Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Железо определение в присутствии кобальта

    Указать особенности фотометрического определения а) железа в присутствии никеля б) железа в присутствии кобальта в) хрома и марганца при совместном присутствии г) молибдена и ванадия при совместном присутствии д) двух красителей без их предварительного разделения. [c.139]

    Работа 13. Снятие спектров поглощения солей кобальта и фотометрическое определение железа в присутствии кобальта  [c.94]


    Очень часто присутствие того или иного нона металла или аннона (например, С1 ) оказывается необходимым для работы фермента. В ряде случаев ион металла связывается с ферментом в определенном центре на его поверхности или внутри молекулы. Влияние иона на катализируемую реакцию может быть обусловлено присутствием сильного электрического заряда. Некоторые ионы металла способны обратимо окисляться и восстанавливаться. Благодаря этому свойству железо, медь и кобальт входят в состав активных центров многих ферментов, катализирующих окислительно-восстановительные процессы. Важное значение имеет также способность ионов металлов влиять на взаимную ориентацию разных участков молекулы белка или других макромолекул. Связывание иона металла может вызывать радикальные изменения в конформации молекулы (гл. 4, разд. В. 8.в). [c.156]

    Желтый осадок кобальтинитрита калия образуется в уксуснокислом растворе в присутствии больших количеств никеля, железа, цинка, марганца и многих других элементов, имеет постоянный состав и применяется для гравиметрического определения содержания кобальта. Осадок легко растворим в минеральных кислотах. Полученный раствор можно использовать для определения содержания кобальта фотометрическим методом. [c.71]

    Принцип метода. Определение основано на титровании кобальта (II) в аммиачном растворе феррицианидом калия. Определению содержания кобальта мешают марганец (II), железо (III). Предварительно марганец (II) окисляют перманганатом в присутствии фторид-ионов. Железо и другие сопутствующие элементы маскируют цитратом калия. Относительное стандартное отклонение результатов определений 0,03 при содержаниях —3% кобальта. [c.75]

    Купферон применялся для отделения железа от кобальта перед определением последнего электролизом [1145]. При определении кобальта в стали посредством нитрозонафтола железо и медь отделяли экстрагированием хлороформом купферонатов этих металлов [1233]. Была изучена экстракция купфероната железа хлороформом в присутствии кобальта и разработана методика определения последнего нитрозо-К-солью [129, 130]. [c.75]

    Описаны цериметрические методы определения кобальта. Двухвалентный кобальт окисляют до трехвалентного раствором. хлорного железа в присутствии фенантролина, далее эквивалентное кобальту количество ионов двухвалентного железа титруют раствором сульфата четырехвалентного церия. [c.107]


    Присутствие 0,2% алюминия, железа, хрома, никеля, кобальта или ванадия не мешают определению 1-10 % молибдена и вольфрама. Большие количества меди мешают определению. [c.195]

    Растворы роданида железа при стоянии медленно обесцвечиваются, так как роданид восстанавливает трехвалентное железо. В присутствии некоторых катализаторов обесцвечивание идет настолько быстро, что влияет на результаты определения. В этих случаях рекомендуется прибавлять к раствору небольшое количество персульфата калия, что препятствует восстановлению железа (III) в железо (II) роданидом. При этом окисление некоторого количества ионов S N не имеет существенного значения, так как они содержатся в избытке. Определению железа мешают ионы металлов молибдена, вольфрама, кобальта, роданидные комплексы которых окрашены. [c.123]

    Никель и кобальт обладают очень близкими химическими свойствами, восстанавливаясь почти при одном и том же напряжении. Для определения никеля в присутствии кобальта, например в продуктах кобальтового производства, удобно полярографировать оба элемента в растворе гидроокиси аммония и хлористого аммония или пиридина и его хлористоводородной соли. Кобальт связывается этими веществами сильнее, чем никель, и на полярограмме получается отдельная волна никеля. Влияние меди и никеля при определении цинка легко устранить прибавлением раствора цианистого калия. Цианидный комплекс меди настолько устойчив, что не дает полярографической волны. Раствор трилона можно применить для раздельного определения железа и меди. [c.219]

    Определению не мешают свинец, марганец, никель, кобальт, медь, цинк, кадмий, алюминий, щелочноземельные и лантаниды. Мешает определению присутствие железа. Ниже (см. стр. 204) приводится предлагаемый в этом случае ход определения. Мешают хлорид-ионы, если содержание их более чем в 20 раз превышает содержание комплексона. В этом случае рекомендуется проводить титрование с тиомочевиной в качестве индикатора (см. метод Б ). [c.203]

