Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бензол, экстракция металлов

    Экстракция палладия. В растворах с pH = 2,4 ч- 4,9 палладий образует с избытком а-фурилдиоксима желтый комплекс, который хорошо экстрагируется хлороформом или бензолом. Экстракция происходит очень селективно 1000-кратные количества металлов платиновой группы, золото и железо не влияют на процесс. [c.156]

    Значительное влияние оказывает и pH. Скорость образования и экстракции внутрикомплексного соединения органическим растворителем быстро падает с уменьшением pH [921, 973, 974]. При pH 7 и выше экстракционное равновесие почти для всех дитизонатов устанавливается в течение нескольких секунд, при низких pH скорость экстракции заметно уменьшается [458]. На скорость экстракции влияет также константа распределения органического реагента [974]. Чем выше значение Рнд. тем большее время требуется для установления равновесия. Например, при одних и тех же условиях (pH, [НА]орг, растворитель и т. д.) экстракционное равновесие при использовании растворов ацетилацетона в бензоле (lg РнА = 0,76) достигается за несколько минут при экстракции металлов раствором бензоилацетона (1 РиА = 3, 14) равновесие обычно достигается при встряхивании не более часа, а при использовании растворов дибензоилметана (lg РнА = -= 5,35) для достижения равновесия нужно несколько часов . Аналогичное поведение наблюдалось также при экстракции дитизонатов скорость экстракции (и соот- [c.59]


    Перед определением необходимо применять экстракцию металлов смесью 80 % бензола и 20 % толуола при использовании ксилола при хранении происходит выпадение твердого осадка. [c.84]

    Для изучения полимеризации ионов металла в водных растворах выяснялась зависимость коэффициентов расиределения элемента от концентрации его в водной фазе. Образование любого полимера в водной фазе отражается количественно на уменьшении экстракции металла в бензол. На рис. 7 показана зависимость [c.180]

    Для целей экстракции амины применяют в форме растворов в различных органических растворителях (керосин, бензол, хлороформ, гексан и др.). Поскольку экстрагирующей способностью обладают фактически лишь соли аминов, то для детального понимания механизма экстракции металлов необходимо подробное изучение характера взаимодействия аминов с кислотами. Этому вопросу посвящено значительное число работ. Впервые высокомолекулярные амины для экстракции минеральных и органических кислот применили Смит и Пейдж [271]. Они нашли, что третичные амины более эффективны, чем вторичные и первичные. Сильные кислоты экстрагируются лучше, чем слабые, и могут быть удалены из смесей со слабыми кислотами. [c.127]

    Рис 119. Зависимость экстракции металлов 0,5 М (а) и 0,20—0,25 М (б) раствором теноилтрифторацетона в бензоле от pH водной фазы. [c.201]

    Экстракция бериллия в виде ацетил ацетона-т а. Внутрикомплексное соединение бериллия с ацетилацетоном лучше растворимо в бензоле, хлороформе, четыреххлористом углероде и т. д., чем в воде. Подобные соединения ацетилацетон образует со многими другими металлами. [c.127]

    Неразбавленный ацетилацетон можно использовать и как реагент и как растворитель. Благодаря высокой концентрации реагента (около 10 М) экстракция металлов проходит из более кислой среды. Для экстракции применяются также растворы ацетилацетона в бензоле, хлороформе или четыреххлористом углероде. [c.82]

    Хелаты хорошо растворяются в таких органических растворителях, как углеводороды, бензол, хлороформ, и, наоборот, плохо растворяются в воде. Это их свойство и используют при экстракционном выделении ионов металлов. В табл. 2.46 приведены хелатообразующие агенты, наиболее часто употребляемые при экстракции металлов. [c.149]

    Изменения процента экстракции серной кислоты и процента экстракции ТЬ и и (IV) из сульфатных систем с изменением структуры аминов по крайней мере внешне аналогичны (см. табл. 2). И в данном случае не отмечается резкого различия между классами аминов, и сильно разветвленные вторичные амины более подобны неразветвленным третичным, чем разветвленным вторичным аминам. Однако тип разбавителя влияет в прямо противоположном направлении, чем при экстракции металлов. По-видимому, есть основания предположить, что ассоциация молекул бензола и особенно хлороформа с амином по влиянию на экстракцию может напоминать повышенную развет- [c.205]


