Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Германий кислоты

    Нефтяной парафин представляет собой смесь углеводородов метанового ряда со значительным преобладанием молекул нормального строения. Мягкий парафин (температура плавления 40—42°) применяется главным образом в спичечной промышленности, для пропитки бумаги, в кожевенной и текстильной промышленности и т. д. Твердые парафины (температура плавления 50—52°) находят наиболее широкое применение в свечном производстве, а также для некоторых областей пропитки. Из процессов химической переработки парафинов в Германии наибольший интерес представляет производство жирных кислот на основе твердых парафинов (см. главу VI Окисление парафиновых углеводородов , стр. 432, или раздел Исходное сырье для процесса окисления парафина , стр. 444). [c.49]


    До первой мировой войны фталевый ангидрид получали из нафталина путем окисления его серной кислотой в присутствии ртутного катализатора. Во время первой мировой войны почти одновременно в Германии и в США [3, 14, 15] был открыт каталитический процесс окисления воздухом в паровой фазе,- что привело к снижению стоимости производства фталевого ангидрида и к значительному увеличению потребления его. В 1945 г. [2,6] этот процесс был использован в промышленных масштабах Для окисления о-ксилола. [c.8]

    Однако применяемый избыток кислоты не только является непроизводительной затратой, но его необходимо, кроме того, нейтрализовать и удалить. Тем не менее этот метод все еще используется в промышленности Германии для сульфирования бензола с целью. получения промежуточного продукта при производстве фенола. [c.521]

    Вскоре были осуществлены в лабораторных условиях синтезы и других органических веществ в 1845 г. в Германии Г. Кольбе синтезировал уксусную кислоту, в 1854 г. во Франции М. Бертло [c.450]

    Написать уравнение реакции между германием и концентрированной азотной кислотой. [c.198]

    Хотя причины гибели лесов Германии точно не установлены, одна из них определенно связана с кислотными дождями. Природные вещества, например диоксид углерода, тоже делают воду слабокислой - обычно pH дождевой воды равен 5,6. Диоксид углерода реагирует с водой с образованием слабой угольной кислоты  [c.423]

    Для получения чистого германия следы примесей мышьяка, сурьмы и меди экстрагируются из четыреххлористого германия 6. и 12 н. соляной кислотой. [c.457]

    С кислотами, не являющимися окислителями, германий не взаимодействует, а олово и свинец реагируют с выделением водорода  [c.382]

    Второй этап развития химической промышленности также обусловлен расширением производства текстиля. Растительные красители не удовлетворяли растущих потребностей, и открытие первого анилинового красителя Перкином в 1856 г. дало толчок рождению анилиновой промышленности (главным образом в Германии). Основным сырьем ее стала каменноугольная смола, до сих пор считавшаяся помехой, а теперь превратившаяся в сырьевой источник для получения сотен различных органических продуктов. В результате обострилась потребность в азотной кислоте, ибо промышленное получение анилина и его производных основывалось на реакции восстановления нитробензола и других ароматических соединений азота. [c.16]


    Фторангидрид хлорной кислоты Германий четыреххлористый [c.615]

    Ю , т. е. на каждую диссоциированную по кислотному типу молекулу приходится 100 млн. молекул, диссоциированных по основному типу. Константы второй ступени основной диссоциации (ЭОН-5=t Э" + ОН ) для Sn(OH)s и РЬ(0Н)а равны соответственно 1 10 и 2 10 . Производящиеся от двуокиси германия кислоты были охарактеризованы в двух формах — НгОеОз (Ki = 1 ЮЛ Ха = 2 10- 3) и НаСезОц (X, = 6 10- , Ка = 2 10 ), однако существование второй из них не бесспорно. Для гидрата двуокИси олова известно лишь значениё первой константы кислотной диссоциации Kl = 4 10 . [c.631]