    С этими реактивами реагируют и другие двухвалентные катионы с образованием окрашенных (медь, никель и кобальт) и бесцветных комплексных соединений. Таким образом, эти реакции не являются специфическими. Иногда, регулируя pH раствора, можно создать условия, при которых возможно определение одного компонента в присутствии других. Так, при pH 4 медь взаимодействует с 4,7-дифенил-1,10-фенантролином с образованием бесцветного комплекса с соотношением реагирующих компонентов 1 1. В этих условиях можно определить железо в присутствии меди. Необходимо помнить, что повышение pH раствора приведет к образованию окрашенного комплекса состава Си(БФ)2" . [c.257]

    Наилучшие варианты бензидинового метода сводятся к осаждению сульфат-ионов солянокислым бензидином в нейтральной или слабокислой среде (pH = 4). Отфильтрованный осадок сернокислого бензидина промывают 5 раз водой, порциями по 3 мл, и титруют при 50° С раствором едкого натра по фенолфталеину Метод применим в присутствии железа (П), меди, кобальта, цинка, никеля, марганца и алюминия. Железо (III) мешает определению. [c.804]

    К тяжелым металлам относят свинец, медь, кадмий, цинк, хром, никель, кобальт, марганец, железо, ртуть. Присутствуют они в сточных водах процессов гальванического покрытия металлами и многих металлургических процессов, встречаются они в самых разнообразных сточных водах тяжелой и легкой промышленности, а также и в шахтных водах. Многие из них образуют токсичные соли, поэтому допускаются в водах лишь в очень малых концентрациях, и, следовательно, для их определения требуются чувствительные методы. [c.95]

    Для определения никеля в свинце и бронзах, содержащих свинец и олово [969], и типографских сплавах [1411 рекомендуется экстрагировать диметилдиоксимат никеля и измерять оптическую плотность экстракта. При определении никеля в кобальте [339] последний отделяют экстракцией высокомолекулярными амминами и в водной фазе определяют его фотометрически с использованием PAN. Для определения никеля в присутствии кобальта и железа последнее отделяют экстракцией изопропиловым эфиром из 6—8 N H l, кобальт связывают в комплексное соединение с K N, никель экстрагируют хлороформом [1049]. Из хлороформного экстракта никель извлекают 0,5 N НС1 и в водном растворе определяют фотометрическим методом диметилдиоксимом в присутствии брома в щелочной среде. [c.148]

    Наиболее характерно окрашена соль меди (И), следы которой окрашивают органические растворители в интенсивный желтокоричневый цвет. Эта реакция с купралем была применена для колориметрического определения меди в сплавах, продуктах питания, биологических материалах и других. Реакция ионов меди с купралем является одной из наиболее чувствительных, однако ей мешает присутствие катионов, образующих аналогичные окрашенные тиокарбаматы.Для их маскирования рекомендуются различные комплексообразующие вещества, ни одно из которых не может быть использовано во всех случаях. Наибольшие затруднения вызывают железо, никель и кобальт. Комплексон связывает в слабоаммиачной среде все катионы, кроме катионов сероводородной группы. [c.120]


    Методы, основанные на восстановлении шестивалентного молибдена металлическими железом, никелем или кобальтом. Есимура [1563] изучал восстановление шестивалентного молибдена в редукторе Джонса, заполненном мелкими стружками неактивированного или активированного железа. Активирование железа производилось пропусканием раствора сульфата меди в соляной кислоте. Полученный трехвалентный молибден титровали раствором железоаммиачных квасцов в присутствии роданида калия. При таких опытах не удалось установить каких-либо определенных преимуществ каждого редуктора вследствие трудности установления конечной точки титрования. [c.196]

    Ион кобальта (II) характеризуется способностью образовывать растворимые комплексные соединения в избытке аммиака, экстрагирующиеся органическими растворителями комплексные соединения с роданид-ионом. Селективными реактивами, позволяющими определять кобальт в присутствии других элементов (меди, никеля, железа), являются оксинитрозосоедпнения. В зависимостп от содерл<ания кобальта в анализируемом объекте (оно колеблется от десятых долей до десятков процентов) применяют титриметрические, фотометрические, полярографические и атомно-абсорбционные методы. Сравнительно редко прибегают к гравиметрическим п люминесцентным методам определения содержания кобальта. [c.68]

