Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции замещения с перегруппировкой

    Несомненность существования метастабильного мостикового иона карбония подтверждается двумя независимыми фактами. Один из них — перегруппировки, которые могут происходить в аллильных системах [17] в условиях, когда становится возможным протекание ионных реакций замещения. Другой — существование стабильных мостиковых соединений, включающих в случае соединений бора пятивалентные атомы. Такие дибораны и замещенные дибораны имеют стабильные мостиковые структуры. [c.477]


    Факторы, определяющие выбор метода синтеза. Выбор пути синтеза чистого углеводорода основан обычно на нескольких факторах. Невозможность отделения побочных продуктов от основных мешает использованию хорошо известного метода, если последний допускает одновременное протекание изомеризации, конденсации, многократного замещения или других нежелательных реакций. Следует избегать или тщательно исследовать реакции, допускающие перегруппировку углеродного скелета или введение трудно устранимых примесей в конечном продукте, чтобы устранить всякие элементы сомнения. [c.497]

    На окислительно-восстановительные реакции оказывают влияние катализаторы, которые сами являются окислительно-восстановительными системами. Реакции замещения, присоединения-отщепления и молекулярные перегруппировки чувствительны к катализу кислотами и основаниями. [c.19]

    Другая побочная реакция, сопровождающая нуклеофильное замещение,— перегруппировка, обычно сопутствует процессам, протекающим по механизму Перегруппировки могут быть двух типов с изменением и без изменения углеродного скелета В последнем случае образуются вещества, содержащие группировку V не при том углеродном атоме, с которым была связана уходящая группа X. [c.98]

    Классификация реакций этой главы основана на природе уходящей группы. Вначале рассматриваются реакции замещения водорода, затем перегруппировки, в которых атакующий фрагмент предварительно отщепляется от другой части молекулы (в этих случаях уходящей группой по-прежнему выступает водород), и, наконец, обсуждается замещение других групп. [c.332]

    Генетическое доказательство строения возможно, если равновесия диссоциации и изомеризации комплекса сильно заторможены, т. е. внутренняя координационная сфера существует как стабильное образование длительные промежутки времени. Метод генетического доказательства строения является общим для химии комплексных соединений и органической химии. В химии комплексных соединений его можно применять к инертным комплексам, если реакция замещения не сопровождается внутримолекулярной перегруппировкой. [c.74]

    Вслед за стадией истинной перегруппировки часто следуют реакции замещения, присоединения или отщепления, приводящие в конечном счете к образованию стабильного продукта. [c.51]


    Однако в процессе реакций замещения наблюдаются аллиль-ные перегруппировки, которые, безусловно, осуществляются по бимолекулярному механизму. Эти реакции обозначаются 8 2 и протекают, по-видимому, по схеме  [c.124]

    Как известно, галоидные аллилы в процессе реакций замещения частично перегруппировываются (аллильная перегруппировка)  [c.328]

    Побочными реакциями при присоединении галогенов могут быть перегруппировки типа реакций Вагнера — Меервейна (пример 6.2), реакции замещения, дегидрогалогенирования, особенно в тех случаях, когда один из атомов галогена присоединяется к третичному атому углерода [23], и частично дегалогенирования, наблюдаемые для вицинальных атомов иода, а иногда и для вицинальных атомов брома. [c.408]

    Для понимания механизмов химических реакций полисахаридов древесины наибольшее значение имеют системы классификации по двум категориям признаков на основании связывания или удаления структурных элементов по способу разрыва или образования связей. Первый тип реакции (по конечному результату) подразделяется на реакции замешения (8) присоединения (А), имеющего значение у полисахаридов только на промежуточных стадиях элиминирования, или отщепления (Е) перегруппировки. Из этих реакций у полисахаридов наибольшее значение имеют реакции замещения. Кроме перечисленных реакций, в отдельную группу можно выделить окислительно-восстановительные реакции. [c.282]

    Фотохимическое поведение у-пиронов существенно изменяется с увеличением объема заместителей. Так, в случае сильно замещенного производного (28) димернзация подавляется, и доминирующей фотохимической реакцией становится перегруппировка с образованием изомерного а-пирона (30) [34]. Эта реакция не сенсибилизируется ацетоном или ацетофеноном, и поэтому полагают, что она включает синглетные возбужденные состояния и происходит через интермедиат (29) (схема 17). [c.85]

