Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бутадиен анионная полимеризация

    Дивинил (1,3-бутадиен) — важнейший мономер для синтетического каучука — может быть полимеризован по радикальному или ионному механизму. В первом промышленном синтезе каучука инициатором полимеризации был металлический натрий, на поверхности которого происходила адсорбция и поляризация 1,3-бутадиена механизм этой реакции анионный  [c.100]

    Анионно-координационной полимеризацией называют процесс, происходящий под действием катализаторов Циглера — Натта, которые представляют собой комплексы галогенидов переходных металлов с металлорганическими соединениями. Типичными катализаторами этого типа являются системы тетрахлорид титана — триэтилалюминий и тетрахлорид ванадия — диэтилалюмининхло-рид, известны и другие системы. По-видимому, аналогично действуют и другие катализаторы, например дикобальтоктакарбонил и некоторые л-аллилникельгалогениды. Точная природа реакционноспособных промежуточных соединений, образуемых этими системами, продолжает оставаться предметом обсуждения, но полимеризация, по всей вероятности, протекает путем внедрения ви-нильного мономера по связи переходный металл — углерод (схема 19 М—металл). Важнейшими мономерами, вступающими в реакцию координационной полимеризации, являются этилен, пропилен, бутадиен-1,3 и изопрен. [c.307]


    Диеновые углеводороды (бутадиен, изопрен), стиролы в присутствии щелочных металлов претерпевают превращение в высокомолекулярные соединения (анионная полимеризация), например  [c.736]

    Аналогичное качественное различие наблюдалось и для других пар, причем особо наглядный случай представляет собой система стирол—метилметакрилат, где сополимеризация смеси 1 1 первоначально дает под влиянием свободно-радикальных инициаторов сополимер с составом 1 1, но в процессах, протекающих под воздействием иона карбония и кар-баниона, соответственно [153] получаются практически чистые полистирол и полиметилметакрилат. Имеющиеся довольно ограниченные данные позволяют высказать предположение, что реакционные способности при полимеризации под действием карбаниона идут практически параллельно способности заместителей стабилизировать карбанионы, возрастая в следующем порядке акрилонитрил, метакрилонитрил > метилметакрилат > > стирол > бутадиен. Активными центрами в наиболее реакционных из них является в основном стойкий анион энольного типа. [c.161]

    При анионной полимеризации ненасыщенных мономеров удовлетворительные корреляции Р. с. со структурными и электронными характеристиками мономеров известны только для производных стирольного ряда, для к-рых получены линейные зависимости, согласующиеся с ур-нием (7). Общий ход увеличения относительной активности др. ненасыщенных мономеров отвечает последовательности бутадиен, стирол, метакрилаты, акрилаты, акрилонитрил, нитроэтилен, винилиденовые мономеры СН4=СХУ, где X и — различные или одинаковые полярные группы. [c.148]

    Блок-сополимеры получают различными методами, но все они основаны на образовании реакционноспособных центров или функциональных групп на концах макромолекул одного мономера в присутствии полимеризующегося второго мономера. Один из методов их получения — синтез живых полимеров при анионной полимеризации с последующим добавлением второго мономера. Так, например, получают термоэластопласты — блок-сополимеры изопрена или бутадиена со стиролом. После полимеризации стирола с образованием на конце цепи макроаниона добавляют бутадиен, который сополимеризуется с таким блоком полистирола, а на конце цепи остается макроапион. При добавлении новой порции стирола происходит образование третьего блока в пределах одной макромолекулы. Полученные блок-сополимеры (в описанном случае типа СБС стирол — бутадиен — стирол) обладают ценными свойствами они прочны и эластичны при комнатной температуре и термопластичны при повышенной (80—100°С). Из них готовят изделия для медицинской промышленности, подошвы для обуви и [c.64]


    Живая ионная полимеризация используется в промышленности для получения блок-сополимеров. Общий метод состоит в том, что по окончании полимеризации одного мономера к его живым цепям добавляется другой мономер. В некоторых случаях важен порядок, т.е. очередность полимеризации разных мономеров. Так, живые цепи полистирола могут инициировать полимеризацию метилметакрилата, но не наоборот. Отсюда следует, что существуют лишь двух- и трехблочные (в зависимости от инициатора) блок-сополимеры этих мономеров. В общем случае путем последовательной живой анионной полимеризации разных мономеров могут быть получены мультиб-лочные сополимеры, содержащие много разных блоков. Наиболее известными из блок-сополимеров являются так называемые термоэластопласты, в которых один блок относится к эластомерам, другой - к пластикам. Термоэластопласты обладают комплексом необычных свойств, промежуточных между свойствами каучуков и пластиков. Среди термоэластопластов наиболее распространены блок-сополимеры стирола с бутадиеном и изопреном. [c.238]