    Гравиметрические методы определения. Красный осадок соединения кобальта (III) с 1-нитрозо-2-нафтолом примерного состава Со(СюНб02 )з-пН20 образуется в слабокислых (pH 3.8—4,0), нейтральных и аммиачных растворах. Образовавшееся соединение при подкислении не разрушается. Мешают осаждению кобальта серебро, висмут и олово. Железо и вольфрам можно маскировать фторид-ионом. Не мешают осаждению кобальта равные по содержанию количества никеля, алюминия, кадмия, кальция, магния, бериллия, хрома, свинца, марганца, цпнка, сурьмы, мышьяка, ртути. В присутствии больших количеств никеля проводят переосаждение кобальта. После высушивания при 115°С состав соединения становится постоянным (п = 2), и оно применимо для гравиметрического определения содержания кобальта. В некоторых случаях отделение Со от сопутствующих элементов проводят осаждением в виде кобальтинитрита (гексанитрокобальтата III) каль я  [c.71]

    Определение кобалыа в марганцовых рудах и марганцовистых шлаках с помощью этилксантогената [261]. Навеску руды с содержанием 0,03—0,1 мг кобальта разлагают концентрированной соляной кислотой, отфильтровывают нерастворимый остаток (кремнекислота и др.), из фильтрата осаждают в делительной воронке кобальт и другие тяжелые металлы (железо, никель и др.) 1 М раствором ксантогената калия и экстрагируют четыреххлористым углеродом. Раствор ксантогенатов металлов в четыреххлористом углероде промывают 10—20 мл ам.миачного раствора тартрата натрия при этом железо переходит в водный раствор в форме тартратного ком плекса, а никель — в форме аммиаката. Неводный раствор, окрашенный в присутствии кобальта в желто-зеленый цвет, отделяют от водной фазы и измеряют оптическую плотность экстракта при 435 ммк. Возможно также определение методом стандартных серий. [c.181]

    М раствором Fe ij в слабокислой среде. В присутствии небольших количеств железа (II) увеличивают концентрацию 1,10-фенантролина в титруемом растворе. Метод высокоселективен и применим для определения микроколичеств кобальта в материалах, не содержащих больших количеств железа (II). [c.156]

    Никель образует нерастворимую соль Ы12Р207 светло-зеленого цвета. В присутствии больших количеств никеля и железа (например, при анализе никелевых сплавов, сталей и т. п.) этот метод непригоден. В этом случае кобальт отделяют от сопутствующих элементов. Отделение кобальта от железа, никеля, хрома и других элементов производят нитрито калия, осаждая его в виде Кз[Со(Ы02)в]- Железо отделяют иногда при помощи гидроокиси цинка, большие количества никеля — осаждением совместно с гидроокисью никеля в присутствии окислителя. Однако эти методы дают менее надежные результаты и требуют много времени. В данном случае значительно проще экстрагировать роданидный комплекс кобальта амиловым спиртом, связывая железо фторидом. Присутствие меди, особенно в больших количествах, мешает колориметрическому определению кобальта, так как образуется роданид меди (II) бурого, почти черного цвета. Влияние меди (П) устраняют, восстанавливая ее сульфитом, до одновалентной. Однако большой избыток сульфита тоже вреден, так как ослабляет окраску ро- [c.130]

    Никель осаждается количественно из аммиачных растворов, неполностью — из слабокислых растворов и совсем не осаждается из сильнокислых растворов. (Следовательно, для количественного отделения меди от никеля необходимо лишь поддерживать достаточно высокую концентрацию кислоты.) Серьезное мешаюшее влияние при определении никеля оказывают серебро, медь, мышьяк и цинк, которые, однако, можно удалить осаждением сероводородом. Присутствие железа (II) и хрома-тов нежелательно з , они могут быть удалены осаждением в виде гидроокисей. В присутствии кобальта осаждаются оба элемента, но для количественного осаждения кобальта необходимо добавить сульфит, препятствующий образованию аминов кобальта (III). Добавление сульфита, однако, приводит к загрязнению выделившихся металлов серой. Поэтому поступают следующим образом выделившийся осадок растворяют, никель определяют по реакции с диметилглиоксимом, серу — путем осаждения ее в виде сульфата бария, а содержание кобальта находят по разности. [c.349]