    Во всех реакциях, кроме первой, происходит разрыв или образование химической связи. Реакции типа а н б представляют собой элементарные акты. Реакции замещения, отщепления, присоединения, изомеризации и перегруппировки являются белее сложными и в общем случае состоят из нескольких элементарных актов. [c.67]

    По Уайтмору при реакциях замещения перегруппировка происходит в том случае, если образующийся катион оказывается неустойчивым, и раньше чем присоединится анион реагента, он перестраивается в более устойчивый катион.  [c.610]

    Направляющее влияние некоторых групп, содержащихся в ароматическом ядре, при сульфировании и при других реакциях замещения неодинаково. Так, при сульфировании галоидобензолов образуются 100%-ные тгара-соединения, а при нитровании — смесь орто- и иара-соединений. Недавно опубликованы [1] подробные сравнительные данные о направляющем влиянии различных групп в реакциях нитрования и сульфирования. Во многих случаях изменение температуры реакции меняет положение вступающей в ядро сульфогруппы или ведет к перегруппировке первоначального продукта реакции с образованием более устойчивого изомера. Это особенно относится к нафталиновому ряду. Сульфат ртути также оказывает сильное влияние на строение продукта сульфирования, что заметно при сульфировании соединений, содержащих в ароматическом радикале карбонильную или карбоксильную группу. Этот эффект, вероятно, вызван меркурированием с последующей заменой ртути на сульфогруппы при действии избытка серного [c.8]

    Примером такой реакции, сопровождающейся перегруппировкой углеродного скелета, служит реакция гетеролиза неопентилбромида. Несмотря на то что этот бромид — первичный алкилгалогенид, он практически не способен к реакциям нуклеофильного замещения по механизму N2 из-за пространственных затруднений, создаваемых разветвленным трег-бутиль-ным радикалом при подходе нуклеофильного реагента. Сольво-лиз неопентилбромида по механизму 5ы1, т. е. в протонных растворителях, также исключается, потому что он — первичный алкилгалогенид. Однако его можно заставить реагировать по механизму N1 в присутствии водных растворов солей серебра, так как ион серебра вырывает из молекулы алкилгалогенида анион брома, образуя бромид серебра. При этом первоначально образовавшийся менее устойчивый карбокатион (23), у которого положительный заряд находится на первичном атоме углерода, перегруппировывается в более энергетически выгодный третичный карбокатион (24), который затем и реагирует по трем возможным направлениям  [c.132]

    Изучались реакции сочетания алкилгалогенидов с другими металлоорганическими соединениями [1031]. Натрий- и калий-органические соединения более реакционноспособны, чем реактивы Гриньяра, и поэтому вступают в реакции даже с менее активными галогенидами. Сложность заключается в их приготовлении и достаточно долгом сохранении, чтобы успеть прибавить алкилгалогенид. Алкены можно синтезировать сочетанием виниллитиевых соединений с первичными галогенидами [1032] или винилгалогеиидов с алкиллитиевыми соединениями в присутствии палладия или рутения в качестве катализатора [1033]. При обработке медьорганическими соединениями п кислотами Льюиса (например, н-ВиСи-ВРз) аллилгалогениды вступают в реакцию замещения с практически полной аллильной перегруппировкой независимо от степени разветвления обоих концов аллильной системы [1034]. [c.191]


    В пользу данного механизма свидетельствует тот факт, что перегруппировки такого рода происходят в условиях, когда, как было показано ранее, образуются карбокатионы, а именно, в реакциях 8к1, при алкилировании по Фриделю — Крафтсу и т. д. Сольволиз неопентилбромида приводит к образованию продуктов перегруппировки, причем скорость реакции возрастает с увеличением ионизирующей способности растворителя, но не зависит от концентрации основания [4] это подтверждает, что первой стадией является образование карбокатиона. То же самое соединение в условиях протекания реакции 8к2 не дает продуктов перегруппировки, в этом случае происходит, хотя и медленно, обычное замещение. Таким образом, перегруппировка неопентилбромида объясняется исключительно образованием карбокатиона. Обычно карбокатионы перегруппировываются в более устойчивые карбокатионы, и направление перегруппировки имеет вид первичные->вторичные тре-тичные. Неопентил (МезССНг), неофил (РЬСМегСНг) и норборнил (например, 4), а также подобные им производные особенно склонны к реакциям, включающим перегруппировки карбокатионов. Показано, что скорость миграции возрастает [c.112]

