Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теоретическая часть Скорость реакции

    Кинетические выражения, подобные тем, с которыми мы имели дело до сих пор, хорошо обоснованы теоретически для случая гомогенных реакций. Часто они с успехом используются и для корреляции экспериментальных данных по кинетике гетерогенно-каталитических реакций. Возникает, однако, опасность, что кинетическое выражение, имеющее слабое теоретическое обоснование, будет хорошо описывать имеющиеся неполные кинетические данные, тогда как его экстраполяция приведет к неправильным выводам. Так, для процесса, рассмотренного в упражнении IV. 15, опыты, проведенные нри A i // 2 <С 1> могли бы подтвердить кинетическую зависимость г = кЬа, к = k- k ajk - Отсюда можно сделать вывод, что скорость реакции неограниченно возрастает с увеличением концентрации 6 на самом же деле она достигает предельного значения k a d, когда к- Ык становится велико по сравнению с единицей. Другой пример — обратимая реакция из упражнения IV.17. Если опыты проводятся вдали от равновесия, их результаты будут хорошо описываться выражением из упражнения IV.16, так как отношение к е/к будет мало. Поскольку реакция обратима, исследователь [c.80]


    При получении азотной кислоты в установках, работающих под давлением, близком к атмосферному, переработку окислов азота выгодно проводить не выше, чем на 90—92%. Стремление к достижению более высокой степени переработки приводит к чрезмерному увеличению объема абсорбционной зоны, так как скорость реакции окисления N0 0 уменьшением ее концентрации резко снижается. Поглощение окислов азота, оставшихся не переработанными в азотную кислоту, осуществляют щелочными растворами. Теоретически для полного поглощения окислов азота раствором щелочи достаточно окислить их на 50%. В этом случае абсорбция не сопровождается (как при кислотном поглощении) выделением N0. Щелочная абсорбция окислов азота применяется пе только с целью увеличения степени использования окислов азота, по также и для обезвреживания выхлопных газов. В качестве абсорбента большей частью применяют раствор соды, иногда раствор. едкого натра, известковое молоко и др. [c.290]

    Наиболее простым способом выражения скорости реакции является способ, принятый при изучении гомогенных каталитических процессов. В этом случае часто получают уравнения скорости дробного порядка. Такой способ был применен Кваном и Веллером, которые отмечали его простоту. Следует, однако, ожидать, что уравнения этого типа будут справедливы только в небольших интервалах температуры и давления. Теоретически можно вывести степенное уравнение скорости типа г = кр Хрв, предположив, например, что адсорбция веществ, участвующих в реакции, соответствует изотерме Фрейндлиха. [c.215]

    Теоретический расчет скорости реакций затруднен отсутствием достоверных и точных данных о строении и свойствах активного комплекса, определение которых методами квантово-химических вычислений в настоящее время в большинстве случаев невозможно. Для упрощенного расчета скоростей реакций часто используют ряд приближенных линейных соотношений между свойствами сходных по строению органических молекул, участвующих в однотипных реакциях. Такие соотношения подтверждаются опытом и качественно объясняются, хотя строго доказаны быть не могут, а потому называются [c.299]

    Если продукты реакции способны взаимодействовать, образуя исходные реагенты, процесс рекомбинации протекает до тех пор, пока не установится динамическое равновесие и скорость прямой реакции станет равна скорости обратной. Теоретически все реакции можно рассматривать как обратимые, но часто скорость обратной реакции весьма мала или даже неощутима. Обратимость реакций приобретает особый интерес, так как позволяет обнаружить связь между кинетикой и термодинамикой. Рассмотрим реакции [c.62]


    Технологические расчеты, как известно, базируются на физикохимических принципах осуществления процессов и сводятся к их количественной интерпретации. Они включают вычисление выходов реакций и скоростей процессов, расчеты материальных и тепловых потоков, определение размеров и числа аппаратов, определение расхода сырья, энергии и других производственных затрат и пр. Часть таких расчетов, например теоретическое вычисление равновесия реакций, расчет типовых аппаратов студенты выполняют в процессе общетехнической подготовки, при изучении курсов физической химии, процессов и аппаратов химической техники и некоторых других. [c.3]

