции с этиленом. Можно допустить, что электроны смещаются от этилена к серебру или к хемосорбированному на его поверхности кислороду, вследствие чего сам этилен приобретает положительный заряд. Работа выхода электронов серебра снижается тем больше, чем выше парциальное давление этилена в газовой смеси и чем выше температура. Все это указывает на то, что одновременная адсорбция этплена и кислорода на серебре существенно отличается от адсорбции этих же веществ в отдельности. Механизм этого процесса подтверждается также методом конкурирующих реакций . [c.288]

    При хемосорбции кислорода серебро становится похожим на переходный металл и приобретает способность адсорбировать этилен . Адсорбированный кислород и этилен могут взаимодействовать друг с другом и с катализатором и образовать активный комплекс. Возможно, что прн избытке кислорода лимитирующей стадией каталитического процесса может быть адсорбция этилена, при избытке этилена — адсорбция кислорода, а в промежуточных случаях — реакция образования активного комплекса. При этом избирательность зависит от прочности связи адсорбированных реагентов с поверхностью катализатора . Пока еще остается неяс- [c.288]

    Хемосорбция углеводородов на типичных р-полупро-водниках понижает их электропроводность. Знак заряда адсорбированной молекулы, определенный для NiO и V2O5 по работе выхода электрона и по результатам измерения электропроводности, один и тот же, т. е. различные молекулы углеводородов являются донорами электронов при адсорбции и на простых и на сложных полупроводниках, например на ZnO, МпОг, СггОз, СигО, МПС02О4 и С0МП2О4 [59]. Электропроводность серебра, нанесенного на стеклянное волокно, увеличивается при взаимодействии с этиленом [59], а работа выхода уменьшается, т. е. этилен служит донором электронов. Результаты измерения Аф пропилена на платине близки к данным, полученным на серебре [59]. Таким образом, на всех катализаторах окисления при адсорбции молекул кислорода поверхность заряжается отрицательно, а при адсорбции углеводородов — независимо от их строения — положительно. [c.69]

    Результаты опытов по изучению кинетики дегидратации этилового спирта на черенковой окиси алюминия, а также на А Оз, обработанной фтористым бором, приводятся на рис. 1, из которого видно, что адсорбция фтористого бора увеличивает активность АЬОз во всем измеренном интервале объемных скоростей. При изучении кинетики было замечено, что активность катализатора, содержащего фтористый бор, не остается постоянной, а постепенно снижается на 1—2% от опыта к опыту и при пропускании спирта с одной и той же объемной скоростью степень превращения его в этилен совпадает с у т для чистой окиси алюминия. Проведение в дальнейшем на этом образце опытов различными объемными скоростями приводит к той же кинетической зависимости, как и на чистой АЬОз (рис. 1). Изменение активности в данном случае, по-видимому, связано с последовательным удалением адсорбированного фтористого бора с поверхности окиаи алюминия спиртом или продуктами его разложения. На это также указывало количественное определение бора в конденсате. Именно если после первого опыта было обнаружено 0,44 г, то после седьмого опыта бор в конденсате практически отсутствовал. [c.236]

    Еще одна важнейшая для катализа система — это этилен, адсорбированный на поверхности металлического катализатора. Как показали термические исследования, этилен хемосорбируется на платиновом и родиевом катализаторах. Теперь мы можем непосредственно получить информацию о тех структурах, которые образуются на поверхности, измеряя колебательные частоты адсорбированных частиц. Прямое измерение этих частот иногда возможно с помощью адсорбционной ИК-спектроскопии. Проведение таких исследований существенно ускорилось благодаря спектроскопии потерь электронной энергии (EELS). Характеристические молекулярные частоты проявляются в энергетическом распределении электронов, отраженных металлической поверхностью. Эти частоты подобны отпечаткам пальцев, которые легко поймет химик, имеющий опыт расшифровки ИК-спектров (см. разд. V-B). При адсорбции этилена на родии спектр EELS сразу показывает, что в молекуле этилена происходят структурные изменения даже при комнатной температуре. При нагревании до 50 ° С спектр начинает меняться еще сильнее, а как только температура достигает 100 ° С, спектр показывает, что произошла реакция и на поверхности образовались углеводороды совсем другого строения. Из этих спектров, в частности, следует, что при указанной темпера- [c.187]

