Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Радиохимия определение

    В большинстве современных иностранных руководств, относящихся к радиохимии, определение ее как науки отсутствует. Это в значительной степени объясняется тем, что развитие радиохимии за последние десятилетия протекало настолько стремительно и многогранно, что представляет значительную трудность дать строгое определение этой дисциплины. [c.12]

    ХП1-1-9. В радиохимии период жизни образца может быть определен при измерении отношения количества продукта распада образца О к количеству исходного об- [c.147]


    Заметим, что комплексные исследования для окончательного решения стратегических вопросов безопасной разработки месторождения были прерваны в середине 90-х годов по финансовым и организационным причинам. Позднее в ИДГ РАН совместно с кафедрой радиохимии Химического факультета МГУ им. М.В. Ломоносова был продолжен теоретический и лабораторный анализ роли геохимических барьеров для устранения опасных последствий ПЯВ. Показано, что эти барьеры формируются в окрестностях зон ПЯВ как результат совокупности процессов, определяемых особенностями радиоактивного распада продуктов ПЯВ, взаимодействия природных и технологических вод с растворенными в них радионуклидами и горными породами, геохимическими показателями среды и т.д. Отсюда становится очевидной необходимость выявления такого рода барьеров, их классификации по степени радиационной опасности и определения на этой основе необходимых защитных мероприятий. [c.88]

    По определению Ан. И. Несмеянова, радиохимия — область химии, изучающая химию радиоактивных изотопов, элементов и веществ, законы их физико-химического поведения, химию ядерных превращений и сопутствующих им физико-химических процессов . Это определение включает в себя также ядерную химию и радиационную химию. Собственно радиохимия занимается изучением физико-химических закономерностей поведения радиоактивных изотопов и элементов. При этом могут быть выделены два направления исследований. [c.587]

    В том же 1913 г. Мозли дает в руки исследователей рентгеноспектральный метод определения положительного заря/ а ядра элемента, а следовательно, его места в Периодической системе. Это способствовало поиску новых радиоактивных элементов и исправлению порядковых номеров элементов. Была установлена правильная последовательность превращений одних радиоактивных изотопов в другие, открыты пропущенные звенья в цепи генетически связанных элементов — радиоактивных рядах. В это время радиохимия как наука о химических и физико-химических свойствах радиоактивных элементов разрабатывает свои специфические методы исследования. В ее задачу входит широкий круг вопросов, связанных с проблемами разделения, очистки, концентрирования радиоактивных элементов. Таким образом, открытие радиоактивности было важной вехой на пути познания окружающего мира. Изучение же радиоактивности дало неопровержимые доказательства сложности структуры атома. Оно стало основным фактом, опровергающим представления о неизменности атомов, и показало, что в определенных условиях одни атомы разрушаются, превращаясь в другие. [c.394]


    Одним из наиболее интересных современных методов прикладной радиохимии является метод определения возраста углеродсодержащих материалов, основанный на измерении их радиоактивности, обусловленной присутствием изотопа углерода-14. Этот метод датирования при помощи радиоуглерода, разработанный американским физиком Уиллардом Ф. Либби, позволяет определить возраст углеродсодержащих образцов с точностью примерно до 200 лет. В настоящее время этот метод можно применять для датирования материалов, возраст которых не превышает 50 ООО лет. [c.617]

    Экстракция в аналит. химии и радиохимии. В аналит. химии Э. ж. применяют с целью селективного извлечения целевых хим. элементов из смесей для количеств, анализа, а также для определения содержания примесей в исследуемых соед., что важно при получении особо чистых в-в. Кж метод аналит. химии Э. ж. отличают высокая избирательность, простота проведения, универсальность (возможность вьщеления практически любого элемента). [c.421]

    Она содержит важнейшие понятия, определения, термины по неорганическое, органической, аналитической химии и химических производств. Отражая современный научный уровень, в пособие включены термины, относящиеся к радиохимии, полимерам, химии редких металлов, а такл е биохимии и геохимии. [c.2]

    Счетные методы анализа, особенно методы радиохимии, имеют широкое применение. Их можно использовать как для определения малых и очень малых концентраций, так и для анализа основных компонентов. Такая широта возможностей применения требует, чтобы ошибка измерения этого метода тщательно обсуждалась в каждом конкретном случае для выбора оптимальных условий измерения. [c.79]