    Откладывая данные табл. 1 в координатах (и, log [S]o), получаем кривую в виде симметричного колокола (рис. 53). Уменьшение скорости реакции при значительном увеличении концентрации субстрата (правая ветвь кривой) указывает на ингибирование субстратом, а симметричность полученного колокола свидетельствует о том, что образующийся при связывании дополнительной молекулы субстрата тройной комплекс ES2 является неактивным (см. теоретическую часть настоящей главы). Таким образом, кинетические данные соответствуют схеме реакции [c.127]

    Теоретическое рассмотрение химических реакций, протекающих в растворах, значительно сложнее реакций в газах. Это объясняется тем, что молекулы жидкости находятся на более близких расстояниях, когда силы взаимодействия между ними нельзя считать малыми или даже отсутствующими, что часто допустимо в газах, и взаимодействием молекул реагентов с молекулами растворителя, молекулами посторонних веществ, непосредственного участия в данной реакции не принимающих. Экспериментально наблюдаемые закономерности скоростей реакций в растворах неодинаковы для реакций различных типов. В некоторых из них растворитель не играет значительной роли, в других, наоборот, сильно влияет на скорость реакции. Посторонние вещества ускоряют, замедляют [c.296]

    Общие уравнения скорости гетерогенной реакции, выведенные с учетом изотерм, применимы для всех катализаторов. Для учета специфики процесса на заданном катализаторе требуется делать ряд дополнительных предположений. Прямые экспериментальные методы определения адсорбционных коэффициентов трудно выполнимы и поэтому необходимо определение порядка реакции по реагирующим веществам. Таким образом, применимость выведенных теоретических уравнений становится очевидной только после сопоставления их с экспериментальными данными. Кроме того, в кинетические уравнения вводятся равновесные поверхностные концентрации реагирующих веществ, отвечающие изотермам адсорбции, в то время как реакция осуществляется при некоторых стационарных концентрациях, устанавливающихся в ходе реакции. Как показало применение электрохимических методов при исследовании жидкофазных процессов гидрирования, реакции гидрирования очень часто протекают в условиях значительного заполнения поверхности катализатора водородом. Следовательно, только часть сорбированного водорода участвует в реакции и обусловливает наблюдаемую скорость реакции. [c.63]

    Скорость реакций и химическое равновесие (работа 5, теоретическая часть, пп. 1—3). [c.242]

    Необходимость рассмотрения химических реакций, протекающих с конечными скоростями, отличает теорию горения от других разделов газовой динамики. Поэтому понятия химической кинетики составляют неотъемлемую часть книги. Сначала в 2 излагаются феноменологические законы для скоростей химических реакций, затем в 3 рассматриваются различные механизмы химических реакций и, наконец, обсуждаются теоретические формулы для скоростей реакций в случае гомогенных (в 4) и гетерогенных (в 5 ) процессов. В монографиях перечисляются стандартные руководства по этому вопросу. В работе [ ] можно найти современное изложение проблемы ). [c.477]

    Данные по скорости реакции часто нужны для сравнения активностей ряда различных образцов катализаторов. Для достижения этой цели нет необходимости знать порядок реакции или даже иметь эмпирическое уравнение, связывающее степень превращения со скоростью подачи сырья. Необходимо лишь располагать кривой зависимости степени превращения от скорости подачи сырья для стандартного катализатора этой серии, построенной на основании экснериментальны х данных. Экспериментальное определение степени превращения при одинаковой скорости подачи сырья в случае другого катализатора при тех же прочих условиях дает возмон ность определить активность этого катализатора по отношению к активности стандартного катализатора, ибо как с теоретической, так и с экспериментальной точек зрения активности пропорциональны скоростям подачи сырья, требуемым для достижения данной степени превращения при условии, что кинетика реакции та же самая. Однако такое сравнение совершенно не учитывает различный характер влияния отложений кокса. [c.444]