    Схема б) показывает, что из карбонильных соединений можно получать амины, используя в качестве промежуточных продуктов разнообразные вещества, образующиеся при реакциях замещения карбонильного кислорода на азотсодержащие остатки (окспмы, гидразоны, семикарбазоны), а кроме того, из оксимов (Xf ЮН) при перегруппировке Бекмана получать амиды. Природа углеводородного радикала для превращений в схемах а) и б) более или менее безразлична — он может быть алифатическим или ароматическим (правда, диазосоединення как устойчивые вещества можно наблюдать лишь в ароматическом ряду). [c.240]

    Исходя из с ш ествования трех основных классов реагентовэлектрофилов, нуклеофилов и радикалов, в книге излагаются основные особенности поведения каждого из этих реа-гентов в наиболее важных органических реакциях — замещения, присоединения, отщепления и в перегруппировках. Во всех случаях Примеры выбирались с таким расчетом, чтобы наиболее существенные особенности процесса пе были замаскированы не относящимися к сущности дела второстепенными деталями и выявлялись в возможно более простой форме. [c.14]

    Материал книги расположен в следующей очередности. Общая часть, состоящая из четырех разделов, содержит краткое изложение физикохимических основ тех методов работы, которые применяются в препаративной органической химии, описание лабораторного оборудования и его применения, описание важнейших лабораторных процессов и предписания по технике безопасности. Специальная часть состоит из 39 глав, которые содержат подробные практические указания, касающиеся условий выполнения и области применения типовых реакций и методов органического синтеза, и 355 прописей получения отдельных препаратов. В первую очередь описаны реакции замещения водорода с разрывом связей. Далее в определенной последовательности описаны различные реакции присоединения, реакции отщепления и перегруппировки, В последних разделах содержится описание методов синтеза различных более сложных препаратов—красителей, полимеров и продуктов поликонденсации. [c.17]

    Для. взаимодействия с 1 молем тригалогенида фосфора можно брать 3 моля спирта, однако последний моль спирта превращается в галогенпроизводное с большим трудом. В этом случае действуют те же ограничения, что и при образовании алкилгалогенидов из спиртов и галогеноводородов — изомеризация или перегруппировка, Успехи, достигнутые в проведении этих реакций замещения, позволяют до некоторой степени контролировать, пойдет ли разрыв связи с образованием продуктов по механизму S l или возникновение связи приведет к образованию продуктов по механизму 5 2,. Один из наиболее мягких мтетодов — образование комплекса между трифенилфосфином и четырех хлористым углеродом [15] [c.376]

    При обработке оксимов сильньши кислотами Бренстеда нли РС образуются замещенные амиды. Эта реакция называется перегруппировкой Бекмана [c.2063]

    В данном разделе не рассматриваются скелетные перегруппировки, которые сопровождают реакции замещения по механизму 5лг1, так как реакции этого тина обсуждались в гл. 5 кн. I. В центре внимания будут реакции соединений со специфическими структурными особенностями, которые содействуют изменениям скелета. [c.291]

    Существуют разл. системы классификации Р. х. В зависимости от путей возбуждения реагентов в активное состояние Р.х. по дразделяют на плазмохим., радиационно-хям., термич., фотохим., электрохим. и др. Кинетич. классификация Р.х. учитывает молекулярность реакции (число молекул, участвующих в каждом элементарном акте,-обычно моно-, би- и тримолекулярные р-ции), порядок реакции (степень, в к-рой концентрация в-ва входит в кинетическое уравнение р-ции, устанавливающее зависимость скорости Р. х. от концентрации реагентов). По формальным признакам (изменение степени окисления, перераспределение связей, фазовому состоянию, топологии и др.) Р. X. делятся на окислительно-восстановительные реакции, присоединения реакции, замещения реакции, гетерогенные реакции, гомогенные реакции, реакции в растворах, реакции в твердых телах, топохимичес-кие реакции, перегруппировки молекулярные,, элиминирования реакции и т.д. Классификация по формальным признакам обычно не зависит от механизма р-ции. Напр., р-ции присоединения объединяются общим внеш. признаком-образованием одного нового соед. из двух или неск. исходных в р-циях замещения один фрагмент молекулы замещается на другой, при изомеризации происходит перераспределение связей между атомами в молекуле без изменения ее состава и т.д. [c.212]