    В бутадиен-стирольных каучуках эмульсионной, а также анионной полимеризации бутадиеновые и стирольные звенья располагаются статистически вдоль полимерной цепи, причем бутадиеновые звенья имеют как цис-, так и транс-структуру. Вследствие такого нерегулярного строения эти полимеры не проявляют способности к кристаллизации. [c.114]

    Изучение сополимеризации бутадиена с изопреном в присутствии катализаторов различной природы показало, что в анионной полимеризации более активен бутадиен, в катионной — изопрен, а на стереоспецифических системах активность их близка. В этом случае константы сополимеризации близки к 1, что указывает на зависимость скорости роста в основном от природы активного конца, а не мономера [c.160]

    В случае несимметричных олефинов полимеризация по типу голова к хвосту , изображенная в схеме (9.45), обеспечивает наименьшие пространств енные препятствия поэтому данный тип полимеризации и преобладает при радикальных реакциях. Точно так же бутадиен — в противоположность анионной полимеризации — дает продукты 1,4-присоединения. [c.623]

    Когда впервые было установлено, что соединения с сопряженными двойными связями (бутадиен, изопрен, хлоропрен, 2, 3-ди-метилбутадиен) могут полимеризоваться под действием металлического натрия, механизм полимеризации был еще неизвестен. Полимеризация могла протекать по одному из двух различных механизмов. В соответствии с одним из них атом натрия мог присоединяться к молекуле бутадиена, и получаемое при этом соединение, имеющее неспаренный электрон, могло затем инициировать свободнорадикальную полимеризацию. С другой стороны, это соединение также ионно и может присоединиться ко второй молекуле бутадиена (как присоединяются натрийорганические соединения к олефинам), инициируя тем самым анионную полимеризацию. Соединение, получающееся при присоединении двух атомов натрия к бутадиену, может начать только анионный процесс. [c.331]

    В промышленности анионную полимеризацию применяют главным образом для синтеза эластомерных материалов - 1,4- и 1,2-полибутадиена, бутадиен-стирольного термоэластопласта, статистического сополимера бутадиена со стиролом. Полимеризацию проводят в растворе в присутствии литиевых инициаторов. Так, фирма "Shell использует литиевые катализаторы для получения изопренового каучука. [c.491]

    Известно, что диены, особенно бутадиен-1,3 и изопрен, могут полимеризоваться под действием щелочных металлов и алкилов щелочных металлов. На этом основании можно предполагать, что реакции полимеризации этих диенов также имеют анионный характер. Один из признаков, позволяющих отличить анионную полимеризацию от свободно-радикальной, заключается в том, что реакции ионной полимеризации не ингибируются веществами, такими, как трег-бутилпирокатехин, реагирующими со свободными радикалами и, следовательно препятствующими протеканию процесса цепной реакции. [c.79]

    Правило антибатности, имеющее в своей основе термодинамич. природу, в общем сохраняет силу и в анионной полимеризации (более активным мономерам соответствуют активные центры с меньшей реакционной способностью). Однако, в отличие от радикальной иолимеризации, в анионной природа залхестителя, как правило, больше влияет на активность мономера, чем карбаниона, поэтому болео активные мономеры обычно гомополимеризуются также с большей скоростью (сказанное относится, как отмечено выше, к С. в полярных растворителях). В указанных условиях ряд активности моно,меров имеет вид этилен изопрен<бутадиен< <стирол<метилметакрилат<акрилонитрил. Эти данные показывают, что, меняя ирироду среды при одном и том же инициаторе или инициатор в одном и том же растворителе, можно получить сополимеры, отличающиеся друг от друга по составу не меньше, чем от радикального или катионного сополимера. [c.228]

    Полимеризация могла бы, следовательно, протекать как анионная цепная полимеризация. По результатам совместной полимеризации бутадиена с подходящими олефинами видно, однако, что бутадиен обладает низкой способностью полимеризоваться по анионному механизму. Бутадиен не полимеризуется также натрием в жидком аммиаке в противоположность быстрой и количественно протекающей в этих условиях анионной полимеризации метакри-лонитрила. [c.276]