    Количественная сторона активационного анализа характеризуется процессами накопления и процессами распада радиоактивных ядер. Зная основные параметры (сечение активации исходного изотопа нейтронами а, интенсивность потока нейтронов п, период полураспада образующегося радиоизотопа и коэффициент счета детектирующего прибора а), можно рассчитать количество радиоизотопа для любого момента времени как в ходе активации, так и после нее, а по количеству радиоизотопа определить весовое количество анализируемого элемента. С необходимыми для этого расчетными уравнениями и методами регистрации излучений можно познакомиться по соответствующим учебникам и руководствам по радиометрии и радиохимии [46, 72, 94, 271]. Однако на практике для упрощения работы, а также во избежание погрешностей, допущенных в определении а, а и, особенно, п, пользуются относительным методом сравнения со стандартом определяемого элемента, облученного вместе с анализируемым образцом. Лишь в частном случае использования лабораторных источников нейтронов, обладающих большой стабильностью по потоку нейтронов, удобнее пользоваться абсолютным методом вычисления или методом градуировочных графиков, полученных для стандартных смесей. [c.211]

    Задача контроля радиоактивности в основном характерна для атмосферного воздуха, хотя существуют определенные аналитические проблемы и для газовых теплоносителей энергетических установок. Носителями радиоактивности воздуха являются, главным образом, аэрозоли пылевидных частиц размером 0,02-1 мкм. Поэтому необходимым этапом аналитического процесса является количественный отбор пыли на тот или иной фильтр или липкую ленту. Измерение уровня радиации, как правило, проводят несколько раз в течение определенного времени с тем, чтобы обеспечить возможность раздельной оценки естественной быстропадающей и искусственной радиоактивности. Измерению уровня радиоактивности подвергаются пробы пыли непосредственно после их отбора и по истечении двух суток. Для измерений обычно применяются пропорциональные счетчики, импульсы которых позволяют различать а- и Р-излучения и проводить их раздельное измерение. Интенсивность у-излучения измеряется, как правило, с помощью сцинтилляционных счетчиков. При необходимости осуществляется выделение того или иного радионуклида из газовой пробы и его концентрирование методами радиохимии. [c.936]

    При высокотемпературном коксовании каменного угля некоторое количество содержащейся в нем серы улетучивается, большая же ее часть остается в коксе. Степень обессеривания, помимо условий коксования, зависит в основном от формы, в которой соединения серы присутствуют в угле, и от их количества. Для получения малосернистого кокса, применяемого в металлургии, необходимо знать, какая форма серы в угле обусловливает наибольшее содержание серы в коксе, чтобы на основании этого можно было бы выбрать уголь, подготовить его и подобрать определенные условия коксования. Для решения этого вопроса было проведено много исследований, которые прежде всего касались поведения серы при коксовании. Однако решить вопрос о реакциях отдельных форм соединений серы в этих случаях можно было только косвенным путем, вследствие чего ценность получаемых представлений оказывалась ограниченной. И только методы радиохимии позволили изучить отдельные формы соединений и непосредственно проследить их свойства в процессе коксования. [c.51]


    Спектры ЭПР изучают с помощью приборов — радиоспектрометров. Спектроскопия электронного парамагнитного резонанса пригодна для исследования твердых, жидких и газообразных веществ. Метод используют для определения концентрации парамагнитных веществ, в радиохимии, фотохимии, гетерогенном катализе, химической кинетике. [c.330]

    Экстракция внутрикомплексных соединений (в.к.с.) широко используется в практике аналитической химии и радиохимии. Большой интерес проявляется и к теории экстракции соединений этого класса. Знание механизма процесса, характера влияния на экстракцию отдельных факторов, а также количественных соотношений, которые отражают процесс, облегчает разработку эффективных методов разделения и определения элементов, позволяет сознательно подбирать реагенты, растворители и другие условия работы. [c.225]

    Понятно, что для изучения полного состава минералов, горных пород, почв, природных вод и т. д. требуется определять содержание не только главных компонентов, но и содержание чрезвычайно малых количеств примесей Таким образом, определение очень малых концентраций вещества является важным для решения задач радиохимии, геохимии, гидрохимии, почвоведения, биохимии. Именно эти науки впервые поставили перед аналитической химией вопрос о методах количественного определения очень малых концентраций. [c.8]