    В качестве примера опишем разделение дитизонатов Ag, Аи, Р<1 и Р1 на слое силикагеля толщиной 200 мк [222]. Анализ складывается из двух этапов а) экстракция металлов из водных растворов 0,1%-ным раствором дитизона в бензоле б) разделение комплексов методом тех. Хлороформные растворы дитизонатов применять нельзя, так как дитизонат платины неустойчив в хлороформе. [c.65]

    Как пример приведем метод разделения дитизонатов мышьяка, сурьмы и олова [221]. Дитизонаты мышьяка и сурьмы разрушаются силикагелем, но они могут быть разделены на тонких слоях целлюлозы. Дитизонаты As(III), Sb(III) и Sn(II) готовят смешиванием 0,1%-ных солянокислых растворов хлоридов металлов с раствором дитизона в бензоле. Экстракцию проводят в две стадии сначала из [c.72]

    В качестве экстрагентов наиболее часто применяют хлороформ, дихлорэтан, тетрахлорид углерода, бензол и др., все они легко подвергаются очистке промывкой и перегонкой. Свойства названных экстракционных реагентов и условия экстракции их комплексных соединений с металлами описаны во многих монографиях [1, 6, 7] и справочных руководствах [8]. Однако этими данными следует пользоваться с большой осторожностью. Экстракция примесей из реальных объектов сопряжена с влиянием вещества-основы, введением в систему маскирующих агентов, предотвращающих гидролиз основы или обусловленных условиями вскрытия препарата. Справочные данные даны для чистых растворов. В реальных системах оптимальные условия экстракции примесей могут отличаться от справочных, что может привести к значительным ошибкам. Изучение экстракции Ре, V, Мп, Си, Сг, N1, Со в виде диэтилдитиокарбаминатов хлороформом показало, что состав водной фазы сильно влияет на извлечение этих металлов. На рис. 2.1 приведены результаты изучения экстракции металлов из ацетатной, тартратной, фосфатной, оксалатной и оксалатно-фосфатной сред. Пожалуй, только Си, N1, Со экстрагируются достаточно полно в интервале рН = 3—8 независимо от присутствия комплексообразователей. Экстракция Ре и Мп значительно более подвержена влиянию состава водной фазы. Но больше всего комплексообразователи влияют на экстракцию V и Сг. [c.41]

    Техническое оформление метода экстракции несложно. Применяют баки с мешалками, куда заливают водный раствор солей нескольких металлов и экстрагирующего органического соединения, растворенного в керосине, эфире или других растворителях.. После сильно го перемешивания раствору дают отстояться, сливают водный раствор, промывают остаток водой, после чего в мешалку заливают водный раствор сильной кислоты или ее соли. При энергичном перемешивании металл, растворенный в органическом растворителе, переходит в водный раствор. В некоторых случаях органический растворитель подвергается отгонке от остающейся соли (эфир, бензол, хлористый углерод). Операции экстракции могут быть осуществлены в колоннах по методу противотока. [c.574]

    Для избирательного отложения ванадия и никеля в псев-доожиженном слое был использован катализатор крекинга, представляющий собой смесь частиц цеолита и оксидов металлов. В качестве сырья была взята смесь вакуумного газойля и нафтенатов ванадия и никеля. Экстракция оксидов последних из растворов их нафтенатов в бензоле при 80 °С показала, что наибольшее сродство к ванадию имеет основной оксид МяО, а к никелю - разные кислые оксиды (кроме 8102). Оказалось, что смешение катализатора крекинга с оксидами металлов может повысить устойчивость катализатора к отравлению этими металлами. [c.86]

    В работе [263] показано, что для экстракции металлов (перед их определением атомно-абсорбционной спектроскопией) лучше применять смесь 80 % бензола и 20 % толуола, нежели ксилол (в последнем при стоянии происходит выпадение твердого осадка). Здесь же обсуждены вопросы приготовления стандартов, автома--тической дозировки проб, загрязнения металлами из чужеродных продуктов (масел механизмов при нефтедобыче и транспортировке промывных вод и т. д.). Методом атомно-абсорбционной спектроскопии определялись ванадий, никель, медь, железо, молибден, кобальт. Выявлены различия в определении этим же методом концентрации никеля в виде никельорганических соединений в зависимости от лиганда. Форма существования никеля в нефтях и применение различных лигандов для его выделения из нефтей или концентрирования влияют на его определение [268]. [c.146]