    Работы, представленные в данной главе, предназначены для ознакомления с методами определения констант равновесия, констант скоростей и порядков реакций, а также практического изучения влияния различных факторов на термодинамические и кинетические характеристики реакций. Приведенные практические работы следует рассматривать лишь как примерные, и они легко могут быть заменены подобными же, но с использованием других реактантов. При этом теоретическая часть работ и методы обработки результатов практически не будут изменяться. [c.171]

    Скорость реакции увеличивается с повышением температуры. При 1000—1200° С и концентрации сероводорода более 30% реакция идет при пламенном горении с объемными скоростями до 1000 объемов газо-воздушной смеси в час на 1 объем печи. Однако практически в этих условиях, с теоретическим количеством воздуха, конверсия сероводорода ие превышает 70%. При этом часть сероводорода не успевает прореагировать, а часть сгорает до сернистого газа. Быстрое охлаждение продуктов реакции увеличивает выход серы. [c.178]

    Таким минимальным количеством кислоты в связи с расходом ее в побочных реакциях [21] является 1 мол. % от взятого этиленимина. Теоретически это соответствует [7] полимеру с мол. весом 4300 (если используется чистый этиленимин в отсутствие растворителя) однако практически это невыполнимо, так как увеличение концентрации этиленимина выше 50% значительно повышает скорость полимеризации, которая при этом часто протекает со взрывом [16, 61, 62] ввиду недостаточного отвода тепла полимеризации при высоких скоростях реакции. [c.178]

    Из основного уравнения теории переходного состояния (II, 13) видно, что для вычисления константы скорости реакции необходимо вычислить величины К через статистические суммы и определить трансмиссионный коэффициент к. Появление трансмиссионного коэффициента связано с тем, что некоторая часть комплексов может разложиться на исходные вещества за счет колебаний по связям в образовавшейся молекуле. Обычно величина х равна 1. В ряде случаев трансмиссионный коэффициент можно вычислить теоретически, наконец, значения его могут быть определены экспериментально. [c.57]

    Как же с изложенной точки зрения выглядит сегодня проблема прогнозирования каталитической активности, т. е. проблема теоретического подбора катализаторов Фактически она распадается на две части 1) качественный подбор, т. е. выбор типа катализаторов для данного вида реакции и 2) количественная оценка значений скоростей реакций для разных видов катализаторов, включая количественную оценку влияния на активность катализаторов различных добавок (промоторов) и изменения макро- и микроструктуры (текстуры и структуры) катализаторов. Первая задача, как мы увидим дальше, решается в настоящее время сравнительно легко на основе имеющегося большого объема экспериментального материала и уже достигнутых теоретических обобщений. Однако при настоящем со- [c.4]

    При нормальном давлении промышленные контактные процессы осуществляются при значениях критерия Рейнольдса порядка сотен (большей частью около 200), т. е. в турбулентной области, но вблизи переходного значения. Лишь для небольшого числа очень быстрых реакций перенос реагирующих веществ к внешней поверхности зерен контакта определяет суммарную скорость процесса. В этих случаях разность температур поверхности контакта и газового потока на начальных стадиях приближается к величине теоретического разогрева. Для реакций, тормозящихся продуктом, перенос к внешней поверхности сказывается лишь на первых стадиях и не влияет существенно на общую интенсивность процесса. Однако разность температур поверхности контакта и газового потока достигает для этих реакций на первых стадиях заметной величины, что сказывается на важном технологическом параметре — минимально допустимой температуре входа газа в контактную массу. При высоких давлениях промышленные каталитические реакции осуществляются при значениях критерия Рейнольдса порядка тысяч и даже десятков тысяч, и, соответственно этому, процессы переноса к внешней поверхности протекают с большой скоростью. Для рассмотренных процессов (синтез аммиака, метанола, ряд реакций гидрирования) не обнаружено заметного влияния процессов переноса к внешней поверхности зерен контакта на суммарную скорость. [c.424]