    Основные научные работы относятся к радиохимии. В период второй мировой войны работал над проблемой разделения изотопов урана. Установил, что концентрация радиоактивного изотопа углерод-14, образующегося в атмосфере под действием космических лучей, во всем живом на нашей планете одинакова и совпадает с концентрацией в атмосфере. Когда организм гибнет, он перестает участвовать в круговороте природы и новый углерод-14 в него не попадает, Основываясь на этих данных, предложил (1947) теорию радиоуглеродного датирования и методы определения абсолютного возраста долгоживущих растений, горных пород, древнейших находок, а также дат вулканических извержений, времени вымирания различных животных. Эти методы нашли широкое применение в археологии, геологии, геофизике, биологии, медицине и др. Показал [c.298]

    Научные исследования относятся к радиохимии, химии благородных газов и геохимии. С помощью радиоактивных индикаторов определил строение смешанных кристаллов нового типа, не отвечающих классическому определению изоморфизма. Установил, что закон распределения растворенного вещества может быть применим к си- [c.361]

    Самой крупной лабораторией института является лаборатория радиохимии, которую возглавляет Б. Ф. Мясоедов. Главные направления ее научной деятельности — изучение химии трансплутониевых элементов, разработка методов их выделения и определения. Особое внимание уделяется способам получения и использования необычных состояний окисления трансплутониевых элементов, например америция (И) и (IV). В качестве методов разделения особенно широко используют экстракцию и сорбционные приемы, лаборатория имеет немалые достижения в этой области. Кроме того, проведен больщой цикл исследований по аналитической химии протактиния, разработаны многочисленные методы его концентрирования, выделения и определения. Ведутся исследования также по химии нептуния, актиния и урана. [c.201]

    Экстракционная хроматография сочетает в себе достоинства и экстракции, и хроматографии. Экстракционная хроматография — простой, удобный метод, пригодный для решения разнообразных задач аналитической химии и радиохимии. Еще одно достоинство метода — возможность быстрого моделирования экстракционного процесса и определения различных констант, характеризующих экстракционные равновесия. [c.5]

    Несмеянов Ан. Н. Применение радиоактивных элементов для определения растворимости. Сб. Радиохимия , Изд-во МГУ, 1952. [c.324]

    В любом методе анализа не все 100% атомов, ионов или молекул определяемого вещества используются при количественном определении, так как они не полностью находятся в нужной форме, что связано, например, с растворимостью соединений, полимеризацией многовалентных катионов, диссоциацией комплексных соединений, неполной ионизацией атомов в плазме или их активацией в потоке нейтронов и т. д. Кроме того, измеряемое вещество устойчиво иногда только в течение ограниченного времени ( времени жизни атомов, ионов), например, вследствие радиоактивного распада короткоживущих изотопов, распада малоустойчивых соединений, диспропорционирования, фотохимического действия света, неустойчивости горячих атомов в радиохимии или в катализе. Всем известна малая устойчивость разбавленных растворов ниобия, тантала, протактиния и т. п. вследствие гидролиза. Неполная и непостоянная активная форма вещества при абсолютном измерении каких-либо параметров (поглощение, эмиссия и т. п.) значительно сказывается на чувствительности и особенно на точности анализа. Приведем примеры. [c.10]

    Понятие излучение включает в этом смысле не только а-, р- и у-лучи, испускаемые при радиоактивном распаде, и рентгеновское излучение, но также нейтроны и осколки деления, возникающие при ядерных процессах, и потоки быстрых частиц (протоны, дейтоны, электроны и др.), создаваемые при помощи соответственной аппаратуры. Энергия этих излучений очень велика и лежит в области от десятков тысяч до миллионов электрон-вольт в отличие от энергии световых квантов, не превышающей 12— 14 еУ. Это резкое различие придает определенное своеобразие химическим процессам, протекающим под действием большой энергии, и делает целесообразным их рассмотрение отдельно от процессов, протекающих под действием света (фотохимия). В отличие от радиохимии, занимающейся химией радиоактивных элементов и атомов и их применением для самых разнообразных исследований, за областью изучения химических явлений, возникающих при взаимодействии излучения большой энергии с веществом, укрепляется название радиационная химия. [c.5]

    Книга может служить полезным учебным пособием для студентов и аспирантов радиохимических специальностей. Кроме того, она может представить определенный интерес для специа-листов-радиохимиков, а также для научных работников ряда смежных с радиохимией областей знаний. [c.10]

    Эти почти равноценные определения, исходившие из правильного принципа классификации наук по объектам и целям исследований, были несомненно адекватными предмету радиохимии на ранней стадии ее развития. [c.12]

