Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поликонденсация механизм

    Механизм отверждения различен для резольных и новолачных олигомеров. Термореактивные резолы отверждаются при нагревании в отсутствии отвердителей. При этом продолжается реакция поликонденсации и метиленовые мостики между фенольными ядрами образуются за счет содержаш ихся в них метилольных групп. Процесс отверждения ускоряется введением ускорителей (катализаторов) в виде оксида кальция или магния. [c.404]


    ПОЛИКОНДЕНСАЦИЯ. МЕХАНИЗМ И УСЛОВИЯ [c.400]

    При ступенчатой полимеризации и поликонденсации механизм каждой отдельной стадии обычно такой же, как и в случае низкомолекулярных соединений. Все находящиеся в реакционной смеси молекулы способны реагировать в любой момент времени. Таким образом, первоначально мономеры превращаются в олигомеры, а затем, после того как весь мономер израсходован, олигомеры реагируют друг с другом, образуя полимеры с большей молекулярной массой, и т. д. Для получения полимера с высокой молекулярной массой необходимо, чтобы все элементарные реакции проходили с высокими выходами. Это означает, что все побочные реакции должны быть исключены, мономеры (а при проведении процесса в растворе и растворители) должны быть тщательно очищены. Ступенчатая полимеризация и поликонденсация отличаются от цепной полимеризации несколькими особенностями (а) рост макромолекулы происходит при взаимодействии любых двух находящихся в системе частиц (б) скорость полимеризации максимальна в начале процесса и непрерывно убывает в ходе реакции (в) концентрация мономера быстро уменьшается еще до того, как в системе появится сколько-нибудь заметное количество полимера с высокой молекулярной массой (г) полимеры с высокой молекулярной массой образуются лишь при очень высокой степени конверсии. [c.309]

    Таким образом, для характеристики этих трех основных реакций — полимеризации, полиприсоединения и поликонденсации — необходимо исходить одновременно из формального механизма и из кинетики реакции. Все методы получения высокомолекулярных веществ из низкомолекулярных укладываются в три названные полиреакции они будут ниже вкратце рассмотрены. [c.931]

    Реакция протекает по механизму нуклеофильного замещения хлорных групп полисульфидным анионом. Поликонденсация осуществляется при 80—100°С в водной дисперсии. [c.554]

    Как бы вы экспериментально определили, по какому механизму (полимеризации или поликонденсации) идет образование полимера из неизвестного мономера  [c.284]

    Обычно при рассмотрении механизма поликонденсации принимают в соответствии с экспериментом, что реакционная способность функциональных групп не зависит от длины молекулярной цепи, которой она принадлежит и от вязкости реакционной среды, которая сильно возрастает при ноликонденсации. Принятие этих допущений позволяет при рассмотрении кинетики пользоваться единой константой скорости реакции конденсации и заменять концентрации всех молекул концентрациями функциональных групп. [c.33]


    Авторы затрудняются высказать суждение о характере реакций, происходящих между целлюлозой и сульфонатами продуктов фенолформальдегидной поликонденсации. Механизм процессов образования растворимых и в особенности нерастворимых продуктов отличается большой сложностью, так как возможно, что во взаимодействии принимают участие как гидроксильные группы фенола и полифенолов, так и гидроксилы целлюлозы и продуктов ее деструкции. Присутствие в реагентах сульфогрупп может в еще большей степени усложнять течение реакций. [c.194]

    Благодаря реакциям межцепного обмена, протекающим в условиях процесса поликонденсации по механизму нуклеофильного замещения между полисульфидными группами различных полимерных молекул с концевыми группами, а также неорганическим полисульфидом, из сферы реакции удаляются полимерные фраг- [c.554]

    Рассмотренная реакция имеет название ступенчатой полимеризации. Иногда ее называют миграционной полимеризацией (вследствие миграции водорода), или полимеризацией полиуретанового типа. Особенность ее заключается в следующем она, как и реакция полимеризации, не сопровождается отщеплением низкомолекулярных продуктов повторяющееся структурное звено имеет то же число атомов, что исходные мономеры. От реакции полимеризации она отличается тем, чю порядок чередования атомов в структурном, звене отличается от порядка чередования их в исходных мономерах. Процесс образования полимеров протекает не по цепному механизму, а ступенчато, аналогично реакции поликонденсации. [c.42]

