Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углерода как компонент синтез-газа

    При абсорбции двуокиси углерода происходит одновременное поглощение и других компонентов синтез-газа. Если концентрация СО2 в газе равна 20%, потеря водорода за счет раствора составляет около 6%. Более высокие потери водорода объясняются механическим уносом пузырьков газа с растворо г. Практика работы водных абсорберов подтверждает [7], что вода, выходящая из них, пересыщена по водороду (по отношению к растворимости в условиях [низа аппарата). [c.119]


    Давление в промежуточном десорбере должно быть таким, чтобы обеспечить наиболее полную десорбцию водорода и других компонентов синтез-газа из воды при минимальной десорбции двуокиси углерода. Тогда в следующей стадии десорбции будет выделяться чистая двуокись углерода, которая в дальнейшем может быть использована для синтеза карбамида. Давление в промежуточном десорбере составляет примерно 3,43-10 Па (3,5 кгс/см2). [c.119]

    Концентрацию компонентов первой группы, включая двуокись углерода в синтез-газе, можно определить по уравнению  [c.467]

    Хотя использование водных растворов аммиака для извлечения кислых компонентов из газов предложено очень давно, промышленное применение таких процессов, особенно для избирательного извлечения сероводорода пз каменноугольных газов и полного удаления двуокиси углерода из синтез-газов, началось лишь недавно. Появление коррозионностойких материалов и выяснение природы некоторых физических явлений позволили значительно улучшить экономику аммиачного процесса и, следовательно, способствовали внедрению этого процесса очистки газа. [c.67]

    Водород — второй компонент синтез-газа — наиболее трудно сжижаемый газ (т. конд. при атмосферном давлении —252,8 °С). Образует с воздухом взрывоопасные смеси в пределах 4,0—75 % (об.) Нг- Наряду с высокой взрывоопасностью оксида углерода это предъявляет повышенные требования к технике безопасности при производстве синтез-газа, а также в цехах, где он служит сырьем для органического синтеза. [c.84]

    Основными компонентами природного газа являются метан, сероводород, диоксид углерода. Данные о некоторых реакциях СО2, получении водорода и синтез-газа из СН4, взаимодействии метана с насыщенными (диспропорционирование) и ненасыщенными (крекинг) углеводородами приведены выше. Ниже рассмотрены термодинамические характеристики процесса утилизации сероводорода — процесса Клауса и синтезов на основе метана. [c.349]

    После очистки от этих компонентов в водороде остается окись углерода, от которой газ очищают медноаммиачным раствором. Этот метод требует довольно сложной и громоздкой аппаратуры, поэтому изыскиваются пути его замены метанированием или синтезом на основе окиси углерода. Полученная в процессе очистки окись углерода может быть возвращена в цикл или использована в качестве топлива. [c.163]

    В связи с увеличением производства метанола и высших спиртов намечен также рост производства синтез-газа, компонентами которого являются водород и окись углерода. Основным способом производства синтез-газа является каталитическая конверсия легкого углеродного сырья (главным образом природного и нефтезаводских газов), а за рубежом-парокислородная газификация тяжелых нефтяных остатков [5]. [c.3]


    Когда газ, входящий в метанатор, нагревается выходящим из него газом, то высокая активность низкотемпературного катализатора почти всегда снижает концентрацию окиси углерода и, следовательно, температура в метанаторе возрастает до такой степени, что на выходе не может быть достигнута удовлетворительная температура. Для того чтобы восстановить нормальную работу, концентрацию окиси углерода во входящем в метанатор газе надо повысить пропусканием некоторого количества газа по байпасу низкотемпературного конвертора. Однако при этом увеличивается содержание инертных компонентов в синтез-газе. [c.150]