    Исследования влияния разбавителя иа экстракцию металлов показали, что практически во всех случаях коэффициенты распределения уменьшаются в ряду алифатические углеводороды — циклогексан — тетрахлорметан — ксилол — толуол — бензол — нитробензол— хлороформ— МИБК — ТБФ — метилнзобутилкарбитол. В той же последовательности повышаются константы распределения самих кислот и понижаются константы их димеризации. Отсюда следует, что сильное взаимодействие алкилфосфорных кислот с разбавителями препятствует экстракции катионов металлов. [c.132]


    Кз ЭТОГО уравнения следует, что чем больше величина (Р нл+ Ir ha). тем более щелочной раствор требуется для экстракции металла. Иначе говоря, больше будет значение (pHi/.)j Поскольку значение константы устой-чпвостн Рд, может быть связано со значением /< нд, а значение константы распределения Pfj внутрикомплексного сседннекия — со значением константы распределения реагента Рнд, влияние члена, включающего произведение Зд.Рд, будет довольно сложным. Однако можно ожидать, что, например, экстракция металлов растворами дитизона в четыреххлористом углероде (р/Снд + Ig на = 8,8) или растворами купферона в хлороформе рКиА + g нл = = 6,4) будет в общем проходить в более кислых растворах, чем экстракция растворами ацетилацетона в бензоле (Р нл + Ig Рил = 10.2) или 8-оксихинолина в хлороформе (рДнА + Ig РнА = 12,3). [c.48]

    Экстракция бензоилацетонатов была систематически изучена Стары и Гладкы [964, 974]. Обзор данных об экстракции металлов бензоилацетоном приведен в табл. 7, а зависимость экстракции многих металлов 0,1 М раствором бензоилацетона в бензоле от pH водной фазы показана на рис. 20—24. [c.93]

    Данные об экстракции дибензоилметанатов ряда металлов приведены в табл. 8. Кривые экстракции металлов 0,1 М раствором дибензоилметана в бензоле показаны на рис. 25—29. [c.99]

    Для отделения мышьяка от железа и стали японские ученые [17] применили экстракцию хлороформом в виде АзС1з из солянокислого раствора. Этот метод был использован [18] при определении малых количеств мышьяка в цветных металлах, сплавах и соляной кислоте, а также для определения мышьяка в меди и медных сплавах [19]. При отделении Аз, 5Ь, В1 в работе [20] использовали бензол и бензольный раствор пирокатехина. При этом экстракцию проводили из 2— 10 М раствора соляной кислоты. Авторы показали, что при концентрации раствора соляной кислоты больше 8 М мышьяк полностью извлекался бензолом. Экстракцию мышьяка бензолом применяли, кроме того, при определении его в чугуне и углеродистых сталях [21], олове [22], а также при определении следовых количеств мышьяка в асбестовых отходах [23]. Авторы [24], определяя мышьяк в руде, применяли экстракцию Аз (III) из 12 н. раствора соляной кислоты при помощи четыреххлористого углерода. При определении Ы0 5% примеси мышьяка в хлористом германии (IV) и окиси германия (IV) Аз отделяли экстракцией из четыреххлористого германия в солянокислую среду с добавкой небольшого количества брома [25]. Для определения 5-10 % мышьяка в четыреххлористом германии разработан способ экстракции из последнего мышьяка в солянокислую среду, содержащую добавку азотной кислоты [26]. [c.185]

    Большой интерес представляет синтез хелатных полимеров межфазной поликонденсацией. Хотя получение низкомолекулярных хелатных соединений на границе раздела жидкость — жидкость известно давно и широко применяется при экстракции металлов из водных растворов, закономерности межфазного синтеза таких полимеров еще не изучены. Одним из примеров межфазной поликонденсации хелатных полимеров является их синтез из 4,4 -(ацетоацетил)-дифенилоксида и ацетата цинка на границе раздела вода — бензол . Полученный в различных условиях полимер имел один и тот же молекулярный вес ( Ю00), что соответствует примерно тетрамеру. [c.220]