    Величину выхода реакции важно знать не только при радиационных исследованиях, но и при решении ряда вопросов радиохимии. Так, например, если в системе JOз"— 2 — вода изучается изотопный обмен, то, зная выход радиационной реакции восстановления иодат-ионов и удельную активность раствора, можно определить число ионов, которые восстанавливаются в результате поглощения раствором определенной энергии излучения это дает возможность оценить влияние радиационных явлений на результаты опытов. [c.360]

    В книге автор попытался дать определение понятия радиохимия , отвечающее современному ее состоянию, и систематизировать материал в соответствии с этим определением. [c.8]

    После долгого перерыва в советской радиохимической литературе были даны определения радиохимии, получившей необычайно быстрое и широкое развитие благодаря ее тесной связи с ядерной энергетикой и использованию радиоактивных веществ в науке и технике. [c.10]

    Прежде чем перейти к подробному описанию отдельных разделов радиохимии, напомним определения понятий радиоактивного элемента и радиоактивного изотопа, которые широко применяются в литературе и используются в данной книге. [c.12]

    Реакции изотопного обмена играют большую роль в радиохимии. Изотопный обмен широко используется в методе радиоактивных индикаторов для исследования равноценности химических связей, определения поверхности кристаллов, изучения строения и химического состава соединений, изучения характера химических связей и реакционной способности соединений, измерения давления насыщенного пара труднолетучих веществ и коэффициентов самодиффузии и т. п. (см. гл. 18, 20). [c.17]

    Факт третий. 8.09.1998 г. по инициативе Научного совета РАН по проблемам биосферы при Президиуме РАН, в соответствии с рекомендацией Пермского областного Комитета по охране природы, на кафедре радиохимии Химического факультета МГУ им. М.В. Ломоносова было проведено рабочее совещание с участием специалистов ВНИПИпромтехнологии, ИДГ РАН, Центра радиационной безопасности Минтопэнерго РФ, НПО "Тайфун", Госатомнадзора, ООО "Подземгаз-конденсат", ВНИИФТРИ, которое признало необходимым провести эксперимент по независимому определению радионуклидов в пробах из зон воздействия ПЯВ. Это диктовалось указанным выше расхождением результатов измерений радиоактивности отдельных проб нефти и подземных вод из скважин Осинского, Гежского и других месторождений, выполненных разными организациями. Расхождения в отдельных случаях достигали трех-четырех порядков. Была подписана договоренность об участии в этом эксперименте трех лабораторий ВНИПИпромтехнологии Минатома РФ, кафедры радиохимии Химфака МГУ, НПО "Тайфун". Арбитром утверждался ВНИИФТРИ. Однако затем ВНИПИпромтехнологии нарушил соглашение и отказался от эксперимента. И поскольку причины столь резких различий в определении содержания радионуклидов остались не выясненными, то это, с одной стороны, оставило без ответа ряд вопросов методики радиационного обследования зон ПЯВ, а с другой, - подорвало доверие к данным, которые предоставлялись ВНИПИпромтехнологии, причастного к проведению ПЯВ. [c.71]

    Численные данные, получаемые при выполненин нескольких параллельных аналитических определений, обычно незначительно, но все же отличаются друг от друга. Эти отличия вызываются случайными причинами, и они обнаруживаются даже при самой тщательной работе химика-аналитика. Выяснить и устранить причины случайных отклонений невозможно. Нельзя также заранее предсказать, чему будет равно случайное отклонение каждого результата следующих определений. (Эднако при выполнении большого числа определений проявляется зависимость частоты появления отклонения от его величины. Обычно частота появления отклонения при этом подчиняется нормальному закону распределения (распределению Гаусса). Лишь в случае таких методов анализа, когда измерения ведутся подсчетом импульсов (в радиохимии), подсчетом квантов (в рентгеноспектральном анализе) и т. п., она подчиняется другому закону распределения, называемому распределением Пуассона. [c.132]