    Решение задач математического моделирования я оптимизации на этой основе процессов облагораживания [4] требует знания кинетических закономерностей процесса реагирования кокса с различными окислителями, установления значений кинетических констант протекающих в нем реакций при различных температурах термообработки коксов. Знание кинетических закономерностей реагирования нефтяных коксов с активными дымовыми газами позволяет, кроме того, наметить квалифицированные пути использования последних в различных областях производства, предъявляющих неодинаковые требования к их химической активности. Так, когда нефтяные коксы используются как химический реагент и интенсивность процесса обусловливается скоростью процесса реагирования углерода с другими компонентами реакции (производство ферросплавов, фосфора, сероуглерода, синтез-газов, карбидов металлов, активированного углерода и др.), они должны обладать высокой реакционной способностью. При шахтной плавке окисленных руд цветных металлов, для производства анодной массы и графитированных изделий, в процессах облагораживания и в [c.4]

    При абсорбции окисн углерода жидким азотом одновременно поглощаются и такие высококипящие компоненты конвертированного газа, как кислород и аргон, а также удаляются метан, этилен, ацетил(ш и другие углеводороды, образование которых неизбежно при паро-кислородной конверсии газообразных и газификации жидких углеводородов. Возможность получения таким путем азото-водородной смеси, практически не содержащей каталитических ядов и инертных (в реакции синтеза аммпака) примесей, является большим преимуществом низкотемпературного метода очистки конвертированного газа от остаточных количеств окиси углерода. [c.317]

    Обычно для получения исходного газа и его подготовки для синтеза метанола применяют парокислородную, паровую, паровую с дозированием диоксида углерода, высокотемпературную и некоторые другие виды конверсии [11]. Вид конверсии определяется технологическими факторами и в значительной степени зависит от состава природного газа. Как видно из данных табл. 1.1, основным компонентом природного газа является метан. Поэтому процессы, протекающие при конверсии природного газа разными окислителями, в первом приближении можно представить следующей схемой реакций окисления метана  [c.13]

    В настоящее время создаются производства метанола большой единичной мощности на основе низкотемпературного синтеза под давлением 5—10 МПа. Поскольку в этих схемах (см. рис. 3.36 и 3.37) основные затраты приходятся на сырье (40— 47%) и на содержание и эксплуатацию оборудования (42— 48%), то для снижения себестоимости метанола необходимо рационально использовать сырье и снижать стоимость оборудования. В приведенных выше производствах исходный газ получают конверсией природного газа в трубчатых печах под давлением. Повышенное содержание остаточного метана и высокая концентрация водорода против оксидов углерода в исходном газе приводит к увеличению расходного коэффициента по сырью. Кроме того, соотношение реагирующих компонентов в цикле выше оптимального. С целью снижения расхода исходного газа и поддержания оптимального состава циркуляционного газа целесообразно применение в отделении подготовки исходного газа высокотемпературной конверсии метана. Высокая температура в конверторе метана позволит увеличить давление в отделении подготовки исходного газа и соответственно приведет к дальнейшему снижению расхода энергии для сжатия свежего газа. [c.124]

    Разработанный процесс предназначается в основном для производства метанола для энергетических целей с использованием синтез-газа, полученного газификацией угля. Соответственно, отношение водорода к оксиду углерода в получаемом синтез-газе меньше стехиометрического. Используемая жидкая фаза должна быть стабильной в условиях синтеза — не изменять химического состава и не участвовать в химических взаимодействиях с исходными компонентами и продуктами реакции при повышенных температурах и давлениях. В качестве жидкой фазы можно использовать парафины, циклопарафины, ароматические углеводороды, минеральные масла. Наиболее предпочтительными являются парафины и циклопарафины, обладающие ограниченной смешиваемостью с метанолом. Концентрирование метанола в жидкой фазе замедляет реакцию его образования. Жидкие углеводороды перед использованием в процессе синтеза метанола должны быть обязательно очищены от соединений серы. [c.194]


    Смесь окиси углерода и водорода, известная под названием синтез — газ, используется для получения многих продуктов в промышленных масштабах. Изменяя условия синтеза температуру, давление, соотношение компонентов в исходной смеси, [c.484]