    Состав летучих продуктов термодеструкции полиэтилена подтверждает статистическую природу реакции в этих продуктах содержатся все углеводороды от С1 до С70 [60]. Фракция углеводородов от С1 до С7, составляющая сравнительно небольшую часть всех газообразных продуктов, была проанализирована масс-спектроскопически, причем оказалось, что в ней содержатся почти все возможные изомеры соответствующих парафинов, моноолефинов и диенов. Несмотря на это, максимум скорости реакции, который, как предсказывает теория (см. раздел Б-2,а), должен был бы наблюдаться при превращении 25% полимера в летучие продукты, для полиэтилена не обнаруживается. В этом случае исследуемая скорость реакции термодеструкции полиэтилена непрерывно уменьшается от первоначального довольно высокого значения [60, 65]. Уолл с сотр. предположил, что такое поведение полиэтилена при термодеструкции объясняется разветвленной структурой этого полимера, так как полиметилен, полученный из диазометана, при термодеструкции обнаруживает указанный максимум скорости реакции [52]. Отсутствие максимума скорости термодеструкции нельзя рассматривать как результат более быстрого расщепления макромолекул в точках разветвления, так как, согласно Уоллу и Флорину [65], ...теоретическое рассмотрение деструкции разветвленных структур с точки зрения статистики и использование различных значений для констант скорости разрыва связей у (или вблизи) точек разветвления по сравнению с соответствующими константами скорости разрыва связей, находящихся в цепи между точками разветвления, не позволяет выявить максимум на кривых скорости, в пределах разумных значений величин, принимаемых в качестве констант скорости [101]. [c.51]

    Следует отметить, что соединение в левой части уравнения (42) соответствует комплексу (XVI), который и можно рассматривать в данном случае как промежуточное соединение. Изменение скорости реакции циклогексена при 120° в зависимости от парциального давления окиси углерода при постоянном давлении водорода обнаруживает удовлетворительное совпадение с теоретическими кривыми, основанными на вычислениях, проведенных с учетом константы равновесия уравнения (27). Однако в настоящее время отсутствуют даже приближенные данные для этой равновесной реакции. Экспериментальные точки, найденные при температуре реакции 110°, несколько хуже совпадают с теоретической кривой. [c.134]

    Хотя уравнения (19) и (20) представляют большой теоретический интерес, редко возможно точно применить их при исследовании равновесия изомеризации углеводородов вследствие недостаточной информации о константах скоростей реакций, поскольку константы скорости зависят от активности катализатора, которая часто меняется во. времени, а также вследствие того, что побочные реакции могут быть и не первого порядка, и не полностью необратимыми. Так как по величинам, приведенным в табл. 33, видно, что наблюдаемые константы равновесия могут значительно отличаться от истинных значений в тех случаях, когда изомеризация сопровождается интенсивными побочными реакциями, то значения, полученные в таких условиях, не могут внушать такого доверия, как величины, полученные в условиях, сводящих побочные реакции до минимума [c.138]

    В последнее время были теоретически рассмотрены различные аспекты реакции электронного обмена. Сделанные предположения, вообще говоря, разумны. Однако существующие теории сложны и содержат много переменных. В разных реакциях электронного обмена возникают многочисленные трудности. Так, часто встречаются изменения порядка и скорости реакций при изменении состава растворителя (при использовании сме- [c.314]

    Наиболее важные теоретические главы, в частности посвященные свойствам газов, скоростям реакций, химическому равновесию и термохимии, изложены достаточно подробно, и они могут составить удовлетворительную основу для подготовки студентов, специализирующихся в области химии. При подготовке студентов других специальностей большую часть этих глав можно опустить. [c.12]