    В соответствии с ранее изложенным механизмом коксообразования в необогреваемых камерах состав газа изменяется в тече-ппе всего процесса вначале, до протекания усиленных процессов поликонденсации, газ имеет повышенную плотность, в дальнейшем образуются в основном легкие углеводороды. Влияние температуры на качество газов наглядно иллюстрируют данные, полученные при термоконтактном коксовании арланской нефти на порошкообразном теплоносителе [28]. [c.127]

    Реакции поликонденсации, как и обычные конденсации, требуют некоторой энергии активации, поэтому они протекают лишь при нагревании. Процесс идет ступенчато, т. е. рост цепей происходит за счет последовательного присоединения молекул друг к другу. Поэтому поликонденсации протекают медленно, чем они отличаются от полимеризации, проходящей быстро по цепному механизму при низких температурах. Часто при поликонденсациях первичной реакцией является миграция атома водорода из одной молекулы в другую, как при альдольных уплотнениях, реакции Перкина и аналогичных процессах. [c.488]

    Реакции поликонденсации (стр. 487), в отличие от полимеризации, протекают часто по ступенчатому механизму [61] поэтому их скорость значительно меньше, и они требуют нагрева. [c.628]

    Вначале для объяснения механизма процесса поликонденсации было высказано предположение об образовании координационной связи меладу трехфтористым бором и нуклеофильным атомом углерода диазометана- [c.197]

    При образовании асфальтенов решающую роль играют процессы деструкции и поликонденсации по консекутивному механизму. По иому иа- [c.27]

    По кислотно-основному механизму идут каталитические реакции гидролиза, гидратации и дегидратации, полимеризации, поликонденсации, крекинга, алкилирования, изомеризации и др. Типичные катализаторы для кислотно-основного взаимодействия — кислоты и основания. Активными катализаторами являются соединения бора, фтора, алюминия, кремния, фосфора, серы и других. элементов, обладающих кислотными свойсгвами, или соединения элементов 1 и 2 групп периодической системы, обладающих основными свойствами. [c.27]

    Межфазную поликонденсацию обычно проводят при комнатной температуре. Повышение температуры реакции, как правило, приводит к уменьшению выхода молекулярной массы образующегося полимера. Механизм межфазной поликонденсации недостаточно изучен, поэтому условия ее проведения определяются эмпирическим путем. Преимущества этого процесса — высокие скорости и низкие температуры реакции. Кроме того, не требуется высокая степень очистки реагентов (при низких температурах побочные реакции не столь важны), стехиометрический состав поддерживается автоматически. [c.62]

    ИСХОДИТ непрерывное нивелирование размеров растущих макромолекул в процессе поликонденсации (рис. 59). Сравнительно небольшое различие фракций полимера по молекулярному весу и случае линейной поликонденсации можно объяснить большей скоростью деструкции высокомолекулярных фракций. Протеканием процесса деструкции объясняется также значительно меньшая величина среднего молекулярного веса полимера, по сравнению с молекулярным весом, найденным по расчетным данным (из условий равновесного состояния в процессе поликонденсации). Механизм реакции, вызываю. цей деструкцию цепей полимера иод влиянием 1шзкомолекулярпых ветеств. можно представит следуюишм образом  [c.168]


    Описанию методов получения полиэтилена, его свойств и областей применения посвящено много обзорных статей и моногра,-фий [4—6, 16—43]. В монографии Коршака [42] рассмотрены основные пути получения высокомолекулярных соединений — реакции полимеризации и поликонденсации, механизм этих реакций и влияние строения мономеров на способность к образованию высокомолекулярных соединений и на свойства последних. [c.175]

    Аминоформальдегидные смолы, как и фенолоформальдегидные,. получаются реакцией необратимой поликонденсации. Механизм образования мочевиноформальдегидных смол (МФС) весьма сложен и не выяснен полностью, хотя предложено немало его толкований. Установлено, что при поликонденсации в водном растворе в зависимости от pH среды, соотношения исходных компонентов, температуры и продолжительности реакции могут быть получены различные пордукты. В сильнощелочной среде (pH 11—13) независимо от соотношения компонентов образуется монометилолмо-чевина  [c.185]