    В ФРГ для удаления двуокиси углерода, сероводорода, органических сернистых соединений, цианистого водорода, бензола и смолообразующих компонентов из синтез-газа начали применять процесс ректизол. Очистка основывается ка физическом растворении перечисленных примесей в охлажденном до низкой температуре метаноле. Сероводород полностью извлекается, но в очищенном газе остается некоторое количество двуокиси углерода [319, 340]. [c.362]

    Следовательно, повышение давления способствует накоплению в газе газообразных углеводородов (преимущественно метана), увеличивающих теплоту сгорания газа, в результате процесса термического разложения топлива и реакций синтеза метана из компонентов генераторного газа и гидрирования углерода. Повышение теплоты сгорания товарного газа можно также достигнуть отмывкой газа от двуокиси углерода и применением парокислородного дутья. Разрез газогенератора высокого давления показан на рис. 34. Схема газогенератора высокого давления показана на рис. 35. [c.157]

    Почти все крупномасштабные области применения кислорода основаны на его способности образовывать устойчивые соединения с водородом и углеродом, особенно с углеродом. Нагревание соединения углерода и водорода с ограниченным количеством кислорода дает смесь, главными компонентами которой являются окись углерода и водород. Эта смесь называется синтез-газом. [c.12]

    Природный газ является базовым сырьем для производства аммиака, метанола, ацетилена, которые, в свою очередь, служат сырьем для выработки азотных и сложных удобрений, пластических масс и синтетических смол, химических волокон и других продуктов органического синтеза. Кроме того, из природного газа выделяют такие ценные продукты, как гелий и технический углерод. Из попутного газа нефтедобычи выделяют такие компоненты, как этан, пропан, бутан, которые служат сырьем для производства синтетического спирта, фенола, синтетического каучука, пластических масс, синтетических смол и др. [c.75]

    Показана возможность сочетания процесса деструктивной гидрогенизации дистиллятов с синтезами метанола и аммиака. Разработанные схемы повышают производительность аппаратуры и обеспечивают более полное использование компонентов синтез-газа, позволяя частично или полностью заменить иепроизводи-тельный процесс отмывки окиси углерода процессом [c.58]

    При абсорбции двуокиси углерода происходит одновременное поглощение и других компонентов синтез-газа. При 40° С коэффициент селективности воды С для водорода и двуокиси углерода составляет --32, с понижением тe шepaтypы до 30° С величина С возрастает и составляет около 40. Следовательно, минимальная потеря водорода при 40° С равна 1/32-100 — 3,13%. Если учесть, что степень достижения равновесия по СО о практически составляет 74 [c.74]

    Давление в промежуточном десорбере должно быть достаточным для обеспечения наиболее полной десорбции водорода и других компонентов синтез-газа из воды при минимальной десорбции двуокиси углерода. Тогда в следующей стадии десорбции будет выделяться чистая двуокись углерода, которая может быть использована в дальнейшем для синтеза карбамида (иногда после дополнительного выжигания горючих примесей). Для снижения потерь На газ после первой ступени десорбции может быть скомпримирован и вновь направлен на абсорбцию (стр. 34). [c.75]

    Для получения синтез-газа может быть успешно использован также метан природных газов, который превран ается в смесь окиси углерода и водо1рода или каталитически по уравнению СН4 + Н20 —> СО ЗН2, или неполным сжиганием в кислороде. Следовательно, удается из простейшего парафина — метана — получить его высокомолекулярные гомологи. В результате имеем наиболее четко выраженный процесс синтеза, в ходе которого сложные молекулы образуются из простейших составляющих компонентов. [c.70]