    Как указывалось в гл. 42 раздела Литийорганические соединения , при сополимеризации изопрена или бутадиена со стиролом под действием в углеводородной среде сополимер обогащен диеновой компонентой и реакционность этих мономеров возрастает в последовательности стирол < изопрен < бутадиен. При переходе к КК реакционность этих же мономеров изменяется (табл. 19, № 1 и 4, а также 5 и 7). Наиболее активным мономером, как и в анионной сополимеризации, оказывается стирол, и реакционность характеризуется рядом, аналогичным анионным процессам изопрен < бутадиен < стирол. Однако относительное содержание стирола в сополимере при инициировании полимеризации КК в углеводородной среде ниже, чем в условиях типично анионной полимеризации (табл. 19, № 8 и 9). [c.523]

    На рис. 27 пунктирным прямоугольником очерчена группа мономеров, способных к радикальной гомополимеризации. У винилового эфира, изобутилена и других соединений, расположенных вне прямоугольника, показатель е имеет большую отрицательную величину, и они легко вступают в реакцию катионной полимеризации, а соединения с большой положительной величиной е (нитроэтилен, винилиденцианид и др.)—в реакцию анионной полимеризации. Кроме того, легко поддаются анионной полимеризации некоторые соединения, входящие в прямоугольник, например акрилонитрил, метилметакрилат и ряд других. Этилен, бутадиен, стирол и прочие неполярные мономеры способны к полимеризации всех трех видов радикальной, катионной и анионной. [c.88]

    В рецептуре полимеризации бутадиен-нитрильных латексов в качестве эмульгатора используют анионные поверхностно-ак-тивные вещества (алкилсульфонаты, модифицированную канифоль, соли жирных кислот). Температура полимеризации в основном 30—40 °С. Латексы для пенорезины получают как низкотемпературной, так и высокотемпературной полимеризацией. Инициирование полимеризации проводят с применением либо систем на основе органических гидропероксидов, либо персульфата калия с активаторами. В качестве регуляторов применяют тиолы. [c.268]

    При анионной С. данный мономер, как правило, способен образовывать сополимеры с более узким кругом соединений, чем при радикальной С. Напр., мономеры с сильными электроноакцепторными группами (напр., метилметакрилат, акрилонитрил) не вступают в С. с углеводородными мономерами (напр., стиролом, бутадиеном). Причина этого состоит не в большом различии в реакционной способности мономеров (напр., скорости гомополимеризации стирола и метилметакрилата близки), а в том, что активные центры полярных мономеров сильно стабилизованы и не присоединяются к углеводородным мономерам. Поэтому за исчерпанием метилметакрилата следует не полимеризация стирола, чего можно было ожидать при резком различии в активности мономеров (см. рис. 1 для случая г >, Гг<1), а прекращение процесса. [c.228]

    Бутадиен-стирольные блоксополимеры типа АВ получали анионной полимеризацией. В большинстве опытов блоксополимеры имели среднечисловой молекулярный вес 1,1 10 и содержали 70 вес.%стпрола и 30 вес.% бутадиена. В одной серии опытов использовались образцы переменноро состава с приблизительно таким же молекулярным весом. [c.304]

    Реакционная способность различных катализаторов при инициировании различается в зависимости от их основности. Такие мономеры, как акрилонитрил и метилметакрилат, которые имеют сильные электроноакцепторные заместители, могут полимеризо-ваться со слабо основными катализаторами типа гидроксильных ионов и цианидов. Однако для полимеризации таких мономеров, как стирол илп бутадиен-1,3, имеющих относительно слабые электроноакцеиторные заместители, требуются сильные основания, вроде амидных ионов или алкильных анионов. Рассмотрим некоторые наиболее хорошо изученные инициирующие системы для анионной полимеризации. [c.300]

    В течение последних лет в резинотехнической промышленности стали внедряться принципиально новые бутадиен-стирольные сополимеры, относящиеся к классу так называемых термоэластопластов. В макромолекулах этих соединений, получаемых в растворе методом анионной полимеризации [34], эластомерные блоки полибутадиена, полиизопрена или других полидиенов чередуются со стеклоподобными блоками полистирола или поли-а-метилстирола. Блоксополимеры могут содержать 50 и даже 80% (масс.) полистирола, однако наилучшим комплексом упругоэластических свойств обладают бутадиен-стирольные термоэластопласты (ДСТ) с содержанием стирола 28—32% (масс.). Для изопрен-стирольных термоэластопластов (ИСТ) оптимальным содержанием стирола можно считать 15—40% (масс.). [c.25]