    Механизм экстракции металлов разбавленными растворами этих кислот в керосине, четыреххлористом углероде, хлороформе, бензоле или в другом неполярном растворителе представляет собой процесс обмена катиона, так же как процесс экстракции хелатов. Формально его можно описать так же, как катионообменный процесс на ионообменной смоле, хотя аналогия не должна проводиться слишком далеко, потому что органическая фаза (на основе, например, керосина) с низкой диэлектрической приницаемостью, фактически не содержащая воды, довольно сильно отличается от (водной) фазы смолы, даже если последняя содержит 50% углеводородной основы.- [c.32]

    При перемешивании бензальдегида с 0,13 моля тетрабутил-аммонийцианида в воде при комнатной температуре проходит бензоиновая конденсация с выходом 70% [435]. Проведение реакции в ТГФ или ацетонитриле при комнатной температуре требует присутствия только 0,02 моля четвертичного аммониевого цианида [413]. В этом состоит сущ,ественное отличие от общепринятой методики (кипячение в этаноле или метаноле), в которой применяется 0,2—0,4 моля цианида щелочного металла на 1 моль бензальдегида. Очень гигроскопичные тетраалкиламмониевые цианиды приготовляют из бромидов в абсолютном метаноле путем ионного обмена на колонке со смолой IRA-400 ( N-форма) [436]. Если использовать водный раствор K N и аликват 336 [437], то образуются лишь следы бензоина, вероятно, потому, что хлорид и цианид имеют близкие константы экстракции. Бензоиновая конденсация осуществляется также в присутствии 18-крауна-б или дибензо-18-крауна-6 в качестве катализаторов при 25—60°С либо в системе водный цианид калия/ароматический альдегид без растворителя, либо в системе твердый K N/альдегид, растворенный в бензоле или ацетонитриле [437]. [c.228]

    При выборе органического растворителя можно руководствоваться некоторыми общими указаниями. Для экстракции неорганических солей из воды пригодны соединения с умеренной растворимостью в воде и небольшой молекулярной массой. Для некоторых солей и слабо растворяющихся в воде органических растворителей можно составить ряд в направлении уменьшающейся экстракционной способности хлороформ, о-дихлорбензол, бензол, толуол, че-тыреххлористый углерод, циклогексан, н-гексан. Для солей, образующих комплексы, и растворителей типа доноров (кетоны, эфиры) составить такой ряд для всех металлов невозможно. Известно, например, что для Ре , Аи и Оа существует следующая последовательность (начиная с высшей) метилизопропилкетон, метилизобутилкетон, фурфурол, этилацетат, этиловый эфир, изопентиловый спирт, изоамилацетат, р-хлорэтиловый эфир, изопропиловый эфир, углеводороды. Для других металлов будет совсем иная последовательность. Некоторые задачи были рассмотрены в 3 и 4. [c.425]

    Исходная концентрация металла в водном растворе 10 — 10 моль/л ионная сила раствора 0,1 (H IO4, Na I04, NaGH) температура, при которой проводилась экстракция, 20° С. Растворитель — бензол. Концентрация реагента 0,1 моль/л. [c.117]

    Целью процесса яиляется получеиие высокооктанового ароматизированного компонента бензина или чистых ароматических углеводородов, которые выделяют из катализата одним из извест-пых промышленных методов (экстракцией, азеотропной перегонкой и др.). При получении компопента бепзина риформингу подвергают обычно широкие фракции с началом кипения 85— 105 °С и концом кипения около 180 °С. Для ироизводства ароматических углеводородов используют более узкие фракции 62—105 или 62—120 °С — для получепия бензола и толуола 120—150 °С — для получения ксилолов. Наиболее распространены катализаторы, содержаш ие платину, а также платину и рений на окисноалюминие-вой или цеолитовой основе. Все шире применяют полиметаллические катализаторы, в которых помимо платины и рения содержатся германий, свинец и другие металлы. В зависимости от вида катализатора температура риформинга составляет от 400 до 500 °С. [c.161]