    Известно, что полиорганосилоксаны содержат значительное количество гидроксильных групп, связанных с кремнием и играющих важную роль в реакциях поликонденсации. Механизм отверждения материалов на основе систем полиорганосилоксан—силикат—окисел обусловлен взаимодействием гидроксильных групп полимера с силанольными группами поверхности силикатов и гидроксильными группами поверхности окислов. Следовательно, процесс отверждения зависит как от состава и строения кремнийорганического компонента (в данном случае полиорганосилоксана), так и от природы силикатных и окисных компонентов. [c.171]

    В целом механизм коксообразования (по Мейерсу) выглядит следующим образом. Первой стадией процесса является образование на активных металлических центрах ненасыщенных промежуточных соединений, представляющих собой моноциклические олефины и некоторое количество бицикличес-ких полиолефинов. Образовавшиеся соединения частично полимеризуются в полициклические с несколькими двойными связями в молекуле (т.н. кокс) и частично мигрируют через газовую фазу к активным кислотным центрам, на которых в результате крекинга образуются новые ненасыщенные углеводороды, в т.ч. и склонные к поликонденсации. Таким образом, на активных центрах катализатора происходит многослойное образование углеродистых соединений, приводящих к дезактивации. [c.77]

    К, поликонденсационным процессам ранее относили реакции образования полимеров путем взаимодействия полифункциональных мономеров с выделением низкомолекулярных продуктов. Однако такое определение не охватывает все известные в настоящее время процессы данного типа. Так, образование типичных конденсационных полимеров — полиуретанов и полимочевин — из диизоцианатов и диолов или соответственно диаминов протекает без выделения низкомолекулярных продуктов. Более правильно при определении процесса поликонденсации учитывать особенности механизма образования полимера. Поэтому целесообразно рассматривать поликонденсацию как процесс получения высокомолекулярных соединений путем взаимодействия полифункциональных мономеров, протекающий по ст упенчатому механизму. [c.156]

    Принцип компенсации энергии разрывающихся связей энергие образующихся связей особенно полезно приме нять при совместном рассмотрении нескольких одновременно протекающих реакций по так называемому слитному механизму (например, сложных реакци11 перераспределения водорода, деструктивной поликонденсации, гидрокрекинга, дегидроциклизации парафиновьЕх углеводородов) или когда трудно установить, какая стадия реакции является лимитирующей распада или десорбции. [c.87]

    Первичный и вторичный алкильные катионы проявляют сильные кислотные свойства и ие стабильны в условиях реакции. Реакция заканчивается в основном при участии значительно менее кислого грег-бутильного иона. Побочные реакции поликонденсации парафинов и полимеризации олефинов, приводящие к возникновению стабильных менее кислых третичных ионов, нарушают четкую картину алкилирования первичными и вторичными алкильными катионами. Этот механизм, однако, подразуме- [c.152]

    Цепная полимеризация. Механизмы радикальной и ионной поли меризации. Инициаторы и регуляторы. Причины образования развет вленных и пространственных полимеров. Стереорегулярные полимеры Применение катализаторов Циглера—Натта. Сополимеризация. Блок сополимеры и привитые сополимеры. Поликонденсация. Фенолальде-гидные и мочевиноальдегидные полимеры. Сложные полиэфиры. Поли меры на основе фурфурола. Мономер ФА. Эпоксидные и кремнийорга нические полимеры. Тиоколы. Полиуретаны. Полиамиды. Альтины Синтетические и натуральные каучуки. Полистирол и полиакрилаты Особые свойства высокомолекулярных соединений. Химические реак ции высокомолекулярных соединений полимераналогичные превращения и макромолекулярные реакции. Вулканизация. Деструкция полимеров. Ингибиторы деструкции. [c.108]

    Исходя иа консе17тивного механизма образования кокса, наличия на поверхности катализаторов свободных активных центров, центров, на которых в данный момент происходят реакции уплотнения и центров, на которых "коксовые" полимеры уже достигли максимальной степени поликонденсации, Левинтер и Панченков /II,IV вывели уравнение коксования катализатора [c.109]