    Этилен вследствие селективной адсорбции, отравление обратимо влияние этана не принимается во внимание Сульфоксид ванадия если температура поднимается немного выше 400- , происходит внезапное уменьшение активности неактивное соединение разлагается и катализатор вновь становится активным Примеры прогрессирующего отравления  [c.383]

    Позднее Эмметт с сотрудниками [295] показал, что добавка меди (вплоть до 95%) к никелю повышает активность последнего. Однако в этой работе указывается, что катализатор, состоящий из 88% Ni и 12% Си, был в пятнадцать раз активнее чистого никеля, тогда как в [293] активность того же сплава всего в два раза превышала активность никеля. Авторы объясняют причину повышения активности катализаторов при добавлении меди к никелю изменением их хемосорбционных свойств. В то время как медь слабо сорбирует водород, на паре Ni — u такая адсорбция происходит довольно легко при этом молекула Hg диссоциирует на атомы. Этилен же хорошо сорбируется на меди. В результате диффузии по поверхности сплава атомы водорода подходят к адсорбированному на меди этилену, вследствие чего происходит гидрирование. Таким образом, при добавлении никеля к меди увеличивается число каталитически активных центров, благодаря чему и повышается активность. В высоконикелевых сплавах повышение активности при добавлении меди, по предположению авторов, происходит из-за снижения теплоты активации реакции. Причина такого снижения не установлена, но, возможно, это связано с тем, что медь предохраняет никель от отравления его водородом. [c.98]

    Адсорбция участвующих в реакции веществ, при протекании ее в прямом направлении, должна характеризоваться теми же закономерностями и величинами (теплотами адсорбции, адсорбционными коэффициентами см. следующую главу), что и при обращении реакции в аналогичных условиях (в той же мере, в какой изменение концентраций не сказывается на этих закономерностях). Так, для реакции С2Н4М-Н2 = = С2Нб, если исходный этилен адсорбируется сильно, а образующийся этан практически не адсорбируется, то при обращении реакции те же соотнощения должны сохраняться. Последнее означает, например, что при соприкосновении этана с поверхностью катализатора в тех же условиях должна была бы сразу происходить диссоциация его с образованием промежуточной полугидрированной формы или этилена и водорода. [c.26]

    Венуто и сотр. [1, 15, 16] изучали алкилирование олефинами замещенных бензолов (например, фенола и анизола), а также гетероциклических соединений (тиофена, пиррола). При алкилировании фенола были получены необычные результаты. Оказалось, что алкилирование фенола этиленом идет в более жестких условиях ( 200° С), чем алкилирование бензола ( 120° С), хотя фенол более чувствителен к нуклеофильной атаке. Кроме того, было установлено, что присутствие фенола подавляет алкилирование бензола. Венуто и Вю [17] считают, что такое обращение реакционной способности бензола и фенола на цеолите ННдУ, активированном в токе кислорода при 550° С, объясняется сильной адсорбцией фенола на катализаторе, которая уменьшает доступность активных центров для слабо-адсорбируемых молекул этилена. Таким образом, адсорбированный этил-катион вступает в реакцию в соответствии с механизмом Ридила, т. е. взаимодействует с молекулой ароматического соединения, находящейся в свободном, а не в адсорбированном состоянии. [c.132]