    В реальных процессах образования ферритов из окислов реакционная способность смеси зависит от многих факторов [2]. Первоначально за счет мелких частичек скорость реакции будет сравнительно большой [3]. После того как мелкие частички прореагируют, а на более крупных появится слой феррита, скорость реакции определяется в основном диффузионными процессами. Большое число неизвестных и трудно-учитываемых факторов (форма зерен, дефектность структуры и др.) теоретически не позволяет найти в (1) зависимость f(t), тем более что и механизм образования новой фазы не всегда известен. Однако из экспериментальной кривой a(t), полученной при 7 = onst, можно приближенно найти выражение f(t). [c.36]

    Тем не менее, теоретически приемлемо считать, что как процесс столкновений молекул (определяемый концентрацией), так и силы взаимодействия между молекулами (частично учитываемые коэффициентами активности) влияют на скорость реакции. Наиболее часто применяемые коэффициенты активности связаны с активностью а и летучестью / следующими соотношениями а=тС, где С—концентрация, выраженная, например, в кмоль1м раствора  [c.22]

    При теоретическом рассмотрении химических реакций часто предполагается, что реагирующие молекулы могут быть охарактеризованы равновесной максвелл-больцмаповской функцией распределения но скоростям и внутренним состояниям, хотя уже с того времени, когда были сформулированы основные понятия об элементарных процессах, сознавалось, что реакция вызывает нарушевие равновесного распределения. [c.37]

    Скорость элементарной реакции равна произведению концентраций реагентов, участвующих в химическом акп1е, возведенных в степени, равные стехиометрическим коэффициентам реакции. Уравнение (195.1) является основным законом кинетики. Коэффициенты v могут принимать только целые положительные значения, равные 1, 2, 3. Закон действующих масс был впервые сформулирован Гульдбергом и Вааге (1867). Пфаундлер уравнение (195.1) теоретически вывел на базе молекулярно-кинетической теории (1867). Часто односторонние реакции могут протекать через стадии образования промежуточных соединений реагирующих молекул с молекулами растворителя или катализатора, с последующим превращением в продукты реакции. Тогда уравнение скорости химической реакции записывают в форме [c.533]

    Как показал теоретический анализ, в области низких концентраций СО скорость реакции возрастает с увеличением содержания СО, а при высоких значениях концентрации скорость падает при уве-личер1ии этой концентрации. При промежуточных значениях концентраций СО существуют три стационарных состояния системы, два из которых устойчивы и одно неустойчиво. Устойчивым состояниям соответствуют максимальная и минимальная скорости окисления. Пусть концентрация СО в смеси варьируется по синусоидальному закону, в котором (Feo)о — средняя по времени концентрация СО в смеси. Пусть величина (Feo) о выбрана так, что стационарное состояние системы соответствует нижней устойчивой ветви скорости. В этом случае возможно существенное увеличение скорости реакции нри переходе к циклическому изменению концентраций смеси. Это произойдет тогда, когда амплитуда и частота вынужденных колебаний таковы, что для части периода колебаний нестационарная концентрация будет соответствовать верхней ветви скорости реакции. Как видно из рис. 2.11, нри неизменных значениях амплитуды колебаний и начальной концентрации СО в области безразмерных частот (о 0,45 наблюдается резонансное поведение системы, и средняя по времени скорость реакции проходит через максимум в нестационарном режиме W = 0,262. Это значение скорости в десять раз превышает соответствующее значение скорости в стационарном режиме и в два раза — значение скорости в квазистационарном циклическом режиме (ш 0). Такое поведение обусловлено динамическими взаимодействиями внутри системы, связанными с вынужденным переводом покрытий поверхности катализатора СО от нижнего значения к верхнему. При больших значениях часто средние но времени значения скорости приближаются к стационарным, а при малых — к квазистацнонарным. Заметим, что для рассматриваемого примера имеет место также экстремальная зависимость наблюдаемой скорости окисления СО от величины амплитуды колебаний при фиксированной частоте колебаний. [c.62]