    Стереохимическое течение реакций замещения в системах, где ассоциация ионов играет важную роль, показано на схеме (15). В схему включен также общий ход реакций в системах, где возможно взаимодействие соседней группы (О), обладающей нуклеофильными свойствами, с карбениевым центром. Обычным стерео химическим результатом таких реакций замещения внешним нуклеофилом ( ) является сохранение конфигурации, как это, например, наблюдалось для соединения (18) и его эрытро-изомера. Как показано на схеме (15), могут возникать также и продукты перегруппировки. [c.534]

    Реакции боковых цепей тиофена, как и реакции замещения в цикле, имеют много общего с соответствующими реакциями бензола. Однако, как уже отмечалось для амино-, гидрокси- и мер-каптопроизводных, превращения боковой цепи тиофеновых соединений имеют и некоторые уникальные особенности. В общем, тиофеновое кольцо как заместитель оказывает —1-эффект на присоединенные к нему группы, ио его способность стабилизировать как положительный, так и отрицательный заряды на заместителе значительно вьше, чем у фенильной группы. Это можно видеть, например, по более высокой миграционной способности тиенила (в 1000 раз больще, чем в случае фенила, и в два раза больще, чем в случае п-метоксифенила) при катализируемой кислотой перегруппировке пинаколинового типа (схема 60) [123] и аллильной перегруппировке (схема 61 в 40 раз быстрее, чем для фенильного аналога), что обусловлено электронодонорной способностью тиофенового кольца [134] скорость катализируемой основанием перегруппировки миндальной кислоты (86 Аг = РЬ) в 33 раза меньше, чем у ее тиофенового аналога (86 Аг = 2-ТЬ), что указывает на электроноакцепторную природу тиенильной группы [125]. [c.273]

    Реакции, рассматриваемые в этой главе, можно разделить на две группы реакции элиминирования (дегидроцианирование, децианирование и др.) и реакции замещения (внутримолекулярные перегруппировки, реакции нуклеофильного замещения нитрильной группы гидроксилсодержащими группировками, основными азотсодержащими группировками, группировками с активной метиленовой группой и др.). [c.400]

    По реакции замещенных гидантоинов с хлорангидридами кислот можно получать различные 1-ацил-3-(3,5-дихлорфенил) гидантоины (схема 43). Интересна перегруппировка 1-(3,5-ди-хлорфенил) -3-Л/-изопропилкарба моил) имидазолидиндиона-2,5, протекающая в водно-спиртовом или спиртовом растворе при комнатной температуре в течение нескольких дней (схема 44) [298]. Полученный продукт обладает значительно меньшей фунгицидной активностью, чем исходное соединение. [c.555]


Смотреть страницы где упоминается термин Реакции замещения с перегруппировкой: [c.146]    [c.10]    [c.7]    [c.5]    [c.161]    [c.868]    [c.2016]    [c.276]    [c.5]    [c.152]    [c.342]    [c.245]    [c.427]    [c.53]    [c.56]    [c.634]    [c.168]    [c.249]    [c.134]   
Курс теоретических основ органической химии издание 2 (1962) -- [ c.609 , c.647 ]




ПОИСК





Смотрите так же термины и статьи:

Анионотропная перегруппировка ацетиленовых спиртов в условиях реакций замещения

Винилгалогениды перегруппировка в реакциях нуклеофильного замещения

Молекулярные перегруппировки при реакциях замещения

Молекулярные перегруппировки при реакциях замещения в ряду галогенопроизводных и спиртов аллильного типа

Молекулярные перегруппировки при реакциях замещения в ряду галогенпроизводных и спиртов аллильного типа

Реакции замещения

Электронные представления о механизме перегруппировок галогенопроизводных и спиртов при реакциях замещения

Электронные представления о механизме перегруппировок галогенпроизводных и спиртов при реакциях замещения

алогенпроизводные предельного механизм перегруппировок при реакциях замещения

кул я рн ые реакции нуклеофильного замещения перегруппировки



© 2025 chem21.info Реклама на сайте