    При внесении в шихту для коксования оптимальных ую качеству добавок органических веществ, обычно пеков или масел (при соответствующем их расходе), можно повысить спекаемость углей и шихт. Механизм действия органических добавок может быть в общем представлен в следующем виде. При нагреве углема-сляаой смеси до температур, при которых еще не начинается термическое разложение угля, добавки распределяются по поверхности угольных зерен и частично адсорбируются ими. В период пластического состояния молекулы добавки проникают в межмолекулярное пространство изменяющегося вещества угля и способствуют повышению макромолекулярной подвижности по механизму внешней пластификации. Молекулы жидкой добавки раздвигают молекулы образовавшихся продуктов расщепления угля и затрудняют их взаимодействие в процессе поликонденсации. Одновременно добавки участвуют в реакциях водородного перераспределения, в результате которого перенос водорода добавок к реагирующим молекулам (радикалам) угля приводит к стабилизации и, как следствие, увеличению количества вешеств со средней молекулярной массой, образующих жидкую, фазу пластической массы. Кроме того, наличие вещества добавки повышает концентрацию в пластической массе жидкоподвижных продуктов. В результате возрастает количество, текучесть и термостабильность пластической массы, улучшаются условия Армирования пластического контакта остаточного вещества угольных зерен и зарождения новой промежуточной фазы (мезофазы), с которой связывают развитие упорядоченной углеродистой (оптически анизотропной) структуры полукокса-кокса. [c.236]

    Для объяснения дальнейшей конденсации этих простых продуктов в высокомолекулярные полимеры предложено несколько механизмов или схем. Вероятнее всего процесс идет по следующим стадиям 1) образование диметилолмочевины, 2) переход ее после де гидратации в диметиленмочевину, 3) поликонденсация диметилен-мочевины в трехмерный полимер  [c.500]

    Однако при протекании поликонденсации по такому механизму требуется затрата большого количества энергии для оти1епления протона. Пользуясь приведенной схемой, невозможно также объяснить различие скоростей полимеризации диазометана в присутствии различных соединений бора как катализаторов. [c.198]

    Механизм образования полиметиленмочевины и строение ее макромолекул пока неизвестны. По-видимому, полиметиленмо-чевину следует рассматривать как продукт поликонденсации моно-и диметилолмочевины. Аналогичные продукты можно получить и непосредственным взаимодействием формальдегида с избытком мочевины в сильнокислой среде. Побочным продуктом этой реакции является вода. [c.432]

    Механизм полимеризации лактамов недостаточно изучен. При нагревании капролактама при 250—260° в присутствии небольшого количества воды, аминокислоты или амина происходит разрушение цикла и образование полимера. Влага, возможно, способствует процессу гидролиза некоторого количества лактама до аминокислоты. При поликонденсации образовавшейся аминокислоты снова выделяется вода, которая расходуется в процессе гидролиза нового количества лактама. Такой процесс образования полимеров лактама можно представить следующей схемой  [c.444]

    Продукты гидролиза нагревают в присутствии катализатора до образования высокомолекулярного соединения. Механизм образования полиорганосилоксанов полностью не установлен. Поедполагают, что протекает реакция поликонденсации, для возникновения которой требуется некоторое количество воды  [c.481]

    Исходные дистиллятные топлива, как правило, являются истинным раствором углеводородов и примесей неуглеводородных соединений. При длительном хранении топлив вследствии автоокисления углеводородов и примесей образуются первичные продукты окисления (перекиси и гидроперекиси, затем - спирты, альдегиды, кетоны и др.). Эти продукты взаимодействуют между собой по механизму поликонденсации и полимеризации с образованием высокомолекулярных смол. Обычно при низкотемпературном окислении образующиеся продукты окисления растворимы в топливах, но являюггся исходным материалом для дальнейшего доокисления, уплотнения и формированием отложений в теплообменниках, на фильтрах, штоках и тарелках клапанов, форсунках двигателей. Низкую химическую стабильность имеют бензины термического крекинга, содержащие до 50% олефиновых углеводородов. [c.85]