    Заметим, что определение анионной полимеризации ненасыщенных хлорсодержащих соединений, как процессов, протекающих с доминирующим обрывом, не распространяется на все мономеры этого рода. Так, от рассмотренных выше мономеров по поведению в анионных системах существенно отличается 2,3-дихлор-бутадиен-1,3. Сведения о его анионной полимеризации весьма ограничены. В соответствии с ними процессы, инициированные Л1еталлалкилами при комнатной температуре в углеводородной среде, протекают с гораздо большей скоростью, чем у других хлорсодержащих ненасыщенных мономеров [33]. Как мы видели (табл. 41), в этих условиях начальная скорость полимеризации хлоропрена и др. при концентрации инициатора 0.05—0.10 моль/л составляет 1—1.5%/час. В системе дихлорбутадиен—трибутил-димагнийиодид—гептан при концентрациях мономера и инициатора 2.0 и 0.025 моль/л соответственно средняя скорость полимеризации в течение нескольких часов удерживается на уровне 10%/час и процесс может быть доведен до высоких степеней превращения мономера. Следовательно, роль реакций кинетического обрыва для данного мономера весьма мала. Причина этого явления может состоять либо в повышенной реакционноспособности мономера, либо в чрезвычайно низком содержании или полном отсутствии в полимерной цепи подвижных атомов хлора (т. е. звеньев 1,2). [c.128]

    Таким образом, здесь, как и в случае катионной полимеризации, происходит перемещение электронной пары, когда отрицательно заряженный анион смещает я-электроны С=С-связи мономера на уровень а-свяэи. Различие между катионной и анионной полимеризацией в том, что в первом случае смещение я-электронов С=С-связи мономера происходит в сторону, противоположную росту цепи, а во втором случае — в направлении роста цепи. Конечно, в анионной полимеризации, как и в катионной, существуют ионные пары с положительным противоионом, постоянно смещающимся вслед за перемещением активного центра в ходе реакции роста. Для возбуждения анионной полимеризации используют металлоорганические соедшения щелочных металлов (аллильные или арильные производные щелочных металлов), например бутиллитий, трифенилметилкалий, этилат натрия. Амиды щелочных металлов, алкоксиды и гидроксиды также используют для инициирования анионной полимеризации. К мономерам, способным полимеризоваться по анионному механизму, относятся бутадиен, изопрен, стирол, акрилонитрил. [c.38]

    В отличие от радикальной и катионной полимеризации в таких системах на каждой стадии роста образуется соединение, способное к самостоятельному существованию (при нолимеризации углеводородов — металлалкил с большим или меньшим молекулярным весом). Это обстоятельство, а именно, устойчивость промежуточных металлорганических соединений объясняет типичную для анионной нолимеризации безобрывность процесса. Протекание реакции (V-45) через ряд устойчивых соединений можно установить путем введения какого-либо агента обрыва (воды, углекислоты и т. п.) и изучения соответствующих продуктов реакции. Таким способом Циглер [75] выделил промежуточные продукты полимеризации в системе бутадиен—бутиллитий, соединения общей формулы 4H9( 4Hg)reH, где п меняется от 1 до 6. Не вызывает сомнения, что ход реакции отвечает схеме [c.344]

    Известны и работы других авторов, в которых установлена взаимосвязь между 1/2 и реакционной способностью веществ к полимеризации. Например, Фуэно с сотр. [289] показали с помощью квантовохимических расчетов, что для многих винильных мономеров (акрилонитрил, акролеин, метилвинилкетон, метилакрилат, бутадиен, стирол, а- и -метилстиролы, изопрен, этилен и др.) изменение 1/2 происходит параллельно их анионной полимеризуемости . [c.192]

    Винил окси-1,3-бутадиен обладает всеми свойствами сопряженных диенов, в том числе высокой склонностью к полимеризации. Однако как мономер он имеет существенные преимущества по сравнению с обычными 1,3-диенами. Наличие дополнительного реакционного центра — винилоксигруппы — открйвает новые возможности для синтеза полимеров с различными функциональными группами. Такие полимеры, полученные методами анионной [c.75]

    Полученные таким путем радикалы R способны инициировать радикальную полимеризацию таких мономеров, как стирол, бутадиен, изопрен, винилацетат, метилметакрплат, винилхлорид. При аналогичном окислении иона S04 активными центрами полимеризации являются уже не радикалы, а анион-радикалы  [c.91]