    В процессе постепенной нейтрализации разбавленных (0,01—0,1 М) кислых растворов солей двухвалентных олова и свинца Sn(OH)j ПР=1-10" ) и РЬ(0Н)2 (ПР=1-10" ) начинают осаждаться соответственно прн рН=2 и рН=6. Константа первой ступени основной диссоциации РЬ(0Н)2 равна 1 10 а кислотной — 1 10 ", т. е. на каждую диссоциированную по кислотному типу молекулу приходится 100 млн. молекул, диссоциированных по основному типу. Константы второй ступени основной диссоциации (Э0Н"5= Э" + 0Н ) для Sn(0H)2 и РЬ(ОН)г равны соответственно 1 и 2-10 . Производящиеся от двуокиси германия кислоты были охарактеризованы в двух формах—НгСеОз (/(i = 2-10 , /(2=2-10 ) и HaGesOji ( i = 6-10  [c.137]

    В 1845 г. Адольф Вильгельм Герман Кольбе (1818—1884), ученик Вёлера, успешно синтезировал уксусную кислоту, считавшуюся в его время несомненно органическим веществом. Более того, он синтезировал ее таким методом, который позволил проследить всю цепь химических превращений — от исходных элементов (углерода, водорода и кислорода) до конечного продукта — уксусной кислоты. Именно такой синтез из элементов, или полный синтез, и был необходим. Если синтез мочевины Вёлера породил сомнения относительно существования жизненной силы , то синтез уксусной кислоты Кольбе позволил решить этот вопрос. [c.71]

    Как следует из табл. 58,. о-ксилол является наиболее высококипящим из всех изомеров ксилола. Его применяют для получения фталевого ангидрида. Процесс основан, как и окисление нафталина, на газофазном окислении над ванадиевым контактом (оронит-процесс). Равным образом и /г-ксилол представляет большую ценность как исходный материал для получения те-рефталевой кислоты, применяемой в производстве волокна (териленовое волокно в Англии, декроновое в США, тревира в Германии). С этой целью смесь м- и п-крезолов охлаждают до —60° и выкристаллизовавшийся п-крезол отделяют центрифугированием. Выход га-ксилола ограничивается образующейся эвтектикой, состоящей из 88% J t-к илoлa и 12% ге-ксилола. [c.110]

    Окисление парафина с целью получения жирных кислот получило большое развитие в Германии во время второй мировой войны. В качестве исходного материала здесь применяют или очищенный нефтяной парафин, или что дает более благоприятные результаты, буроугольпый нарафип (ТТН-процесс), или синтетический парафин, полученный процессом Фишера-Тропша. [c.162]

    Очистка бензола, который в Германии получается главным образом из каменноугольной смолы, производится серной кислотой, нерегопкой с ректификацией и каталитическим гидрированием под давлением. Безводный хлористый алюминий должен быть 98%-ной чистоты. [c.229]

    Работы по окислению парафинов в Германии были направлен1з1 главным образом на создание методов окисления высших представителей насыщенных углеводородов, содержащих 20—25 атомов углерода. Если окисление этой группы предельных углеводородов проводить должным образом, получают жирные кислоты различного молекулярного веса, начиная практически с муравьиной кислоты и кончая кислотами с тем же числом атомов углерода, что и у исходного парафина. [c.432]

    Если в СШЛ и в Советском Союзе основным сырьем являлся парафин нефтяного происхождения, то в Германии в основном окисляли парафин из бурых углей, пока на смену не появился чисто синтетический парафин, полученный по методу Фишера—Тропша—Рурхеми. Начиная с этого времени можно говорить, в широком смысле слова, о синтезе жирных кислот из элементарных углерода, водорода и кислорода. [c.444]

    В Германии был разработан технологический процесс производства ацетона на основе уксусной кислоты [5]. При 400 °С через контакты из церпя пропускали уксусную кислоту  [c.140]

    В ряду напряжений Ое расположен после водорода, а 5п и РЬ — непосредственно перед водородом. По 4Тому германий с разбавленными кислотами типа НС1 и НзЗО не взаимодействует. Вследствие образо- [c.423]