    Склонность бензинов к образованию отложений во впускной системе. Окисление и уплотнение (поликонденсация, полимеризация) мапостабиль-ных компонентов приводит к образованию в бензине растворимых высокомолекулярных смолистых веществ. При испарении бензина в топливной системе двигателя (диффузоре карбюратора, впускном трубопроводе) смолы выпадают на поверхностях и при повышенной температуре образуют твердые отложения. Слой отложений ухудшает теплообмен, условия испарения бензина и инициирует дальнейшее смолообразование. Смолы на штоках и тарелках клапанов нарушают работу клапанного механизма, приводят к зависанию клапанов и нарушению работы клапанного механизма. Эти процессы снижают надежность, мощность и экономичность работы двигателя. [c.129]

    Поликонденсация - реакция между полифункциональными молекулами, которые присоединяются друг к другу с отщеплением какой-либо простой молекулы (обычно воды). В отличие от полимеризации, которая происходит как цепной механизм (т. е. промежуточные соединения вещества представляют собой реакционно способные частицы-радикалы или ионы), поликонденсация протекает ступенчато с образованием на каждой стадии устойчивых соединений, требующих дальнейшей активации. Конечными продуктами поликонденсации могут быть макромолекулы с различной структурой, в зависимости от условий проведения реакции. Рассмотрим механизм поликонденсации на г риг. гре взаимодействия фенола и формальдегида. Продуктом этой поликоядесации являются фенолформальдегидные смолы. [c.235]

    Степень полидисперсности связана с механизмом образования полимера. Так, для полимера, полученного радикальной полимеризацией, при рекомбинационном обрыве цепи Ai /Ai = 1 5, при обрыве цепи в результате диспропорционирования М /Мп = 2. Для продуктов поликонденсации наиболее вероятное отношение Мш/Мп = 1 + <7, где —степень завершенности реакции при q- отношение MwfMn 2. Но полимер, подвергнутый различным химическим или физическим превращениям, при которых могут происходить и деструкция и сшивание макромолекул, может характеризоваться практически любым отношением Ми-/М . [c.94]

    Теория состоит из трех крупных взаимосвязанных разделов, в которых рассмотрены закономерности поликонденсации акваионов осаждаемых металлов и формирования аморфных гидроксидов, закономерности перехода гидроксидов из аморфного в кристаллическое состояние при старении осадков и твердофазные превращения гидроксидов при термообработке. В ходе исследований, проведенных в русле этой теории, был раскрыт неизвестный ранее механизм образования аморфных малорастворимых гидроксидов, изучена кристаллизация гидроксидов при старении, установлен механизм твердофазных превращений гидроксидов при прокалива- [c.256]

    Влияние концентрации мономера. Поликонденсация протекает по ступенчатому механизму. Сначала взаимодействуют молекулы мономеров, образуя димеры. Последние взаимодействуют друг с другом и с мономером, образуя тримеры и тетрамеры и т. д. Молекулярная масса увеличивается медленно, одновременно исчерпываются функциональные группы. [c.55]

    Поликонденсация протекает по ступенчатому механизму. Как мы только что видели, образование полимера происходит шаг за шагом — ступенями, через стадию димера, тримера, тетрамера и т. д. Промежуточные соединения стабильны, способны вступать в реакцию, если им сообщить энергию. При поликонденсации необходимая энергия затрачивается на каждый акт роста цепи равномерно, тогда как при цепном механизме она перенимается от предыдущих актов роста цепи и в основном затрачивается на образование активных центров. Поликонденсация может быть прервана в любой стадии и затем снова возобновлена. [c.39]


Смотреть страницы где упоминается термин Поликонденсация механизм: [c.106]    [c.401]    [c.24]    [c.93]    [c.66]    [c.354]    [c.144]    [c.83]    [c.94]    [c.259]   
Прогресс полимерной химии (1965) -- [ c.97 , c.115 ]

Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 7 (1961) -- [ c.10 , c.11 , c.207 , c.209 ]

Прогресс полимерной химии (1965) -- [ c.97 , c.115 ]

Введение в химию высокомолекулярных соединений (1960) -- [ c.27 , c.30 ]

Гетероцепные полиэфиры (1958) -- [ c.67 ]

Синтетические гетероцепные полиамиды (1962) -- [ c.129 , c.130 , c.134 ]




ПОИСК







© 2025 chem21.info Реклама на сайте