    Для извлечения ароматических углеводородов из гидрированных бензинов пиролиза, так же как из катализатов риформинга, наиболее часто применяется экстракция. Широкое распространение получила экстракция смесью Н-метилпирролидона с этиленгликолем (процесс Аросольван ) [102], обеспечивающая в сочетании с последующей ректификацией получение высококачественных товарных ароматических углеводородов. В качестве экстрагентов применяются также гликоли, сульфолан, диметилсульфоксид и другие растворители [124]. При переработке узких гидроочищенных фракций пиролиза, содержащих более 75% одного какого-либо ароматического углеводорода (чаще бензола) применяется экстрактивная ректификация с Ы-метилпирролидоном (процесс Дистапекс ) [125], диметилформамидом [126] или другим растворителем. Двухстадийное гидрирование узкой фракции бензина пиролиза (Сб—Се) с последующей экстракцией гидрогенизата осуществляется и в процессах других фирм. Так, в одном из процессов на первой ступени гидрируются диолефины и стирол на катализаторе из благородного металла (давление 2,7—6,2 МПа, температура 65—218°С), а на второй ступени на алюмокобальтмолибденовом катализаторе гидрируются олефины и удаляются сернистые соединения [127]. [c.186]

    Растворяющая способность ароматических углеводородов па-мяого выше, чем бензинов. Бензол хорошо растворяет жиры II масла и может смешиваться с ними во всех отношениях. Жирные кислоты растворяются в бензоле легче и больше, чем в бензинах. Мыла жирных кислот и щелочных металлов мало растворимы либо совсем не растворимы в бензоле, но в присутствии жирных кислот или нейтральных масел растворяются в заметных количествах. Ппя экстракции бензол растворяет жиры почти в полтора раза больше, чем бензин. Поэтому при экстракции костей бензол предпочитают бензину. [c.141]

    Экстракция относится к наиболее эффективным методам разделения веществ. Экстракщюнные методы используют при извлечении различных компонентов из растительного и минерального сырья, для выделения газов из металлов и сплавов при высоких температурах, для отделения одних компонентов раствора от других и т. д. Описаны случаи экстракции расплавами солей или металлов из расплавов. Экстракционные методы на практике использовались издавна. Так, еще несколько столетий назад некоторые препараты, парфюмерные вещества, красители готовили по методикам, в которых применялась экстракция. В 1825 г. была описана экстракция брома бензолом, в 1842 г. — экстракция урана из растворов азотной кислоты, в 1867 г. — предложено использование различий в экстрагируемости кобальта, железа, платиновых металлов из тиоцианатных растворов для их разделения. В 1892 г. описана экстракция хлорида железа(1П), в 1924 г. — хлорида галлия(1П). В 20-е годы показана возможность использования органических хелатообразующих реагентов (в частности, дитизона) для экстракционного извлечения металлов в виде комплексных соединений. [c.240]

    Экстракционные методы разделения химических элементов основаны на различной растворимости анализируемого соединения в воде и в каком-либо органическом растворителе. При этом происходит распределение растворенного вещества между двумя растворителями (закон распределения, 23). Для извлечения из водных растворов чаще всего применяют различные эфиры (диэтиловый эфир), спирты (бу-тпловьп1, амиловый), хлоропроизводные (хлороформ, четыреххлористый углерод). Иод можно извлечь бензолом, сероуглеродом, хлорное железо — диэтиловым или диизопропиловым эфиром. Лучше всего катионы металлов извлекаются органическими растворителями, если соответствующий металл предварительно связать в виде внутрикомплексного соединения. Например, свинец связывают дитизоном и извлекают четыреххлористым углеродом, никель связывают диметилглиоксимом и извлекают хлороформом в присутствии цитрата натрия. Смеси ионов различных элементов можно разделять экстракцией, используя избирательное (селективное) извлечение различными растворителями и регулируя pH раствора. Можно осуществлять также и групповые разделения ионов. [c.454]