    Со >Ni Mп>Na),. установленный дая цеолитов при окислении этилена. Более подробное изучение окисления этилена кислородом в присутствии цеолита Си(П) в импульсном реакторе показало [77], что на катализаторе, обработанном кислородом при 450° С, можно проводить окисление этилена при 340° С даже в отсутствие кислорода и что количество лабильного кислорода в цеолите и каталитическая активность цеолита увеличиваются с ростом степени обмена. Таким образом, процессы каталитического окисления и хемосорбции кислорода взаимозависимы. При более низких температурах (150—250° С), когда окисления не происходит, бьша обнаружена яктивиппвянная адсорбция этилена на катализаторе, предварительно обработанном кислородом. Еще более прочно адсорбирует этилен катализатор, с поверхности которого предварительно удалили кислород. Объясняют это следующим на поверхности, свободной от кислорода, этилен взаимодействует с ионами меди (состояние меди не указывается), а на покрытой кислородом поверхности — с группировками, в состав которых входят ион меди и хемосорбированный кислород. Близкие результаты были получены и при окислении окиси углерода [77]. Поэтому можно отметить, что в целом выводы советских [77] и японских [72] исследователей согласуются. Правда, Кубо и сотр. [72] вводили в цеолиты однозарядные катионы меди, а Альтшуллер и сотр. [77] — двузарядные, поэтому не ясно, соответствует ли предложенный Кубо активный центр Си(П)0 — Си(П) подвижной активной форме кислорода, приведенной в работе Альтшуллера. Выяснение этого вопроса требует более детального знания окислительно-восстановительных свойств медных форм цеолитов. [c.146]

    При адсорбции кислорода на катализаторе, содержащем адсорбированный этилен, наблюдается сигнал, по форле напоминаюощй сигнал от адсорбированного масляного альдегида, Адсорсдия кислорода протекает в этом случав, очевидно, следущим образом  [c.320]

    Рис. 2 дает более наглядную картину этой связи. Хемосорбированный этилен реагирует с хемосорбированньш водородом, образуя этан. Это впервые было установлено при хемосорбции дейтерия на металлическом никеле, последующем добавлении этилена и, наконец, выделении дейтери-рованного этана с поверхности. Сходные процессы происходят с пропиленом и бутеном-1, которые гидрируются, а также показывают наличие размыкания двойной связи под влиянием катализатора при относительно низких температурах. Последнее явление проявляется также в элементарных этапах циклизации октена с образованием смеси 1,3-и 1,4-диметил-цнклогексанов. Во всех этих случаях подтверждается факт хемосорбции молекул олефинов со значением теплот адсорбции порядка 50—100 ккал в зависимости от природы о.лефина и металла. [c.33]

    Адсорбция этилена на металлических катализаторах и его гидрирование были предметом многочисленных исследований в течение 30 лет. В основном были развиты две теории хемосорбции этилена на металлах. Это диссоциативная теория, согласно которой при адсорбции этилен распадается на две или большее число фрагментов и ассоциативная теория, по которой молекула эти.т1ена хемосорбируется как целое. Исследование адсорбции и гидрирования этилена тесно связано с изучением реакции дейте-рообмена с этиленом, и любой постулированный механизм реакции должен учитывать оба эти процесса. [c.18]

    Инфракрасная спектроскопия была применена для исследования адсорбции и реакцнп этилена на окислах никеля, меди и палладия, нанесенных на пористое стекло (Литтл, 1959). Если этилен в газообразном состоянии находился над поверхностью окисла металла, то в спектре появлялись и постепенно увеличивали свою интенсивность полосы поглощения в области валентных колебаний связей С — Н. Исключение спектра газовой фазы показало, что эти новые соединения адсорбированы на образце катализатора. Сравнение спектра со спектрами обычных углеводородов позволило сделать вывод, что группы СПз и СНо образуются на окиси никеля и окисленных образцах палладия, в то время как соединение, адсорбированное на окиси меди, почти целиком состоит из СНа-групп. [c.178]


Смотреть страницы где упоминается термин Адсорбция на катализаторе этилена: [c.308]    [c.300]    [c.299]    [c.162]    [c.163]    [c.119]    [c.119]    [c.599]    [c.70]    [c.72]    [c.147]    [c.199]    [c.89]   
Окисление углеводородов на гетерогенных катализаторах (1977) -- [ c.47 , c.60 , c.163 , c.164 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбция этилена



© 2024 chem21.info Реклама на сайте