    МАКРО- И МИКРОКОМПОНЁНТЫ в радиохимии, компоненты систем, содержащих радионуклиды. Макрокомпонент (обычно нерадиоактивный или слабо радиоактивный) находится в системе в значительной массовой концентрации, а микрокомпонент (обычно радиоактивный) присутствует в виде примеси. Точные границы концентраций, в пределах к-рых в-во можно отнести к макро- или микрокомпоненту, не определены. Обычно принимают, что концентрация макрокомпонента должна быть настолько большой, чтобы его содержание как во всей системе, так и в отдельных ее фазах можно было достаточно точно определить обычными аналит. методами. Граница концентрации в-ва, ниже к-рой его можно считать микрокомпонентом, в разных системах варьирует от I до 10 мол.% и менее. Термодинамически микрокомпонент - это в-во, наличие к-рого в системе не вызывает существ, изменения коэф. термодинамич. активности макрокомпонента. Если макрокомпонент первоначально находился в системе в газообразной фазе или в р-ре, то при определенных условиях (понижение т-ры, удаление р-рителя, изменение pH и т.п.) он способен образовать собственную твердую или жидкую фазу, а микрокомпонент неизменно остается в паре или р-ре. Если микрокомпонент диссоциирует в р-ре на ионы, то произведение концентраций ионов значительно ниже произведения р-римости микрокомпонента (см. Произведение активностей). [c.631]

    К настоящему времени получены искусств, радионуклиды почти всех встречающихся в природе элементов периодич. системы (кроме Не и й), все актиноидные, а также трансактиноидные элементы (по 109-й включительно). Развитие ядерного реакторостроения и практич. проблемы получения ядерного горючего привели к тому, что радиохим. исследования и произ-во приобрели характер важнейших государств. профамм мн. развитых стран. Расширяется само понятие Р. по сравнению с определением, данным А. Камероном. В. Д. Нефедов и др. радиохимнки ленинградской школы (старейшей отечественной радиохим. школы) определяют Р. как науку, объектами исследования к-рой являются радиоактивные элементы и продукты ядерных превращений-на изотопном, элементном и молекулярном уровнях. В более широком смысле Р. трактуют как науку, изучающую хим. превращения радиоактивных в-в, их физ.-хим. св-ва, химию ядерных превращений и сопутствующие им физ.-хим. процессы (Ан. Н. Несмеянов и сотрудники). Однако такое определение Р. не охватывает технол. проблем радиохим. произв-в. Четкое разграничение круга вопросов, относимых к Р., должно быть основано на радиоактивных св-вах атомов, к-рые определяют характер проводимых работ и их результаты. Однако на практике такого разграничения обычно не проводят. Так, в журнале Радиохимия публикуются работы по химии радиоактивных элементов, использованию изотопных индикаторов при исследовании гетерог. процессов (экстракции, хроматографии, адсорбции, сокристаллизации и т.п.), по химии РЗЭ как аналогов актиноидов и мн. др. проблемам. [c.172]

    Ядерные эффекты в химии. Превращения в-в, не стабильных относительно распада ядер, изучаются, начиная с открытия радиоактивности в 1896. Введенный в нач. 20 в. термин радиохимия в наст, время объединяет химию радиоактивных в-в и ядерных превращений и изучение сопутствующих им физ.-хим. процессов. Разработаны методы, позволяющие направленно получать, концентрировать и выделять атомы с определенными адрами, в частности радионуклиды, а также молекулы, в состав к-рых входят такие атомы (см. Ядерная химия). [c.521]

    Аддукт — молекулярное соединение, образующееся путем присоединения молекул друг к другу. Обычно А. называют молекулярные соединения, образованные из веществ, насыщенных в валентном отношении. А. обычно получают смешением компонентов. Применяют в промышленности для извлечения ряда углеводородов из их смесей, при разделении и определении различных элементов в аналитическо химии, радиохимии и химической технологии. [c.5]

    Определение константы устойчивости комплекса тория с селенено-илтрифторацетоном выполнено на кафедре радиохимии МГУ. Данные для ацетилацетоната циркония взяты из литературы [И]. [c.175]

    Аналитическое отделение ЮПАК включает комитет отделения, семь секций, а также три временных комитета. Комитет — руководящий орган отделения, он ответствен за организацию всей работы. Члены комитета избираются на конференциях ЮПАК. В 1975 г. иа XXVOI конференции союза, состоявшейся в Мадриде, был сформирован следующий состав комитета президент — Н. Танака, известный аналитик из Японии, вице-президент — Т. Уэст (Англия), секретарь Дж. Уайт (США), членами комитета избраны Г. Дьюкертс (Бельгия), X. Кайзер (ФРГ), Ф. Пеллерия (Франция), Э. Пунгор (Венгрия), С. Б. Саввин (СССР), Г. Фрай-зер (США), Д. Хьюм (США). В состав отделения входят комиссии 1) по аналитическим реакциям и реагентам 2) по микрохимическим методам и определению микрокомпонентов 3) по аналитической номенклатуре 4) по спектрохимическим и другим оптическим методам анализа 5) по электроаналитической химии 6) по равновесным данным 7) по аналитической радиохимии и ядерным материалам. [c.224]