    Работа [19] по картированию активного центра эндоксиланазы представляет особый интерес и в том отношении, что в ней была предпринята попытка независимого определения показателя сродства одного из сайтов активного центра, что дает возможность сопоставить эти величины и, таким образом, хотя и косвенно, оценить применимость допущений в теоретической части подхода Хироми. Используя меченные С и ксилозу и ксилобиозу как акцепторы в реакциях трансгликозилирования при гидролизе (соль-волизе) ксилотриозы и экспериментально определяя начальные скорости переноса ксилозы 1 и ксилобиозы Уг на олигосахарид-ный остаток в активном центре фермента, авторы [19] независимо определили показатель сродства второго (от каталитического участка) сайта по направлению к восстанавливающему концу  [c.61]

    Металлический натрий очищают от оксидов в чашке с эфиром, быстро помещают в стальной или в фарфоровой лодочке в первое колено трехколенной трубки из тугоплавкого стекла (рис. 1, 2) и водородом вытесняют из прибора воздух. Затем трубку в месте, где помещена лодочка, нагревают до температуры 450—500 °С в медленном токе водорода. Водород предварительно хорошо очищают. Образующийся гидрид постепенно конденсируется в виде белого налста па более холодной части трубки. Когда соберется необходимое количество гидрида, трубку охлаждают в токе водорода и серединную часть ее запаивают по перетяжкам. Описанный способ очень трудоемкий. Гидрида получается мало вследствие небольшой скорости реакции и низкой упругости его пара. Почти весь натрий остается в лодочке. Этот натрий тоже поглощает водород, но количество водорода в нем значительно меньше теоретически рассчитанного. Гидрид натрия НаН — белый порошок, иногда с сероватым оттенком. На воздухе нестоек. Хранить его следует в запаянной ампуле. [c.113]

    Оппсанпыи способ очень трудоемкий, так как 1 пдрид получается в сравпительио небольших количествах вследствие неболь-июй скорости реакции. Значительная часть патрпя обычно остается в лодочке. Этот иатрпй тол е поглоп(аст водород, но количество водорода в нем обычно значительно меньше теоретически рассчитанного. [c.167]

    С целью выяснения роли скорости реакции и процессов переноса количества движения, тепла и вещества при зажигании в Массачусетском технологическом институте приступили к осуществлению программы теоретических и экспериментальных работ для решения этой задачи. В связи с этой программой в данной работе представлены результаты исследования процесса развития горения в пограничном слое, непосредственно примыкающем к горячей поверхности. Эта поверхность не полностью погружается в поток горючей смеси, а является частью стенки камеры сгорания, так что указанные выше грудности, связанные с существованием следа за источником зажигания, полностью исключаются. Таким образом, теоретические и экспериментальные исследования можно проводить, используя одну и ту же модель, что позволяет непосредственно сопоставить результаты и критически оценить теорию зажигания. [c.134]

    В ряде других работ расхождение экспериментальных и теоретических данных было значительным. Отани и Смит [240] изучали окисление окиси углерода при 275—370 °Сна катализаторе, содержащем 10% закиси никеля на окиси алюминия. Опыты проводили на порошкообразном катализаторе и на сферических гранулах диаметром 18 мм, прессованных из порошка. Экспериментальные значения коэффициента эффективности, найденные сопоставлением скоростей реакции на гранулах и порошке, лежат в пределах от 0,37 до 0,64. Значение эффективного коэффициента диффузии, вычисленное по скоростям реакции, оказалось в 4—5 раз ниже вычисленного на оеновании модели со случайным распределением пор. Причины столь значительного расхождения не ясны. Известно, что модель со случайным распределением пор позволяет получать надежные значения для гранул, прессованных из окиси алюминия. Однако гранулы столь больших размеров могут быть очень анизотропными [55, 300]. Возможно также перекрытие части микропор при формовке гранул. Кроме того, окисление СО сильно тормозится образующейся двуокисью углерода и для учета этого эффекта необходим довольно сложный анализ. [c.158]