    При анализе сталей осаждение окисью цинка ведут следующим способом. Навеску растворяют в разбавленной соляной или серной кислоте, окисляют железо азотной кислотой и удаляют большую часть кислот выпариванием раствора почти досуха. Затем раствор разбавляют, переносят в мерную колбу емкостью 500 мл и разбавляют приблизительно до 300 мл. После этого вносят в колбу, порциями по 5 мл, свежеприготовленную суспензию тонко измельченной окиси цинка (ее приготовляют тщательным взбалтыванием 50 г тонко измельченного реактива с 300 мл воды). При каждом добавлении суспензии окиси цинка раствор в колбе сильно взбалтывают. Эту операцию заканчивают, когда осадок становится светло окрашенным или когда жидкость над, осадком после длительного отстаивания принимает молочный цвет. Тогда раствор в колбе разбавляют до метки, "щательно перемешивают и отбирают аликвотную часть, фильтруя через сухой фильтр, но не промывая осадка. Для лучшего отделения, в особенности в присутствии кобальта или больших количеств никеля, рекомендуется вторичное осаждение. В этом случае разбавления до определенного объема не проводят, фильтруют весь раствор, осадок растворяют, осаждают его снова окисью цинка и оба фильтрата соединяют. Если анализируемая сталь содержит значительные количества хрома, его лучше отогнать из хлорнокислого раствора (стр. 591) перед обработкой раствора окисью цинка. Дальнейшие подробности см. в гл. Хром (стр. 589). [c.470]

    Осаждение из муравьинокислого раствора. Осаждение сульфида цинка из растворов, содержащих свободную муравьиную кислоту, цитрат аммония и формиат аммония в качестве буферов для поддержания требуемой концентрации ионов водорода во все время обработки сероводородом оказалось особенно пригодным для определения цинка в присутствии больших количеств алюминия, например при анализе алюминиевых сплавов. Точность метода, по данным его авторов, колеблется в пределах от 0,5 до 1 части на 1000. Отделение цинка от марганца этим методом почти совершенное. Загрязнение сульфида цинка железом незначительное, но в тех случаях, когда содержание железа в растворе превышает одну десятую содержания цинка, следует прибавлять избыток в 20 мл 23,6 М муравьиной Ткислоты. Прибавление роданида аммония не улучшает отделения. Избыток муравьиной кислоты требуется также и в присутствии никеля и кобал]>та, но однократное осаждение, особенно в присутствии кобальта, не дает таких удовлетворительных результатов, как при отделении от железе  [c.482]

    Метод эмиссионной фотометрии был применен для анализа сплавов железа 2 -25 л минералов после экстрагирования хрома в виде хромовой кислоты 4-метил-2-пентаноном 2 - В последнем случае в пламени смеси ацетилена с кислородом можно определять хром при концентрации 0,1 мкг мл. Условия определения хрома в присутствии кобальта и марганца изучены Бурриэль-Марти и др. [c.281]

    Предложен метод определения никеля в присутствии кобальта и железа без использования цианида калия [2431. Для предотвращения выделения осадка диметилдиоксимата железа и кобальта железо предварительно или выделяют гидролизом в виде оксиацетата, или восстанавливают до железа (И), а в дальнейшем осаждают никель в присутствии кобальта, прибавляя избыток сухого диметилдиоксима и аммиак до щелочной реакции на лакмус. Кобальт при этом переходит в сравнительно хорошо растворимое соединение [Со (NHj), (HD)2l l растворимость его 1,25, 1,69 и 2,49% при 10 20 и 30°С соответственно она увеличивается в нейтральной или слабощелочной среде, т. е. в условиях выделения диметилдиоксимата никеля. При pH 7 и 20° С было найдено в растворе 4,62% комплексного соединения кобальта. Поэтому при определении никеля в присутствии кобальта необходимо разбавлять раствор таким образом, чтобы кобальт не выделялся в осадок вместе с никелем. Осадок диметилдиоксимата никеля (вместе с избытком диметилдиоксима) отфильтровывают, промывают водой, обрабатывают горячей НС1 (уд.в. 1,12) и из фильтрата выделяют никельдиметилдиоксимат осторожным добавлением разбавленного аммиака или раствора ацетата натрия. Осадок отфильтровывают через 1 час. при определении сравнительно [c.72]

    При определении никеля в присутствии кобальта и железа используют различную устойчивость цианистых комплексных соединений кобальта и никеля [645]. К раствору, содержащему кобальт, железо, никель, приливают по каплям раствор цианида калия до растворения образующегося осадка, прибавляют при нагревании перекись водорода для окисления кобальта (II) в кобальт (III). При этом получается раствор медово-желтого цвета. Для удаления избытка цианида добавляют при нагревании до 50—60° С по каплям раствор формальдегида до появления его запаха и сухой диметилдиоксим. Осадок диметилдиоксимата никеля и избыток диметилдиоксима через 0,5 — 1 час. (в зависимости от количеств никеля) отфильтровывают, промывают водой, обрабатьтают разбавленной НС1 и выделяют из этого раствора снова диметилдиоксимаг никеля добавлением аммиака или ацетата натрия. Метод пригоден для определения как следов, так и больших количеств никеля в присутствии кобальта и железа. [c.73]

    Для определения никеля в присутствии кобальта была использована различная растворимость диоксиматов этих элементов при pH 3,3. Осаждение проводилось из ацетатного буферного раствора. При соотношении никеля и кобальта 1 200 получились хорошие результаты. При большем соотношении элементов (1 400) необходимо переосаждение, так как осадок никеля загрязнен кобальтом. Определить никель в присутствии железа удалось при соотношении никеля и железа 1 200, железо связывали винной кислотой ниоксимат никеля выделялся количественно при добавлении раствора аммиака до щелочной реакции. Кроме того, целесообразно отделять никель от железа в виде двойной соли железа с фторидом натрия [308, 311]. [c.78]

    Моны никеля количественно выделяются обоими реагентами в слабоаммиачной среде реагенты могут быть применены для определения никеля в присутствии кобальта (используется различная устойчивость их цианидов), железа (при добавлении тартратов), меди (в присутствии ацетата). Резпропиофеноноксим позволяет гравиметрически определять 7—30 мг никеля [583]. [c.80]

    Образующееся соединение Ы1Л2 довольно устойчиво. В слабокислой среде при pH 4 только ионы меди, железа и кобальта мешают определению никеля. Но медь легко маскируется тиосульфатом, железо — пирофосфатом. Если присутствует кобальт, то его количество может быть учтено, так как максимум светопоглощения соединения кобальта находится при 630 ммк. Для определения никеля в присутствии кобальта сначала измеряют оптическую плотность при 630 ммк, а затем при 570 ммк (сумма N1 -Н Со) после вычитания оптической плотности, отвечающей содержанию кобальта, вычисляют количество никеля. Ионы кадмия, цинка, марганца и хрома образуют соединения только в слабощелочной среде (pH 3). [c.127]

    Определение кобальта путем потенциометрического титрования солью окисного железа в присутствии 1,10-фенан-тролина. [c.186]

    Сернистые соли щелочных металлов нельзя применять для пропитывания бумаги, в то время как сернистые соли сурьмы, цинка и кадмия дают устойчивую реактивную бумагу с определенной и притом приблизительно известной максимальной концентрацией ионов серы. На бумаге, прапитаяной сернистой сурьмой, избирательно осаждаются ионы меди, серебра и ртути в присутствии ионов цинка, кадмия, свинца, олова, железа, никеля и кобальта. [c.79]

    Исследования > показали, что алюминий и трехвалентное железо не мешают определению. Присутствие меди, никеля, марганца, двухвалентного железа и трехвалентиого хрома недопустимо. В меньшей мере мешает висмут. Мешающее влияние кобальта не было исследовано, но он, должно быть, мешает так же, как и никель. [c.426]


Смотреть страницы где упоминается термин Железо определение в присутствии кобальта: [c.408]    [c.138]    [c.61]    [c.293]    [c.139]    [c.375]   
Фотометрический анализ (1968) -- [ c.145 ]




ПОИСК





Смотрите так же термины и статьи:

Кобальт определение

Определение кобальта в присутствии больших количеств железа, хрома и малых количеств меди, марганца и никеля

Снятие спектров поглощения растворов солей кобальта и фотометрическое определение железа в присутствии кобальта

Снятие спектров поглощения солей кобальта и фор тометрическое определение железа в присутствии кобальта

Снятие спектров поглощения солей кобальта и фотометрическое определение железа в присутствии кобальта

Экстракционно-фотометрическое определение элементов кобальта в присутствии желез



© 2024 chem21.info Реклама на сайте