    Переходя к практическому применению приведенных выше теоретических основ низкотемпературного окисления парафиновых углеводородов, можно указать на незначительный пробел в использовании парафинов между фракцией Сд—С4 и твердыми парафинами (выше g ), Следует отметить, что фирмы Селаниз Корпорейшн и Ситиз Сервис Компани проводят большую работу по окислению пропана и бутана с целью получения алифатических кислот, кетонов и подобных соединений. Однако эти операции проводятся, по-видимому, при гораздо более высокой температуре (выше 300° С), чем рассмотренные в данном обзоре, и об этой работе опубликовано мало литературных данных. Целесообразно завершить данную статью кратким описанием промышленного процесса окисления твердого парафина, применявшегося, в Германии. [c.279]


    Окисление метана до формальдегида нод низким давлением в присутствии следов окиси азота в качестве катализатора применялось в Германии (Гутегофнунгсгютте.) В 1940 -г. была построена установка в Румынии в литературе имеется подробное описание ее [18]. Процесс проводился при очень Малой глубине конверсии за проход и температурах реакции от 400 до 600° С в коротких трубках, облицованных керамическими плитками. В качестве сырья применялась смесь, состоящая из 1,0 части метана и 3,7 частей воздуха, к которой добавлялось 0,08% азотной кислоты в качестве катализатора. Отношение метановоздушного " сырья к рисайклу равнялось 1 9. Формальдегид вымывался из выходящего газа, образуя примерно 5%-ные водные растворы. Выход его на расходованный метан составлял 35%. [c.345]

    Как описано в ])яде патентов Рида [76], весьма сходные результаты получены при пропускании хлора и двуокиси серы через углеводород. Этот метод обычно известен под названием реакция Рида . Реакция нашла некоторое ограниченное промышленное применение в США и Германии для производства алкилсульфокпслот, легко получаемых нри гидролизе алкилсульфонилхлоридов [56, 7]. При производстве но этому методу сульфонатов (применяемых как детергенты и смачивающие агенты) из разнообразных парафинов предпочтение отдавали углеводородам, содержащим в молекуле от 12 до 16 атомов углерода. Получены также сульфонаты из парафина и более высокоплавкого парафина, получаемого но процессу Фишера—Тропша [7]. В парафинах с длинными цепями сульфонилхлорид может замещаться, но-видимому, в любое положение. Из простых парафинов пропан дает приблизительно равные выходы пропан-1-сульфонил-хлорида и вторичного производного. к-Бутан дает приблизите.тьно 1/д бутан-1-сульфонилхлорида и бутан-2-сульфонилхлорида изобутан дает только первичное производное. По данным [28] нри использовании в качестве катализатора азосоединения реакция протекает при температурах от Одо 75° без света. Имеются сведения, что добавка фосфорной кислоты [23, 26] в реакционную смесь нейтрализует вредное влияние загрязнений железа. Промышленному применению процесса препятствуют нежелательное образование хлоридов и другие факторы. [c.92]

    Неопрен , полимер хлоропрена (2-хлорбутадиепа-1,3) больше какого-либо другого синтетического каучука напоминает натуральный каучук. Хлоропрен получается из ацетилена и соляной кислоты. Годовое производство его составляет около 75 ООО т. Нитрильные каучуки, известные в Германии как Буна N каучуки, получаются путем сополимеризации смесей, состоящих из 75—50 частей бутадиена-1,3 и 25—50 частей нитрила акриловой кислоты (акрилонитрила), Hj СН. N. Эти каучуки устойчивы к действию тепла и к набуханию в маслах, смазках и растворителях. Годовое производство их ]je bMa невелико — около [c.211]

    Естественно, что у каждого структурного изомера могут быть изомеры по положению двойной связи. Наличие двойной связи делает также возможной цис-транс-шгожерто. Сырьевая смесь, взятая даже в довольно узких температурных пределах кипения, очень сложна, о составе ее сообщений не имеется. Свежее сырье смешивается с рециркулирующим продуктом и добавляется нафтенат кобальта в таком количестве, чтобы приходилось около 0,2% кобальта на общую загрузку сырья. Раствор прокачивается через подогреватель в реактор, где жидкость движется вверх в прямотоке с синтез-газом. Реактор наполняется инертным материалом типа колец Рашига и др. В реакторе поддерживаются температура около 175° и давление синтез-газа (IHj I O) 200 am. По выходе продукта из реактора давление снижается до атмосферного, затем продукт нагревается до 150° в присутствии отпаривающего газа (обычно водорода) для разрушения всего карбонила. Освобождаемый от кобальта продукт затем гидрогенизуется, в результате получается смесь октиловых спиртов. Этот процесс мало отличается от известного, но фактически он не нашел заводского использования в Германии [17]. Смесь спиртов g очень полезна в производстве пластификаторов. Окисление спиртов дает смесь кислот С 8, называемых изооктиловыми кислотами, которые представляют интерес для применения в военном деле. Состав смеси g пока точно неизвестен. Возможно, в ней содержится до двенадцати изомерных спиртов. Видимо, значительную часть составляет 3,5-диметилгексанол, получаемый из 2,4-диметилпентена-1. Другие спирты, присутствующие в относительно больших количествах — 4,5-диметил- и 3,4-диметилгек-санолы, 3- и 4-метилгентанолы. Очень возможно, что удастся найти условия превращения олефинов в спирты реакцией в одну ступень. [c.296]

    Ввиду конкурирующего характера производства фенола все же следует отметить [33], что моносульфирование бензола избытком моногидрата кислоты (самый простой, но наименее эффективный метод) все еще применяется в промышленном масштабе в Германии как промежуточная стадия при производстве фенола, несмотря на то, что процесс этот является периодическим и требует двойного расхода против теории количества кислоты, избыток которой долзкен удаляться путем нейтрализации в виде сульфата кальция. [c.529]

    Детали промышлеииого процесса, используемого в Германии обществом И. Г. Гохстом описаны в литературе [1, 37]. Моносульфирование моногидратом кислоты заканчивается в течение 10 час. при максимальной температуре 100° в первые 4 часа, когда кислота добавляется к бензолу (1 моль), температура поддерживается около 50°, а в последующие 6 час. температура постепенно повышается до 100°. Для дисульфирования применяется сульфирующая смесь из стадии моносульфирования, смешанная с 65% олеума реакция проводится в течение 6,5—7 час. при температуре от 30 до 85°. Выход дисульфокислоты может достигать 95%, но часто он бывает значительно ниже [1]. [c.531]

    Особый интерес представляют смазки, получавшиеся синтетическим путем в Германии в условиях военного времени [55, 56]. Этилен и олефины с более длинной цепью полимеризовали (катализатор — хлористый алюминий), получая с хорошим выходом масла, которые обладают неплохими вязкостно-температурными свойствами. Парафинистый газойль, полученный синтезом по Фишеру — Тропшу, хлорировали продукт синтеза конденсировали с нафталином, что дало масло сравнительно невысокого-качества. В качестве смазочных масел использовались эфиры адипиновой кислоты, но себацинаты широкого распространения не получили. [c.501]

    В 1914—1918 гг. в Англии этилен выделяли серной кислотой из газов коксования, содержащих его около 2/о. В 1938—1944 гг. в Германии его выделяли из газов дегидрирования этана, применяя а.ммиачные растворы азотнокислой закисной меди и моноэтаноламина. [c.67]

    Калориметрические определения, характеризующие нефть как топливо, производятся в бомбах Бертло, Малера или Крекера. Больше других распросгранен тип Малера, содержащий относительно мало платины. В по теднее время в Германии выработаны новые типы бомб, сделанных из особых сортов стали, почти не поддающейся действию минеральных кислот. Вместе с тем выработаны и новые, сорта эмали, кото]Х)й покрыва ется вместо платины внутренняя поверхность бомбы. Капли магнитной огщси железа (из сгоревшей проволочки), попадая на такую эмаль, не вызывают отскакивания ее в этом месте, вследствие одинакового коэфициента расшгфения у эмали и металла. [c.64]

    Германий, по-видимому, присутствует в нефти хотя бы частично в виде металлорганических соединений, поскольку наблюдается обратная связь между его содержанием и зольностью нефтей [947]. Специальных исследований форм связи германия с органическими компонентами нефтей не проводилось. Имеются сведения, что в углях германий может находиться в виде внутри-комплексных соединений с функциональными группами эфирного характера, либо о-дигидроксильпыми группами пирокатехина [8, 948]. Он также может быть связан в соли с карбоксильными остатками и oiraTKaMn тиокарбоновых кислот в молекулах смол [c.175]

