Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Органические соединения обнаружение

    ПРИЛОЖЕНИЕ. Масс-спектры органических соединений, обнаруженных в атмосферном воздухе [c.127]

    Это соединение напоминало один из тех радикалов, представление о которых было введено в XIX в. для объяснения строения органических соединений (см. гл. 6). Однако, в отличие от радикалов старой теории, обнаруженная Гомбергом молекула существовала в изолированном виде, а не как фрагмент другого соединения, поэтому она была названа свободным радикалом. [c.163]


    При применении стабильных изотопов их обнаружение и количественное определение обычно проводят прн помощи масс-спектрографа и лишь в редких случаях (например, прн работе с тяжелым водородом) путем определения удельного веса продуктов сожжения. Если же органическое соединение содержит радиоактивные изотопы, то определение легко удается провести путем измерения радиоактивности соответствующего вещества (например, прн помощи счетчика Гейгера — Мюллера). [c.1142]

    Качественный анализ позволяет установить, какие элементы входят в состав исследуемого вещества (кроме углерода и водорода в органических соединениях могут содержаться кислород, азот, сера, галогены, фосфор и другие элементы). Принцип качественного анализа заключается в переводе химических элементов в неорганические соединения, которые затем легко определяются общими аналитическими методами. Например, при обнаружении углерода и водорода органическое соединение сжигают, а образовавшиеся окислы углерода (СО2) и водорода (Н2О) определяют по помутнению раствора Са(ОН)д и наличию капель воды на стенках пробирки, в которой проводилось сожжение. Галоген в органическом веществе определяют по методу Бейльштейна. Этот метод заключается в том, что на предварительно прокаленную в пламени горелки медную проволочку наносят каплю определяемого раствора и за- [c.31]

    Другой метод обнаружения в газовом потоке отдельных зон связан с применением пламенно-ионизационного детектора. Здесь имеются два электрода, между которыми горит водородное пламя, В случае чистого газа-носителя электрическая проводимость пламени очень мала. Если в газовом потоке появляются органические соединения, они сгорают, при этом электрическая проводимость пространства между электродами возрастает, ток между электродами увеличивается и регистрируется усилителем 10. Усиленный сигнал регистрируется самописцем 14. Полученная запись в координатах концентрация-время представляет собой хроматограмму исследуемой смеси. Число пиков на хроматограмме при полном раз- [c.50]

    ОРГАНИЧЕСКИЕ РЕАГЕНТЫ — органические соединения, применяемые в аналитической химии для обнаружения, отделения и количественного определе- [c.182]

    На основании вышесказанного можно сделать вывод, что исследование кинетики и механизма многостадийных электродных процессов с участием органических соединений в общем случае представляет собой весьма непростую проблему. Многочисленность принципиально реализуемых в данной системе химических и электрохимических стадий и неоднозначность пути реакции выдвигают на первый план задачу выяснения химизма изучаемых процессов, т. е. установление природы их основных и побочных конечных продуктов, обнаружения и идентификации возможно большего количества нестабильных промежуточных продуктов реакции (интермедиатов). Решение такой, по существу, чисто химической задачи должно предшествовать решению вопросов физико-химических определению лимитирующих стадий процесса и их кинетических характеристик, нахождению связи между теми или иными параметрами и кинетикой суммарной реакции и ее отдельных стадий. [c.194]


    В основе большинства современных экспериментальных работ, посвященных изучению сложных многостадийных реакций в области электрохимии органических соединений, лежит подход, сочетающий проведение поляризационных измерений с использованием методов обнаружения, идентификации и исследования свойств короткоживущих промежуточных продуктов. [c.195]

    Анализ области молекулярного иона. Обнаружение в спектре пика молекулярного иона является важнейшей предпосылкой успешной интерпретации масс-спектра. Поэтому для более надежной регистрации слабых пиков М+- иногда повторно записывают масс спектры при относительно малой энергии ионизирующих электронов (10— 15 эВ), незначительно превышающей потенциалы ионизации большинства органических соединений (7—12 эВ), когда глубина фрагментации меньше, чем при 70 эВ. [c.182]

    Признаком пика молекулярного иона (или группы пиков — см. далее) служит наибольшая среди всех пиков спектра масса (за вычетом сигналов фона). Большинство органических соединений характеризуется четной молекулярной массой, а по нечетной сразу опознаются вещества с нечетным числом атомов азота в молекуле (так называемое азотное правило ). Кроме того, разность массовых чисел пика М+ и ближайших к нему пиков осколочных ионов обычно не может принимать значений в интервалах 4—14 и 21—24 (при фрагментации большинства органических соединений отщепление частиц с такой массой невозможно). Обнаружение пиков с разностью массовых чисел в указанных интервалах свидетельствует либо о том, что предполагаемый пик не относится к иону М+-, либо исследуемый образец является смесью веществ. [c.182]