    В работе Зельдовича 1948 г. [13] были изложены основы общего метода численного интегрирования уравнений пламени без ограничивающих предположений нн о зависимости скорости реакции от температуры, ни о соотношении между О и (Х/срр). Большое число опубликованных за последнее десятилетие теоретических работ содержит различные варианты решения уравнений пламени как приближенными методами, так н численным интегрированием с определением как собственного значения, удовлетворяющего уравнениям пламени в заданных граничных условиях. Оставляя вне рассмотрения математическую сторону этих работ, мы коснемся их в дальнейшем лишь в той части, в которой они связаны с кинетической стороной явлений горения — основным предметом настоящего исследования. [c.184]

    В современных исследовательских химических лабораториях, особенно в промышленных, немалую долю времени тратят на подбор активных и селективных гетерогенных катализаторов для новых химических реакций или уже существуюш их, но недостаточно эффективных промышленных процессов. Это связано, с одной стороны, с тем, что около 90% крупнотоннажных химических и нефтехимических производств базируются на применении катализаторов", в основном гетерогенных, а с другой стороны — с тем, что подбор катализаторов ведется большей частью чисто эмпирическими методами. Последнее обятоятельство и вызывает наибольшие нарекания в отношении теории катализа, которую обвиняют в крайней отсталости, эмпиризме и прочих грехах. Между тем, если объективно разобраться, состояние теории катализа, в том числе и гетерогенного, в настояш ее время соответствует обш ему состоянию теории химической реакционной способности, поскольку и последняя Не дает сегодня ВОЗМОЖНОСТИ определять скорости реакций чисто расчетным путем. Количественная теория химических реакций пока находится В начале своего пути. Она в значительной степени базируется на полуэмпирических закономерностях, аналогиях, качественных правилах и чисто экспериментальном материале. Химия гетерогенного катализа отличается от других разделов химии тем, что, во-первых, здесь всегда участвует в реакции на один компонент больше и моно-молекулярные реакции теоретически невозможны, а во-вторых, тем, что в ходе реализации реакций на них всегда накладываются физические явления. Физическая сторона явлений гетерогенного катализа теперь, однако, в значительной степени прояснена и поддается во многих случаях прямому расчету, а химическая, как указывалось, решается так же, как и в других разделах химии. [c.4]

    При теоретическом рассмотрении химических реакций часто предполагается, что реагирующие молекулы могут быть охарактеризованы равновесной максвелл-больцмановской функцией распределения по скоростям и внутренним состояниям, хотя уже со времени формулировки основных понятий об элементарных процессах сознавали, что реакция вызывает нарушение равновесного распределения. Это нарушение связано с тем, что реакционноспособными оказываются только те молекулы, энергия которых превышает некоторую предельную величину, так что функция распределения непрерывно обедняется в высокоэнергетической части за счет исчезновения прореагировавших молекул. Это обеднение в какой-то степени восстанавливается в результате молекулярных столкновений, и нарушение равновесного распределения будет малым только в том случае, если скорость восстановления равновесного распределенид намного превышает скорость его нарушения за счет химической реакции. [c.135]

    Около 80 лет назад проф. Н. А. Меншуткиным были выполнены первые замечательные исследования злиянмя среды. а скорость химических реакций, С тех пор в этой области накоплен богатый экспериментальный материал и сделаны многочисленные попытки теоретической интерпретации совокупности полученных данных. При этом выяснилось, что среда, в первую очередь природа растворителя, может не только самым существенным образом изменять скорость химической реакции, но и ее механизм и направление. Неспецифическая и специфическая сольватация, образование водородных связей, промежуточных комплексов и т. п. являются часто не менее важными факторами, чем, например, электронные влияния заместителей на скорость реакции. [c.5]


Смотреть страницы где упоминается термин Теоретическая часть Скорость реакции: [c.339]    [c.70]    [c.129]    [c.52]    [c.91]    [c.90]    [c.85]    [c.126]    [c.137]    [c.241]   
Смотреть главы в:

Практикум по физической химии Изд 4 -> Теоретическая часть Скорость реакции




ПОИСК







© 2025 chem21.info Реклама на сайте