    Комиссия по аналитической радиохимии и ядерным материалам, возглавляемая Р. Вайнерди (США), готовит отчеты об определении легких элементов различными радиоаналитическими методами, эталонных материалах для определения микрокомпонентов и преподавании радиоаналитических методов и анализа материалов ядерной техники использовании экстракции в радиохимических методах анализа. Под наблюдением комиссии — чистота продажных радиоактивных препаратов отдельные рабочие группы заняты номенклатурой, относящейся к радиохимическим методам анализа и анализу ядерных материалов. [c.226]

    Из других важных областей химии следует указать электрохимию, которая изучает использование электрического тока для проведения химических процессов фотохимию, которая рассматривает влияние света на химические процессы. Из других разделов химии следует назвать коллоидную химию, занимающуюся изучением свойств веществ, когда их частицы находятся в определенных пределах дисперсности, и закономерностей, наблюдаюпщхся для таких состояний веществ (подробнее см. гл. 2) радиохимию, изучающую химическое поведение и важные для химических исследований свойства радиоактивных веществ, а также атомную, или ядер-ную, химию, которая занимается исследованием превращений атомных ядер и происходящими при этом процебсами наряду с изучением свойств и поведения искусственно полученных видов атомов (т. II) далее, металлографию, применяющую особые методы исследования, которые с течением времени проникли и в другие области химии (гл. 12, т. II) затем кристаллохимию — учение о зависимости между строением кристаллов и их химическим составом (гл. 7), область только что начинающую развиваться, равно как и геохимию — науку о химическом составе земного шара и о законах распределения в нем различных веществ (т. II). [c.16]

    После отделения элементы обычно определяются тем или иным методом (аналитическая химия) или применяются в качестве радиоактивных препаратов и т. д. (радиохимия, препаративная неорганическая химия). Дальнейшая судьба элемента имеет существенное значение — хотя бы потому, что многие свойства находящегося в экстрактах внутрикомплексного соединения могут быть непосредственно использованы для определения э.лемента. Наиболее часто аналитические методы основаны на определении величины светопоглощения (экстракционно-фотометрические методы), но можно измерять и другие свойства. Имеются работы по экстракционно-пламеннофотометрическому определению элементов (распыляют в пламени экстракт), появились работы, где неносредст-вепко полярографируют экстракты, и т. п. [c.8]

    Экстракцию Mo(VI) из хлоридных растворов довольно широко используют для решения прикладных задач. Разработан [1032] комбинированный спектральный метод определения молибдена в гранитах и аналогичных породах, включающий экстракцию элемента ТБФ. Предложены методики экстракционного выделения и последующего определения молибдена в ванадии и ванадатах [1024], индии [851], кобальтово-марганцевых катализаторах и пы-лях рафинирования меди [398], продуктах деления урана-233 и плутония-239 [1037], в металлическом уране [1038, 1040] и его окиси [1040], сталях [1025], никеле [1038, в растворах [346, 399, 1027—1029]. Представляют интерес методы фотометрического определения молибдена, в которых окраска развивается непосредственно в экстрактах после прибавления каких-либо реагентов [1027—1029]. В радиохимии экстракция Mo(VI) из хлоридных растворов может быть использована, например, нри определении радиоизотоиной чистоты препаратов молибдена, вольфрама и рения [621], а в технологии — для выделения молибдена из сложных по составу растворов, в частности, полученных при выщелачивании молибдено-вольфрамовых концентратов [623, 1030, 1034, 1043, 1047] и при переработке кобальто-марганцевых катализаторов и пылей рафинирования меди [397, 398], молибденитовых и шеелито-повеллитовых концентратов и дрз гих продуктов [1045, 1046]. [c.179]


Смотреть страницы где упоминается термин Радиохимия определение: [c.138]    [c.93]    [c.157]    [c.107]    [c.363]    [c.563]    [c.136]    [c.574]    [c.10]   
Радиохимия (1972) -- [ c.10 ]




ПОИСК







© 2025 chem21.info Реклама на сайте