    Сопоставление колебательных спектров многих органических соединений, обладающих одинаковыми группами атомов СНз, СНг, ОН, NH2 и т. д., показало, что в спектрах присутствуют одни и те же или мало отличающиеся друг от друга частоты. Некоторые частоты можно привести в соответствие с колебаниями ядер атомов в отдельных атомных группах. Такие частоты принято называть характеристическими. Обнаружение характеристических частот в спектре какого-либо органического соединения позволяет сделать вывод о наличии в нем соответствующих групп атомов. Этот принцип лежит в основе спектрального группового анализа органических и некоторых координационных соединений. Однако этот принцип не может быть применен к неорганическим соединениям, поскольку массы колеблющихся атомов и характер химических связей между атомами сильно различаются. [c.27]

    Вследствие своей универсальности ионообменно-хроматографический метод с успехом применяется для решения разнообразных задач аналитической химии для обнаружения, разделения, концентрирования, а также определения неорганических и органических соединений, находящихся в водных или водно-органических растворах в виде ионов. Особенно эффективно используется ионообменная хроматография при анализе неорганических соединений. С помощью ионообменных сорбентов возможно разделение смесей любой сложности. [c.190]

    Качественный анализ. Оксид алюминия для хроматографии после смачивания водой приобретает способность сорбировать из водного раствора комплексные соединения различных органических соединений с ионами металлов. Учитывая эти свойства, применяют пропитанные водой колонки из смеси оксида алюминия с органическими соеди-ниями для качественного обнаружения ионов металлов в их смесях. Например, на колонке, содержащей диметилглиоксим, никель образует розово-красную зону, кобальт— желтую зону, расположенную под зоной никеля. Таким способом удается обнаружить 0,4 мкг никеля при разбавлении [c.248]

    Для целей качественного анализа разработаны методы выделения и обнаружения всех наиболее важных неорганических ионов и многих органических соединений, разработан частичный и полный анализ смеси катионов и анионов. [c.109]

    Накопленный большой экспериментальный опыт решения аналитических задач по автоматической идентификации сложных смесей органических соединений методом ГХ-ЭВМ [54, 851 оказался весьма полезным при формировании универсальной системы анализа, в которой предусматривается разделение исследуемых веществ на классы с последующим использованием математических методов обнаружения каждого компонента. Анализируемые смеси могут содержать несколько сотен объектов. Классическая идентификация их (применение как минимум 3 колонок различной полярности с введением внутреннего стандарта) оказывается трудоемкой, а подчас и просто неприемлемой процедурой. Так, для анализа ароматических компонентов пищи необходимо введение более 1000 стандартов, многие из которых труднодоступны. Таким образом, структура и состав таких смесей должны быть установлены непосредственно в ходе газохроматографического анализа по изменению сорбционных характеристик анализируемых веществ. [c.252]

    В зависимости от характера анализируемого материала различают анализ неорганических и органических веществ. Выделение анализа органических веществ в отдельный раздел аналитической химии связано с некоторыми особенностями органических соединений по сравнению с неорганическими. Часто первый этап анализа состоит в переведении пробы в раствор. При анализе неорганических материалов растворителем чаще всего служит вода или водные растворы кислот или щелочей. Полученный раствор содержит катионы и анионы подлежащих определению элементов. Для их обнаружения применяют реагенты, которые взаимодействуют с определяемыми ионами, как правило, очень быстро, причем в большинстве случаев реакции доходят до конца. При анализе органических соединений нередко необходимо провести предварительную минерализацию пробы, т. е. разрушить ее органическую часть прокаливанием или обработкой концентрированными кислотами. Нерастворимые в воде органические соединения иногда растворяют в органических растворителях реакции между органическими соединениями обычно протекают медленно и почти никогда не доходят до конца, причем они могут протекать по нескольким направлениям с образованием разнообразных продуктов реакции. Б анализе применяют и некоторые другие [c.13]


    КАЧЕСТВЕННОЕ ОБНАРУЖЕНИЕ ЭЛЕМЕНТОВ В ОРГАНИЧЕСКИХ СОЕДИНЕНИЯХ [c.739]