    Катализаторы конверсии природного газа с водяным паром и кислородом. Процесс парокислородной (парокислородовоздушной) конверсии природного газа широко применяют для получения синтез-газа, используемого в производстве аммиака и метанола. Обычно этот процесс осуществляют автотермично в кднверторах шахтного типа при низком или среднем давлении и при относительно небольших объемных скоростях по природному газу (500—1000 ч ). Значительную интенсификацию парокислородной конверсии природного газа достигают в случае проведения его в аппаратах с кипящим слоем мелкого (0,4—1 мм) катализатора (см. табл. 19, № 1). В этом случае удается достичь довольно больших удельных нагрузок на аппарат (см. табл. 16, № 2). Объемная скорость по природному газу достигает 10 ООО—20 000ч Для исключения опасности отложения углерода на катализаторе рекомендуется тщатель-но смешивать исходные компоненты и поддерживать необходимый избыток воздуха (см. табл. 16, № 3). Для обеспечения более равномерного распределения тепла реакции по слою катализатора последний загружают в конвертор, например, послойно с шарами из жаропрочной стали. [c.37]

    Аналитический синтез оптимального регулятора. Часто в таких процессах, как водная очистка синтез—газа от двуокиси углерода, очистка газов от аммиака, улавливание хвостовых газов и т. п., основное требование к промышленному абсорберу состоит в том, чтобы концентрация абсорбируемого компонента в газовой фазе на выходе из аппарата не превышала заданной величины у г/,д. Если входные возмущения по составу фаз таковы, что концентрация абсорбируемого компонента не выходит за допустимые границы на выходе из аппарата (что можно наблюдать особенно при больших плотностях орошения), а наиболее опасными являются возмущения по расходу газовой фазы, то сформулированный выше вывод относительно управляемости каналов насадочного абсорбера находит эффективную практическую реализацию. Действительно, сведем задачу регулирования выходной концентрации по каналу массообмена к эквивалентной задаче по каналу гидродинамики. При заданных нагрузках на аппарат и фиксированном диапазоне допустимых концентраций на выходе всегда можно рассчитать соответствующий этим условиям перепад давления на колонне ДРзд [55]. Пусть система регулирования выходной концентрации предусматривает функциональный блок, в задачу которого входит вычисление с каждым новым скачком по расходу газа того перепада давления, который соответствует новой нагрузке по газу и заданной концентрации на выходе. При этом задача регулирования состава газа на выходе из аппарата сводится к поиску такого управляющего воздействия по расходу жидкости Ь, которое после каждого нового скачка по расходу газа С приводило бы фактический перепад давления ДР к рассчитанному для новых условий перепаду давления ДРзд. [c.428]

    Процеос Метанизации известен в течение многих лет как необходимая стадия очистки газа при синтезе аммиака из азота и водорода. Остаточная окись углерода, являющаяся потенциальным отравителем всех катализаторов, применяемых в производстве аммиака, должна быть полностью удалена из синтез-газа. Установлено, что этот процеос легко осуществляется при наличии большого избытка водорода. Обычно двуокись углерода полностью удаляется из газа еще до того, как последний достигает секции установки, где осуществляется метанизация. Небольшое коли1 ество двуокиси углерода не оказывает влияния на ход процесса, и присутствие тяжелых компонентов становится нежелательным только при подаче синтетического аммиака в центробежные компрессоры. [c.176]

    В составе газа газификации помимо оксида углерода и водорода присутствуют соединения, содержащие серу и аммиак, которые являются ядами для катализаторов последующих синтезов, а также фенолы, смолы и жидкие углеводороды. Эти соединения удаляют на следующей за газогенератором ступени очистки. В промышленных процессах газификации для очистки синтез-газа от сернистых соединений и диоксида углерода применяют методы физического и химического поглощения этих компонентов. В качестве поглотителей используют метанол, пропиленкарбонат, N-метилпирролидон, сульфолан и дии-зопропаноламин, диметил- и полиэтиленгликоли, этаноламины и др. [95], [c.92]

    За рубежом известно несколько схем переработки синтез газа, отходящего из производства ацетилена, для получени метанола, аммиака и других веществ. Это — парокислородна или паровоздушная конверсия остаточного метана в шахтны реакторах [17], паровая конверсия в трубчатых печах с дозиро ванием диоксида углерода [18—20]. Широко применяется раз деление компонентов методом глубокого охлаждения [21—23] при этом выделяется этилен, метан и фракция (Нг+СО). Ре комендуют также проводить очистку синтез-газа гидрирование непредельных соединений и кислорода на катализаторах, со держащих серебро [24]. Все схемы, как отечественные, так 1 зарубежные в аппаратурном оформлении громоздки и, соот ветственно, имеют большие капитальные затраты. [c.32]

    Влияние состава газа. При соотношении Н2 СО выше стехиометрического с ростом концентрации диоксида углерода в исходном газе (за счет изменения концентрации инертных компонентов при Н2 СО = сопз1) равновесная концентрация метанола II воды повышается (рис. 2.1 давление 29,4 МПа, температура 380°С, соотношение Н2 СО = 7). При стехиометрическом соотношении Нг СО с ростом концентрации диоксида углерода значение функционала становится меньше двух, что сопровождается снижением равновесного выхода метанола [34]. С повышением давления синтеза при постоянной температуре и увеличении концентрации диоксида углерода в газе равновесные выходы метанола и воды растут более интенсивно [34, 37]. [c.46]

    Интересна схема производства метанола с использованием исходного газа, полученного в трубчатых печах паровой конверсией природного газа с дозированием диоксида углерода. Конвертированный газ уже содержит 4,2—5,0% (об.) СО2 и имеет /-=2,15—2,3 его можно направлять без очистки непосредственно на синтез метанола. Опыт работы по такому методу дал положительные результаты, а технико-экономический анализ подтвердил предпочтительность его перед схемами, работающими на сырье, полученном другими видами конверсии [9]. Поэтому такая схема находит все большее развитие. Максимально возможная концентрация диоксида углерода в исходном газе определяется техническим (например, автотермичностыо работы агрегата) и экономическими факторами. По оценке авторов, при соблюдении необходимого соотношения реагирующих компонентов она находится в пределах 12—14% (об.). Однако необходимо учитывать, что при значительном содержании диоксида углерода возможна коррозия оборудования, в частности — трубопроводов межступенчатой теплообменной аппаратуры, компрессоров. Коррозия усиливается, если в исходном газе присутствуют сернистые соединения. [c.78]

    УГЛЕРОДА ОКСИД (угарный газ) СО, i ., —205,02 С, (юю —191,5 "С раств. в сп., бензоле, плохо — в воде КПВ 12,5--74%. Реаг. при высоких т-рах с СЬ, S, нек-рыми металлами и щелочами. Получ. газификацией тз. топлив (компонент генумторных, водяного, светильного газов) р-ция H с HiO в лаб.— взаимод. НСООН с HjS04 пра 100 "С. Примен. высококалорийное топливо в синтезе, ыапр., спиртов, углеводородов, альдегидов, карбоновых к-т для восст. нек-рых оксидов металлов и получ. карбонилов металлов. ПДК в производств, помещениях длительно 0,03 мг/л, в течение 15—20 мин — 0,2 мг/л. [c.603]

    В промотированных катализаторах синтеза аммиака часть поверхности, занятая основным компонентом — железом, определяется по низкотемпературной хемосорбции окиси углерода. Количество хемосорбированного газа при этом вычисляется по методу С. Брунаузра и П. Эмметта [1] как разность между величинами суммарной и физической адсорбции окиси углерода при —183° С. [c.177]

    Производство синтез-газа частичным окислением. Фирмы Монтекати-аи , Тексако и Шелл разработали промышленные процессы гроизвод-гтва синтез-газа непрерывным частичны.ч окислением нефтяных фракций. Общим в этих процессах является то, что в качестве окислителя применяется промышленный кислород. Катализатор отсутствует. В противоположность непрерывным каталитическим процессам можно применять любое сырье и, что особенно важно, нет ограничений в отношении серы. Реакция между нефтяной фракцией, кислородом и разбавителем водяной пар или двуокись углерода для снижения температуры) протекает в пламени при 705—816 °С, т. е. когда любые углеводороды почти полностью превращаются в компоненты водяного газа. [c.100]

    Дальнейшее развитие методов очистки синтез-газов зависит от многих факторов. Одной из важнейших проблем является утилизация извлекаемых при очистке компонентов газа — сероводорода, окиси и двуокиси углерода, а также этилена коксового газа. Кроме того, степень очистки должна удовлетворять гребованиям, обусловленным свойствами катализаторов, применяемых в реакциях синтеза. [c.356]

    Практичеони преимущественно праисходят отравления катализатора, названные обратимыми не вполне точно. В зависимости от методов получения синтез-газа и его очистки газовая смесь, вводимая в цикл синтеза, может содержать небольшие количества О2, Н2О, СО2 и СО. В большинстве случаев следует контролировать только содержание окиси углерода, так как остальные нежелательные компоненты легко могут быть полностью удалены. Заметное снижение активности катализатора наблюдается уже при содержании 0,005—0,01% окиси углерода Предельно допустимое содержание СО для промышленных установок обычно не должно превышать 0,002%. Кислород и окислы лтлерода реагируют на первых слоях катализатора с водородом  [c.491]

    Механические взвеси обычно содержатся в газе при условии его получения в пирогенетическом процессе. Технический водород, как правило, не содержит пыли, так как в ряде случаев он вырабатывается непирогенетическим путем (как, например, глубоким охлаждением газовых смесей или электролизом воды), а в других — при получении водорода через водяной газ — пыль удаляется в самом процессе производства водорода (до поступления водяного газа на конверсию СО). Загрязнен механическими взвесями (сажистым углеродом) водород, образующийся при термическом разложении углеводородов в гомогенном процессе. Наоборот, в сыром синтез-газе, вырабатываемом, как правило, в пирогенетических процессах преобразования твердых, жидких и газообразных топлив, механические взвеси являются сравнительно частым компонентом. [c.312]

    Работа ката.пизаторов во многом зависит от условий эксплуатации. Катализаторы производства водорода и синтез-газа в процессе работы (особенно низкотемпературные) конверсии оксида углерода подвергаются дезактивации вследствие взаимодействия с контактными ядами, содержаидамися в исходном газе (сера, галогены, аммиак и т.п.), а также в результате твердофазных изменений под воздействием реакционной среды, приводящих к рекристаллизации активного компонента и уменьшению его поверхности. [c.132]

    В эти же годы большие усилия ученых и инженеров были направлены на разработку технически совершенных и экономичных методов производства чистых азота и водорода для синтеза аммиака [14—22]. Первые аммиачные заводы работали па азото-водородной смеси, получаемой из полуводяного газа методом конверсии окиси углерода с водяным паром, т. е. фактически сырьем были кокс и каменный уголь. Вскоре после первой мировой войны были разработаны промышленные методы производства водорода из коксового газа глубоким охлаждением его до температуры —200° С. При этом конденсируются все газообразные компоненты коксового газа — этилен, этан, метан, окись углерода, а остающийся нескондепсированным водород промывается жидким азотом для освобождения от следов окиси углерода. Были созданы совершенные электролизеры с униполярными электродами, а также высокопроизводительные электролизеры фильтр-прессного типа с биполярными электродами для электролиза воды, которые нашли широкое применение в Норвегии, Италии и Японии. В небольшом масштабе стал применяться железопаровой способ получения водорода, использовался побочный водород других производств, например производства хлора электролизом раствора поваренной соли. Наконец, был разработан метод производства водорода конверсией метана и углеводородов нефти с водяным паром при атмосферном давлении и под давлением 2—5,1 МПа. Последний метод оказался наиболее экономичным, получил большое распространение после второй мировой войны и начал постепенно вытеснять другие. [c.13]


Смотреть страницы где упоминается термин Углерода как компонент синтез-газа: [c.222]    [c.37]    [c.66]    [c.95]    [c.31]    [c.21]    [c.306]    [c.365]    [c.374]    [c.256]   
Возможности химии сегодня и завтра (1992) -- [ c.67 , c.68 , c.187 ]




ПОИСК







© 2024 chem21.info Реклама на сайте