    В 1927 г. в Германии Дрейфусом был запатентован этот метод получения уксусной кислоты. Предпринятые в 1931 г. Молдавским термодинамические и экспериментальные исследования показали, что синтез уксусной кислоты при указанных в патенте условиях (Р и Т) практически невозможен. На основе термодинамики можно показать, что синтез уксусной кислоты, причем с малыми выходами, можно было бы осуществить при давлениях нескольких миллионов гектопаскалей и при температурах порядка 1200 К- Итак, реакция СН + СОа = СНзСООН, хотя и очень заманчива, едва ли когда-либо будет использована для получения уксусной кислоты в производственных условиях. [c.180]

    Развитие в Европе во второй половине XIX в. промышленности синтетических органических препаратов потребовало производства концентрированной серной кислоты, которая является сульфирующим агентом. Был разработан контактный метод производства серной кислоты с использованием платиновых катализаторов. К сожалению, платиновые катализаторы оказались чувствительными к отравлению небольшими количествами примесей. Для преодоления этой трудности и из-за высокой стоимости платины фирма БАСФ в Германии в 1914 г. разработала новый катализатор на основе ванадия. Б 20-х гг. ванадиевые катализаторы такого же типа были разработаны несколькими компаниями в США и вскоре вытеснили платину. До настоящего времени серную кислоту производят с использованием ванадиевых катализаторов, хотя способы их приготовления и свойства за эти годы были в значительной мере изменены и усовершенствованы. [c.238]

    AG = —500,8 кДж/моль), а также ири обжиге сульфидов. Этот оксид германия — белое вещество, существующее в двух полиморфных видоизменениях a GeOo тетрагональной сингонии, ири Ю49"С переходит в = Ge02 тригональной сингонии температура плавления 1П6°С, температура кипения 2350°С плотиость 0,24 г/ем . В воде плохо растворяется с образованием гидроксидов— германиевых кислот, в кислотах не растворяется, с растворами щелочей взаимодействует с образованием солей — германа- ГОВ. [c.363]

    Оксид германия GeO образуется np i прокаливании германия с ограниченным доступом воздуха или как промежуточный продукт при восстановлении оксида (IV) (Л//=255, ДС = 230 кДж/моль), Оксид германия (II) —черный порошок, возгоняющийся прн 710°С, Растворяется в воде с образоваппем амфотерного гидроксила Ge(OH)o (коричневый порошок). Оксид и гидроксид гермаиия [I) растворяются в кислотах, но не взаимодействуют с растворами щелочен. Обладают сильными восстановительными свойствами. [c.363]

    Содержание германия в земной коре составляет (но массе) 7-10 7о- Основная масса его находится в сильно рассеянном состоянии в сульфидных (преимущественно сульфидно-цинковых) п силикатных Р1 дах, а та.чже в каменных углях. При переработке сульфидно-цинковых руд (содержанне германия от 0,001 до 0,1%) и некоторых углей (0,001—0,01 % Ge) германий концентрируется в пылях, которые и являются основным сырьем для его выделения. Обогащенное германием сырье обрабатывают соляной кислотой и выделяют тетрахлорид гермаиия. Из тщательно очищенного перегонкой тетрахлорида германия осаждают гидроксид, который прокаливанием переводят в оксид (iV), и последний восстанавливают водородом при 600Х. Полученный порошкообразный элементарный германий переплавляют в слиток в атмосфере азота. [c.365]


Смотреть страницы где упоминается термин Германий кислоты: [c.112]    [c.245]    [c.454]    [c.243]    [c.219]    [c.363]    [c.364]    [c.364]    [c.364]    [c.6]    [c.270]   
Практическое руководство по неорганическому анализу (1966) -- [ c.351 ]

Практическое руководство по неорганическому анализу (1960) -- [ c.320 ]

Основы общей химии Том 2 (1967) -- [ c.137 ]




ПОИСК





Смотрите так же термины и статьи:

Германия кислотами



© 2025 chem21.info Реклама на сайте