    Вследствие этого прежде чем выполнять основную задачу по идентификации, заключающуюся в определении строения поли-функционального органического вещества или идентификации компонентов бинарной смеси веществ (см. стр. 241), целесообразно отработать методы обнаружения функциональных групп, а также получения и очистки функциональных производных каждого из пяти важнейших классов органических соединений (спирты, фенолы, альдегиды или кетоны, карбоновые кислоты и амины). [c.224]

    Одним из наиболее важных факторов при этом является природа и тип катализатора, то есть его селективность по отношению к различного рода связям в молекуле органического соединения. Обнаружение ряда селективно действующих катализаторов принадлежит к числу крупных успехов, достигнутых в области органического катализа за последние годы. В настоящее время наряду с катализаторами группы благородных металлов (Р1, Рс1 и др.), восстановленными никелем и медью широко применяется ряд элементарных и смешанных катализаторов, обладающих достаточной активностью и избирательностью. В отличие от катализаторов платиновой группы, они дешевы и могут использоваться промышленностью. К их числу принадлежат скелетные катализаторы (13, 27, 28), прежде всего никель Ренея, никель Бага, скелетная медь (29) и др., катализаторы на носителях (никель на кизельгуре, на АЬО.., и др.), а также окисные катализаторы, например, медно-хромовый и т. д. Кроме того, различные добавки к катализаторам (промоторы и ингибиторы) позволяют повышать их избирательность и использовать с успехом для специальных целей в тонком синтезе. Так например, прибавление ничтожных количеств 2п н Ре солей к платиновым катализаторам (РЮг, Р1 — чернь) даёт возможность осуществлять такие реакции, которые не были достижимы с чистыми катализаторами этого типа, в частности, избирательно гидриро- [c.90]

    Инфракрасная — ИК-спектроскопия. Спектры поглощения в инфракрасной области соответствуют колебаниям различных функциональных групп и связей, составляющих молекулу. К сожалению, особенности поглощения света в этом участке спектра таковы, что существенно осложняют количественную интерпрета-цию в соответствии с законом Ламберта — Бера. Инфракрасные спектры редко используют для количественного анализа. Основная сфера применения инфракрасной спектроскопии — это установление структуры индивиду-альных органических соединений, обнаружение в сложных смесях органических соединений тех или иных индивидуальных веществ или специфических функциональных групп. Благодаря тому, что ИК-спектр представляет собой набор большого числа узких линий, положение и интенсивность которых строго индивидуальны для каждого соединения, он является визитной карточкой органического соединения. Совпадение ИК-спектров в настоящее время считается одним из наиболее убедительных доказательств идентичности веществ. Для записи ИК-спектров обычно применяют кюветы из поваренной соли ЫаС1, прозрачной в этой области. Спектр записывают в координатах пропускание (поглощение), % — частота (или длина волны). Частоту чаще всего выражают в см , длину волны — в микронах или миллимикронах. На рис. 18 в качестве примера приведены ИК-спектры л- и л -ксилолов. [c.133]

    Статья посвящена изучению природы хемофоссилий — органических соединений, обнаруженных в древнейших породах, возраст которых составляет около 3 млрд. лет. Среди этих соединений идентифицированы жирные кислоты, алканы, аминокислоты, пигменты, сахара и др. [c.278]

    Первая глава содержит доступную в настоящее время информацию об органических соединениях, обнаруженных в атмосфере Земли, и об их происхождении. Вторая глава посвящена концентрированию органических примесей, причем особое внимание уделяется проблеме использования для этой цели термостойких сорбентов и создания составных гидрофобных поглотителей, способных к эффективному улавливанию возможно большего числа следовых компонентов. В третьей главе обсуждается методика хроматографического анализа сложных смесей органических соединений, содержащих до 13—14 атомов углерода. Техника хромато-масс-спектрометрической идентификации органических микропримесей описывается в четвертой главе. Рассматриваемые здесь задачи индивидуальной и групповой идентификации в условиях предельных разбавлений выходят за рамки специальных проблем этой книги и представляют интерес для всех химиков-органиков и аналитиков. В отдельном приложении публикуются масс-спектры органических веществ, обнаруженных в воздухе современных городов. Такого рода специализированных атласов масс-спектров не существует, и он будет полезен при детальных анализах образцов воздуха различного происхождения. [c.4]

    Поскольку десорбция происходит не мгновенно, органические соединения поступают в аналитическую колонку очень широкими зонами, что значительно ухудшает качество разделения компонентов и даже может привести к потере на хроматограммах пиков некоторых веществ. Именно этим объясняется тот факт, что список органических соединений, обнаруженных Реймоном и Гиошоном в воздухе Парижа [1], начинается с толуола и октана пики более легких углеводородов с температурами кипения ниже 100 °С были сильно размыты и практически полностью слились с фоновым сигналом. Избежать отрицательных эффектов, сопровождающих термодесорбцию, позволяет промежуточное концентрирование элюируемых потоком газа веществ в охлаждаемой форколонке или в начальном участке хроматографической колонки. [c.56]