    Р(0)0Н, жидк. зам —60°С, и 40—55 С/12 мм рт. ст. й 0,969, 1,4418 не раств. в воде, раств. в орг. р-рителях. В р-рах при коиц. > 0,5 М существует в виде димера. Прнмеи. аналнт, реагент для экстракции и разделения металлов (в т, ч. радионуклидов) для получения моющих ср-в. ДИ(2-ЭТИЛГЕКСИЛ)ФТАЛАТ eHiiO O eH,,) , ш. —46 С, 231 I5 мм рт. ст. d 0,9861, п ° 1,4863, г 77—82 мПа-с не раств. в воде, раств. в сп., эф,, бензоле всп 206 °С, Получ, взаимод. фталевого ангидрида с 2-этилгексанолом, Пластификатор для пластмасс и синт. каучуков. ПДК 0,5 мг/м . [c.193]

    Экстрактивную кристаллизацию применяют для фракционирования смесей, образующих эвтектики (напр., смесь м и л-кснлолов, р-ритель- -гептан) и мол. комплексы (напр., смесь м- и л-крезолов, р-рнтель-уксусная к-та). Довольно часто экстрактивную кристаллизацию сочетают с массовой и направленной кристаллизацией, а также с зонной плавкой, что значительно повышает эффективность очистки в-в с помошью указанных методов. Так, экстрактивную зонную перекристаллизацию с р-рителями (бензол, нафталин) используют для очистки насыщ. углеводородов и полистирола, экстрактивные направленную кристаллизацию й зонную плавку с экстрагентами-для очистки металлов (вспомогат. в-ва-легкоплавкие металлы, соли, оксиды) и разнообразных орг. в-в (экстрагенты - те же, что и при экстракции жидкостной, напр, трибутилфосфат, иафтево-вые к-ты, алкилфенолы, первичные н вторичные амивы). [c.526]

    Сурьму в ниобии и пятиокиси ниобия наиболее часто определяют методами спектрального анализа. Ниобий предварительно переводят в пятиокись. Прямые методы [49, 9721 позволяют определять до 1-10- % ЗЬ. Предварительное отделение ЗЬ методом испарения снижает предел обнаружения ЗЬ до 1-10 % [379]. Метод, включающий концентрирование ЗЬ соосаждением с СиЗ [6431, и метод, в котором удаляют Nb экстракцией 60%-ным раствором ТБФ в бензоле в среде 10 М Н2304 [3781, также характеризуются высокой Чувствительностью п-10 % (5г=0,15-н 0,20). Метод инверсионной вольтамперометрии применен для определения ЗЬ > 5-10" % (5г <1 0,26) в ниобатах щелочных металлов и пятиокиси ниобия [290]. Предварительное выделение 8Ь экстракцией в виде диэтилдитиокарбамината позволяет снизить предел обнаружения ЗЬ до 1-10 % [223]. [c.142]

    Из 6 М раствора соляной кислоты с родамином Б, кроме галлия, бензолом экстрагируются соединения железа (III), золота (III), сурьмы (V), таллия (III). Однако в присутствии восстановителей ( ПС1з, аскорбиновой кислоты и др.) умеренные количества этих металлов не мешают определению содержания галлия. С использованием родамина Б содержание галлия определяют в горных породах, минералах, бокситах, свинце, цинке, алюминии и др. При условии больших содержаний алюминия галлий выделяют экстракцией амилацетатом из 6 М раствора соляной кислоты. [c.217]

    Для определения мышьяка в других материалах, в том числе в металлах и их сплавах, пробу переводят в раствор подходящим способом, к полученному раствору прибавляют конц. НС1 до концентрации 9 Л/ и иодид калия до концентрации 0,25 М для восстановления As(V) до Аз(1П), затем мышьяк экстрагируют бензолом в виде трихлорида (3 раза по 15 мл). Экстракты объединяют, разбавляют бензолом до 50 мл, распыляют в пламя и фотомет-рируют линию As 235,0 нм. В присутствии железа(П1) в раствор перед экстракцией вводят 1 г NaHSOj или солянокислого гидразина. [c.107]


Смотреть страницы где упоминается термин Бензол, экстракция металлов: [c.183]    [c.189]    [c.75]    [c.107]    [c.306]    [c.8]    [c.58]    [c.82]    [c.123]    [c.595]    [c.102]    [c.1490]    [c.130]    [c.67]   
Экстракция галогенидных комплексов металлов (1973) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте