Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аммиачная сероводорода

    Известен другой случай замерзания воздушки гидрозатвора технологической установки аммиачной очистки газа от сероводорода. Основной причиной аварии была ошибка, допущенная при монтаже, в результате которой поперечное сечение общего вентиляционного коллектора оказалось недостаточным. Кроме того, участок коллектора, выходящий из помещения наружу, не обогревался в зимнее время. Эти ошибки плюс нарушение режима эксплуатации привели к взрыву и отравлению обслуживающего персонала. [c.311]


    Образующийся сероводород адсорбируют твердыми поглотителями или жидкими абсорбентами. В качестве твердых поглотителей для очистки от сероводорода применяют активированный уголь, гидроксид железа, оксид цинка. При жидкостной абсорбции используют аммиачную воду, этаноламины, мышьяково-содовый раствор, растворы карбонатов и т. п. В азотной промышленности наиболее часто применяют очистку при помощи оксида цинка (поглотитель ГИАП-10) при 350—400°С и объемной скорости до 2000 ч по уравнению реакции [c.86]

    Процесс извлечения серы методом Клауса был разработан более 100 лет назад для удаления сероводорода, образуемого при извлечении сульфита аммония из аммиачных растворов. [c.93]

    СДЯВ Аммиак, аммиачная вода (25%-ная), дихлорэтан, крезол, метанол, нитробензол, нитро- и аминосоединения ароматического ряда, окись углерода, синильная кислота, сероводород, тетраэтилсвинец, фенол, хлор, четыреххлористый углерод, этиловая жидкость дымящие кислоты  [c.541]

    Этот метод используют в производстве водорода паро-кислородной газификацией нефтяных остатков в схемах с котлом-утилизатором и низкотемпературной конверсией окиси углерода. Газ, предварительно охлажденный и очищенный от сажи, поступает на очистку от сернистых соединений в абсорбер 1 (рис. 39) [18]. После средне-и низкотемпературной конверсии окиси углерода конвертированный газ очищают от СО, в абсорбере 3. К газу, подвергаемому очистке, добавляют небольшие количества метанола. Затем газ охлаждают в теплообменнике вначале за счет передачи холода от выходящего из абсорбера газа, потом за счет отъема тепла при испарении жидкого аммиака, т. е. аммиачным холодильным циклом. Из газа вместе с метанолом удаляется и влага. Чтобы при охлаждении газа теплообменники не забивались льдом, в газ добавляют раствор моноэтаноламина. Охлажденный газ орошается метанолом в абсорбере 1, при этом из газа полностью удаляется сероводород, сероокись углерода и другие сернистые соединения. Метапол, насыщенный сернистыми соединениями, подается в регенератор 2, где при нагревании сернистые соединения удаляются. [c.126]

    В состав установки концентрирования входят блоки предварительного охлаждения, очистки от сероводорода, осушки газа на цеолитах, аммиачного охлаждения, низкотемпературного раз-деления. Как показали расчеты, применительно к установке мощностью 5 тыс. т/год себестоимость производства водорода низкотемпературным концентрированием в Ц8 раза.ниже, чем конверсией. [c.273]


    Таким образом, в структуре отходов больщую часть составляют сточные воды, основными источниками которых являются надсмольная вода отделения конденсации (после аммиачной колонны) - около половины всех стоков, а также часть оборотной воды в отделении конечного охлаждения коксового газа, сепараторные воды, образующиеся при улавливании сырого бензола и переработке смолы. Состав сточных вод сложен и включает фенол и его производные (0,3 - 5,0 г/л), летучий и связанный аммиак (0,05 - 0,6 г/л), сероводород (0,02 - 0,1 г/л), цианид- и тиоцианат-ионы (от следов до 0,6 г/л) и др. [c.76]

    Аммиачная вода содержит большое количество аммиака, а также простые и циклические амины, пиридин, сероводород, роданистые соединения и другие вещества она служит источником для получения аммиака. [c.475]

    КОКСОХИМИЯ (коксохимическое производство) — комплекс химических производств, связанных с коксованием каменного угля и переработкой химических продуктов коксования. При очистке и переработке коксового газа, каменноугольной смолы, аммиачной воды и др. получают высококалорийное газовое топливо для промышленных печей, азотсодержащее удобрение — сульфат аммония, серу или сероводород и большую группу органических соединений — ценное сырье для химической промышленности. [c.131]

    Нельзя выпаривать на рабочих столах вещества, образующие, вредные газы, например кислоты, аммиачные растворы, жидкости, содержащие сероводород, хлор, бром, хлористоводородную кислоту и т. д. [c.8]

    Какие же ионы образуются при растворении аммиака в воде Прильем к раствору несколько капель раствора фиолетового лакмуса или фенолфталеина в аммиачной воде лакмус окрашивается не в красный цвет (как в растворах галогеноводородов, сероводорода), а в синий, фенолфталеин — в малиновый цвет. Мы обнаружили присутствие в аммиачной воде ионов гидроксила 0Н , Откуда они появились  [c.47]

    Вода, сероводород, кислоты соляная, серная, азотная, уксусная, гидроокиси и оксалаты щелочных металлов, гидроокись аммония, карбонаты, сульфаты, фосфаты и другие реагенты осаждают различные ионы, образуемые элементами, закономерно расположенными в периодической системе. Например, для осаждения гидроокисей в качестве реагентов применяют различные буферные смеси ( 12), руководствуясь величинами pH, при которых осаждаются гидроокиси. В кислотно-щелочном систематическом ходе анализа в качестве реагентов применяют сильные основания, аммиак, соляную и серную кислоты. Те же реагенты применяют в аммиачно-фосфатном методе, предложенном А. П. Крешковым. [c.19]

    Действие гидроокисей щелочных металлов и аммиака. Медь в отличие от всех других элементов семейства титан — цинк не осаждается сероводородом в аммиачной среде. Ее можно осаждать в виде сульфида в кислой среде. [c.225]

    Сероводородом в аммиачном растворе (рН 9), т. е. сульфидом аммония, выделяют сульфиды кобальта (II), никеля (II), железа (II, III), цинка (II) и марганца (II). Кроме того, осаждаются гидроксиды хрома (III), алюминия (III) и титана (IV). [c.19]

    Для открытия сероводорода поместите в ушко ни-хромовой проволоки каплю аммиачного раствора нитропруссида натрия и внесите ее в атмосферу выделяющегося [c.426]

    На реакциях комплексообразования основаны многие процессы. Особенно широкое применение нашли реакции комплексообразования в аналитической химии для разделения элементов. Например, для разделения ионов меди и висмута к раствору солей обоих металлов прибавляют избыток аммиака, при этом медь образует растворимый аммиакат, а висмут осаждается в виде гидроксида. Железо можно отделить от титана сероводородом в аммиачном растворе. Для этого к раствору прибавляют винную кислоту, которая в аммиачном растворе связывает (маскирует) ионы титана в устойчивое растворимое комплексное [c.175]

    Разделение ионов в виде сульфидов. Сульфиды очень многих металлов труднорастворимы в воде. Эти свойства были использованы для разработки схемы систематического хода анализа катионов, которая была предложена более 100 лет назад известным русским химиком К. К- Клаусом, открывшим рутений. Эту схему называют сероводородный метод разделения и анализа ионов , она сохранилась с некоторыми изменениями и до настоящего времени. В табл. 26.8 представлены продукты взаимодействия катионов с сероводородом в кислой среде и с сульфидом аммония в аммиачной среде. Из этой таблицы видно, что в среде хлороводородной кислоты сероводород осаждает черные сульфиды серебра, ртути, свинца, меди, висмута, желтые сульфиды кадмия, мышьяка(И1) и (V), олова(1У), оранжево-красные сульфиды сурьмы(III) и (V) и коричневый сульфид олова (II). [c.557]


    Бигуанид.—Бигуанид, несмотря на сравнительно редкое присутствие в цианамидных смесях, все же иногда встречается. Сернокислый бигу-анид получается нагреванием дициандиамида с аммиачной сернокислой медью. Медная соль кристаллична и легко отделяется, и свободное основание получается из нее обработкой сероводородом. Реакция образования бигуанида такова  [c.98]

    Сернистый аммоний получают непосредственно в реакционной смеси, пропуская газообразный сероводород в аммиачный раствор нитросоединения, на что требуется много времени. Сероводород не следует применять в слишком большом избытке. Поэтому реакцию контролируют взвешиванием и прерывают по достижении вычисленного привеса реакционной массы. В случае если нитросоединения не растворяются в водных растворах, добавляют спирт амины выделяют после отгонки спирта и подкисления. [c.498]

    Продукты С токсическими свойствами а) сильнодействующие ядовитые вещества (СДЯВ) аммиак жидкий и газообразный, аммиачная вода (25%-ная), нит-трил акриловой кислоты, окись углерода, сероводород, сероуглерод, тетраэтилсвинец, хлор жидкий и газообразный, хлорметан, дихлорэтан, синильная кислота, нитро-и аминосоеди нения ароматического ряда б) дымящие кислоты олеум, серная кислота конц., соляная кислота конц., азотная кислота конц., плавиковая кислота в) прочие продукты с токсическими свойствами ацетальдегид, бензол, метиловый спирт, окись этилена, хлорбензол, фенол, крезол, толуол, пятисернистый фосфор, окись цинка, диэтиламин, диэтилбензол, пиридин, сульфонол,этилбензол, этилтри-хлорсилан, щелочные растворы концентрацией более 10% [c.542]

    Платиновые катализаторы весьма чувствительны к каталитическим ядам, содержащимся в аммиаке и воздухе, образующим аммиачно-воздушную смесь (АмВС). Фосфористый водород вызывает его необратимое, а ацетилен, сероводород и органические соединения серы обратимое отравление. Так как вследствие этого активность катализатора снижается, его периодически регенерируют промывкой соляной или азотной кислотой. [c.215]

    Существует несколько вариантов этого процесса. Например, можно, используя концентрированные растворы аммиака, абсорби-(ровать сероводород на первой стадии и затем подать аммиак ко второму абсорберу (процесс Коллина). Кислый газ затем отпаривается от концентрированного аммиачного раствора (рис. П1-27). Детали процесса описаны в работе [455]. [c.145]

    На работу обесфеноливающего скруббера влияет полнота десорбции в аммиачной колонне аммиака и, следовательно, диоксида углерода и сероводорода. Содержание аммиака (летучего) в поступающей на обесфеноливаюший скруббер воде [c.378]

    Разработаны схемы анализа группового состава сернистых соединений всех нефтепродуктов, включающие колориметрические методы и амперометрическое прямое титрование [29]. Колориметрически определяют содержание сероводорода, меркаптанов и дисульфидов. Метод основан на экстракции сероводорода кислым раствором хлорной меди, а меркаптанов — аммиачным раствором углекислой меди с последующей обработкой вытяжки ксрцентрированным водным раствором аммиака и сульфита натрия (для нредотвращения каталитического влияния ионов меди). Вытяжки фильтруют и колориметри-руют при длине волны 625 нм. Содержание дисульфидов (после их восстановления) определяют по увеличению количества меркаптанов. Сходимость колориметрических определений достаточно высока. [c.92]

    Парогазовые продукты коксования покидают печь при температуре 700 - 800°С и подвергаются первичному охлажденшо в стояке и газосборни-ке до 80°С и далее в трубчатых горизонтальных или вертикальных холодильниках до 30 - 40°С. В результате этого конденсируются пары воды (так называемая аммиачная вода) и смола, уменьшается объем газа, который далее транспортируется компрессором с последовательным улавливанием из него аммиака и пиридиновых оснований, сьфого бензола, сероводорода и цианистого водорода. [c.60]

    Актуально сокращение количества сточных вод, что может быть достигнуто проведением термоподготовки шихты (влага, получаемая при термоподготовке, свободна от токсичных веществ), обогревом аммиачных колонн глухим паром, улавливанием сероводорода, аммиака, цианистого водорода в начале газового тракта, улучшением технологии извлечения бензола из масла. Проведение указанных мероприятий позволяет на 30 - 40 мас.% уменьшить количество сточных вод. [c.78]

    Ести в анализируемой пробе присутствуют РО - и ВОз -, то центрифугат, полученный после второго осаждения сероводородом, перед дальнейшим анализом нужно подвергнуть ионному обмену. В аммиачном растворе почти все катионы образуют осадки с Р04 и ВОз , что усложняет последующий систематический ход анализа катиойов. [c.73]

    Определение железа и алюминия. При анализе силикатов, известняков, некоторых руд и других горных пород эти элементы часто определяют гравимеФрическим методом в смеси с титаном, марганцем и фосфатом как сумму так называемых полуторных оксидов. Обычно после отделения кремниевой кислоты в кислом растворе приводят осаждение сульфидов (меди и других элементов) и в. фильтрате после удаления сероводорода осаждают сумму полуторных оксидов аммиаком в аммиачном буферном растворе. Осадок гидроксидов промывают декантацией и переосаждают, после чего фильтруют, промывают и прокаливают. Прокаленный осадок содержит оксиды ЕегОз, АЬОз, ТЮг, МпОг. Иногда анализ на этом заканчивается, так как бывает достаточным определить только сумму оксидов и не требуется устанавливать содержание каждого компонента. При необходимости более детального анализа прокаленный осадок сплавляют с пиросульфатом калия для перевода оксидов в растворимые сульфаты и после растворения плава определяют в растворе отдельные компоненты — железо титриметрическим или гравиметрическим методом, титан и марганец — фотометрическим и фосфор — гравиметрическим (марганец и фосфор анализируются обычно из отдельной навески). Содержание алюминия рассчитывают по разности. Прямое гравиметрическое определение же- [c.165]

    Метод основан на применении в качестве группового реактива вместо сероводорода и сульфида аммония их заместителя — тиоацетамида СНзС5ЫН,2, который в водных растворах, вследствие реакции гидролиза, образует сероводород, а при соответствующих условиях (в аммиачной среде) — сульфид аммония. [c.142]

    При выполнении анализов имеют дело с большим количеством различных реактивов, среди них имеются ядовитые, огнеопасные и взрывоопасные. К ядовитым относятся аммиак, бром (пары) сероводород, соли ртути, мышьяка, хлорид бария, цианиды, ща велевая кислота и ее соли. Огнеопасные вещества ацетон бензол, спирты, эфиры, хлороформ и другие органические раство рители. Взрывоопасные вещества аммиачный раствор нитра та серебра, концентрированная хлорная кислота при контакте с органическими веществами. [c.243]

    Буферные растворы применяются в тех случаях, когда необходимо поддерживать постоянное значение pH раствора. Например,, чтобы осадить Zn + сероводородом, необходимо поддерживать-pH 1,5—2. Это достигается прибавлением формиатного буферного раствора, состоящего из смеси муравьиной кислоты НСООН и формиата аммония H OONH4, взятых в одинаковых концентрациях. При таком значении pH ион цинка осаждается из раствора в виде ZnS, в то время как другие катионы III аналитической группы (AF+, Сг +, Fe +, Мп2+, Fe2+, Со +, N1 + и др.) в осадок выпасть не могут и остаются в растворе. Аммиачный буферный раствор NH4 I+NH4OH предотвращает осаждение катионов магния при отделении катионов II аналитической группы от I. [c.129]

    Цветная реакция с н ит р оп р у сс и дом натрия Nat[Fe( N)6N01 . Раствор нитропруссида натрия дает в аммиачной среде с сероводородом ярко-фиолетовое окрашивание. Полоску фильтровальной бумаги смачивают раствором, а затем держат в атмосфере газообразного аммиака. При действии на бумагу сероводорода появляется фиолетовое пятно вследствие образования комплексной соли Na lFe( N),(NO)S] -. [c.251]

    Возвратясь в Казань и получив кафедру химической технологии, Н. Н. Зинин начал исследования в новой области органических соединений, и уже в октябре 1842 г. в Известиях Академии Наук была напечатана его работа о превращении нитробензола и нитронафталина в бензидам (анилин) и наф-тилидам (нафтиламин) действием сероводорода в аммиачной среде. [c.488]


Смотреть страницы где упоминается термин Аммиачная сероводорода: [c.35]    [c.45]    [c.503]    [c.156]    [c.97]    [c.66]    [c.158]    [c.160]    [c.180]    [c.291]    [c.293]    [c.166]    [c.374]    [c.280]    [c.289]    [c.459]    [c.31]   
Технический анализ (1958) -- [ c.199 ]

Технический анализ Издание 2 (1958) -- [ c.199 ]




ПОИСК







© 2024 chem21.info Реклама на сайте