    Хлорированные углеводороды. Из всех органических соединений, обнаруженных в настоящее время в окружающей среде, наибольшее внимание привлекает ДДТ [1,1,1-трихлор-2,2-бис(/г-хлор-фенил)этан]. Его период полураспада составляет несколько лет, он устойчив к химическому разрушению и обнаружен иа всех уровнях биосферы и во всех частях света. Так, даже в жировых тканях пингвинов в Антарктиде было обнаружено сравнительно высокое содержание этого соединения. Известно, что ДДТ концентрируется в цепи питания с коэффициентом обогащения, превьпиа-ющим 500 000. Простое сопоставление его содержания в воде (5-10 млн ), в рыбах (2,0 млн" ) и в птицах, питающихся рыбой (27,0 млн" ), характеризует его способность к концентрированию и показывает, что безопасные уровни его содержания действительно отсутствуют. До тех пор, пока ДДТ может сохраняться и концентрироваться в жировых тканях организмов (включая человека), он непрерывно будет представлять опасность и дoллieн рассматриваться с этих позиций. [c.339]

    За прошедшие два столетия после М.В. Ломоносова накопилось огромное количество химических, геохимических и геологи — еских данных по проблеме происхождения нефти. В настоящее ьремя преобладающая часть ученых считает наиболее обоснованными представления об органическом генезисе нефти. В пользу органической гипотезы неоспоримо свидетельствуют обнаруженная поразительная генетическая связь между групповыми компонентами нефти, твердых горючих ископаемых и исходных материнских Beuj,e TB (биологический аргумент), а также прямые экспе — )именты по органическому синтезу нефти, подобной природной. Так, в нефтях обнаружен ряд органических соединений, являющихся как бы "биогенными метками" от исходного материнского пещества. К таковым относятся порфирины — структурные фрагменты хлорофилла и гемоглобина животных изопреноидные угле — подороды, например, с одним лишь идентичным природному [c.52]

    В зависи.мости от того какие лучи электромагнитного спектра пропускать через вещество, могут возбуждаться либо вращательные, либо колебательные движения, либо электронные переходы, либо все виды движений одновременно. Возбуждение того или иного движения в молекуле происходит тогда, когда его частота совладает с частотой электромагнитного колебания (резонанс). Наибольшей энергией обладают рентгеновские лучи (Я = 0,01 — 10А), еатем ультрафиолетовые лучи (10ч-4000.4), затем видимый свет (4000.А.8000А), затем инфракрасные лучи (0,8—300 р), затем микроволны 0,03—100 см и далее радиоволны. Энергия радиоволн слишком мала, чтобы возбуждать колебания молекул органических веществ. Микроволны и длинные инфракрасные волны могут возбуждать только вращательные движения в молекулах. Если частоты колебания этих волн совпадают с собственной частотой вращения отдельных частей молекулы, то происходит резонансное поглощение энергии инфракрасного облучения этой частоты, что отразится в спектре поглощения. Такого рода спектры применяются для тонкого структурного анализа органических веществ. Инфракрасные спектры органических соединений обычно изучают в пределах длтш волн 1 25 х, при этом линии поглощения Б спектре появляются за счет вращательного п колебательного движения в молекулах исследуемого вещества. Каждой функциональной группе и группе атомов в молекуле исследуемого соединения в спектре соответствует одна или несколько линий с опре-денной длиной волны. С помощью инфракрасных спектров можнс проводить идентификацию чистых углеводородов, анализировать качественно и количественно смеси нескольких компонентов вплотг-до обнаружения таких близких структур как цис- и транс-изомеры. На рис. 16 приведен г /с-спектр толуола. [c.32]

    Реакция Лассеня иногда оказывается непригодной это бывает в тех случаях, когда азот в органическом соединении связан настолько слабо, что при нагревании улетучивается еще до сплавления вещества и поэтому не вступает в реакцию с натрием и углеродом. Недавно Файгль описал очень чувствительный и надежный метод обнаружения азота. При нагревании любого сухого азотсодержащего вещества с пиролюзитом (а также с МпгОз, РЬз04, С02О3) образуются пары азотистой кислоты, окрашивающие фильтровальную бумагу, смоченную реактивом Грисса (смесь 1 %-ного раствора сульфаниловой кислоты в 30%-ной уксусной кислоте с 0,1 %-ным раствором а-нафтиламина в 30%-ной уксусной кислоте), в красный цвет. Методами капельного анализа можно обнаружить 0,2 цг органически связанного азота [c.5]