    ЛАТЁКСЫ СИНТЕТИЧЕСКИЕ, водные дисперсии синт. полимеров. Наиб, распространены латексы бутадиен-стирольных, хлоропреновых, бутадиен-нитрильных, карбокси-латных и др. каучуков выпускаются также латексы нек-рых термопластов, напр, поливинилацетата, поливинилхлорида. Для стабилизации коллоидной системы Л. с. используют ПАВ (эмульгаторы), гл. обр. анионные. Конц. Л. с. 20— 75%, pH от 4—5 до 12—13, поверхностное натяжение 30—60 мН/м, средний диаметр частиц дисперсной фазы (глобул) 60—700 нм. Получ. 1) эмульсионная полимеризация с послед, отгонкой остаточного мономера 2) растворение полимера в углеводороде (изопентане, СС14 и др.) с послед, эмульгированием р-ра в воде в присут. ПАВ и отгонкой орг. р-рителя (такие латексы наз. искусственными способ используют для получ. дисперсий бутилкаучука и синт. полиизопрена). Готовые Л. с. обычно концентрируют отстаиванием (сливкоотделением), центрифугированием или упариванием. [c.297]

    Апухтина и Лягалова [1115, 1116] сообщают о влиянии анионов на процесс полимеризации а-метилстирола. Хэм [1117] и Фордхем [1118] рассматривают реакционную способность полярных мономеров при совместной полимеризации (а-метилстирол, бутадиен и др.). [c.229]

    Кроме приведенных выше наших результатов, в работе [40], установлена взаимосвязь между и реакционной способностью к полимеризации. В этой работе с помощью квантово-механических расчетов показано, что для многих винильных мономеров (акрилонитрил, акролеин, метилвинилкетон, метилакрилат, бутадиен, стирол, а- и р-метилстиролы, изопрен, этилен и др.) изменение 1/2 происходит параллельно их анионной полимеризуемости . Хотя в настоящее время имеется очень мало данных для установления такой корреляции в случае других групп мономеров (полимеризующихся по радикальному механизму), такая взаимосвязь между константами скорости полимеризации и уг вполне реально. В пользу этого говорит то обстоятельство, что эмпирическое уравнение Хаммета — Тафта в настоящее время находит широкое применение для характеристики влияния заместителей как на константы скорости многих радикальных реакций (в том числе реакций полимеризации и сополимеризации [707, 708]), так и на полярографические потенциалы полуволн. Значение такой взаимосвязи трудно переоценить. Так как определение значений потенциалов полуволн неизмеримо проще, чем определение кинетических характеристик мономеров, то о реакционной способности мономера удобней судить по полярографическим показателям. [c.179]

    Можно ожидать, что тенденция мономера СНг = СНХ полимеризоваться по анионному механизму должна зависеть от электронооттягивающей способности X. Изучение сополимеризации показало, что так оно и есть в действительности [94]. По своей реакционной способности мономеры располагаются в следующем порядке акрилонитрил > метакрилонитрил > метилметак-рилат > стирол > бутадиен. Такой порядок хорошо согласуется со сравнительной электронооттягивающей способностью нитрилов, сложных эфиров, фенильных и винильных групп, измеряемой значением факторов с [95] и е [96] для них. Этот порядок несколько иной, чем при свободнорадикальной полимеризации. Из данного списка только наименее реакционноспособные мономеры— стирол и бутадиен — можно полимеризовать по катионному механизму, который лучше всего осуществляется для богатых электронами мономеров, как, например, для изобутилена и виниловых эфиров. [c.333]

    Нам известна еще одна работа [45], в которой была установлена взаимосвязь между полярографическими константами и реакционной способностью к полимеризации. Так, Т. Фуэно и др. с помощью квантово-механических расчетов показали, что для многих винильных мономеров (акрилонитрил, акролеин, метилвинилкетон, метилакрилат, бутадиен, стирол, а- и р-метилстиролы, изопрен, этилен и др.) изменение Ег/ происходит параллельно их анионной полимеризуемости . Таким образом, полярографический метод [c.210]


Смотреть страницы где упоминается термин Бутадиен анионная полимеризация: [c.131]    [c.723]    [c.124]    [c.161]    [c.246]    [c.222]    [c.297]    [c.948]    [c.599]    [c.41]    [c.535]   
Органикум. Практикум по органической химии. Т.2 (1979) -- [ c.355 ]

Краун-соединения Свойства и применения (1986) -- [ c.253 , c.255 ]

Общий практикум по органической химии (1965) -- [ c.258 ]




ПОИСК





Смотрите так же термины и статьи:

Анионная полимеризация

Бутадиен полимеризация

Полимеризация анионов



© 2025 chem21.info Реклама на сайте