    Исходя из свойств некоторых органических соединений, применяемых в анализе, перспективными для качественного обнаружения ионов металлов метод адсорбционно-комплексообразовательной хроматографии являются (в скобках указаны определяемые элементы) ализарин С (алюминий, циоконий, торий) алюминон (алюминий, бериллий) арсеназо III (цирконий, гафний, торий, уран, редкоземельные элементы) диметилглиоксим [никель, кобальт, железо (II), палладий (И)] 2,2 -дипиридил [железо (И)] дитизон (серебро, висмут, ртуть, свинец, цинк) дифенил-карбазид [хром (VI)] 2-нитрозо-1-нафтол (кобальт) нитро-зо-Н-соль (кобальт) рубеановая кислота [железо (III), [c.248]

    До сих пор бензонитрил преимущественно использовался в электроана-литической химии или электрохимии органических соединений. Это обусловлено наличием примыкающего к нитрилу фенильного кольца и отсутствием альфа-водорода, что выгодно отличает его от других нитрилов. Благодаря этим особенностям бензонитрил является удобным растворителем для обнаружения электролитически генерированных радикалов. Бензонитрил применялся в качестве растворителя при полярографии [1] в нем можно получить полярограммы для активных металлов Ка , Mg , Са , и Ва , но не для и четвертичного аммониевого иона вследствие низкой растворимости соответствующих солей. Бензонитрил использовался также для анодного окисления алифатических аминов [2]. По-видимому, применение этого растворителя, связанное с большими трудностями, не дает каких-либо преимуществ по сравнению с ацетонитрилом. [c.13]

    При небольших количествах образца анализ проводят на колонках с внутренним диаметром 1—2 мм, что уменьшает его расход. Используя в качестве растворителя пробы слабый растворитель, можно наносить на колонку большие объемы образца. При этом он накапливается на входе в колонку, так как к для компонентов образца велико и в колонке происходит концентрирование микропримесей, что значительно повышает чувствительность обнаружения. Пользуясь этим приемом, можно обнаружить некоторые малополярные органические соединения, например ароматические углеводороды, присутствующие в виде микропримесей в сточных водах, на колонке с обращенной фазой. [c.84]

    Помимо углерода водород является другим, наиболее часто встречающимся элементом в органических соединениях. Он участвует во многих реакциях органических соединений, и иногда скорости этих реакций опреде-ляготся тем, какой изотоп водорода в них участвует. Существуют три изотопа водорода Угротий (водород-1, Н или просто водород Н), дейтерий (водород-2, II или Ь) и тритий (водород-3, Н или Т). В то время как протий II дейтерий встречаются в природе, радиоактивный тритий (период полураспада 12 лет) получают искусственным путем. Тритий может быть обнаружен с помощью счетчика Гейгера иногда тритиевые соединения (соединения, 11 которых тритий замещает часть или все атомы водорода-1) вводят в орга- [c.13]

    В данной главе обсуждаются экспериментальные результаты по каталитическим свойствам цеолитов в реакциях гидрирования углеводородов и восстановления кислородсодержащих органических, соединений альдегидов, кетонов, фурановых соединений, окисей олефинов. Поскольку после обнаружения гидрирующей активности цеолитов многие вопросы, связанные с выяснением механизма их действия, изучались параллельно на различных реакциях, то дпя удобства рассмотрения материал зтой главы сгруппирован следующим образом. В разделе 1.1 на примере реакций гидрирования аромагаческих и олефиновых углеводородов рассмотрено влияние иа активность цеолита его химического состава и структуры, концентрации и природы катионов, условий предварительной термообработки и др. В разделе 1.2 катал1ГП1ческие свойства цеолитов обсуждаются в связи с реакциями селективного гидрирования диеновых и ацетиленовых углеводородов. Восстановлению кислородсодержащих соединений посвящен раздел 1.3. [c.9]


Смотреть страницы где упоминается термин Органические соединения обнаружение: [c.275]    [c.46]    [c.89]    [c.428]    [c.341]    [c.493]    [c.93]    [c.262]    [c.288]    [c.308]    [c.91]    [c.306]    [c.139]   
Практическое руководство по неорганическому анализу (1966) -- [ c.0 ]

Практическое руководство по неорганическому анализу (1960) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте