Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гибкость водородных связей

    Важность этой теории состоит в том, что в ней впервые учтена гибкость водородных связей, однако ее нельзя все же считать полностью удовлетворительной, поскольку она, например, не принимает во внимание трансляционные перемещения молекул. Трансляционные движения молекул воды (т. е. самодиффузия), несомненно, сопровождаются разрывом водородных связей, хотя вследствие гибкости этих связей, по-видимому, только некоторые из них рвутся. Учет трансляционного движения приводит к уменьшению среднего координационного числа, хотя каждая молекула продолжает быть связанной с четырьмя другими. [c.43]


    Описанная структура полимера ведет себя подобно коагуляционной структуре. Сходство в поведении этих структур заключается в том, что для них характерны химические связи внутри частиц и на порядок меньше межчастичные взаимодействия. С увеличением полярности макромолекул уменьшается их гибкость, а для межмолекулярных взаимодействий становятся характерными все три типа сил Ван-дер-Ваальса. Наличие таких функциональных групп, как 0Н, —СООН, —ЫНг, обусловливает возникновение более прочных водородных связей. С ростом межмолекулярного притяжения полимер превращается в более твердое, менее эластичное и даже хрупкое вещество, теряющее плавкость и растворимость. Полимеры с химическими связями между макромолекулам (пространственные) нерастворимы и неплавки при нагревании. По свойствам они соответствуют конденсационным структурам. [c.391]

    Наличие в них химических связей, сильно отличающихся энергиями, когда атомы в цепях макромолекул соединяются химическими связями, имеющими энергии порядка сотен кДж/моль, а макромолекулярные цепи связываются друг с другом молекулярно-поляризационными или водородными связями с энергиями до 30 кДж/моль. 2. Гибкость цепей, обусловленная вращением звеньев. [c.33]

    Водородная связь играет большую роль в биологических процессах. Она определяет многие свойства высокополимеров. Так, потеря свободного враш,ения и, следовательно, гибкости (см. гл. ХП1) часто связаны с мостиками водородной связи. [c.493]

    Далее необходимо, чтобы межмолекулярные силы были и не слишком малы, и не слишком велики. При слишком малом меж-молекулярном взаимодействии молекулы свободно отрывались бы друг от друга и вместо упругого растяжения наблюдалось бы течение, как у жидкостей или смол. Слишком большие межмолекулярные силы препятствовали бы скольжению молекул и их ориентировке под действием растягивающей силы. Поэтому, например, такое вещество, как клетчатка, не обладает значительной упругостью. Между нитевидными молекулами клетчатки (которые к тому же обладают меньшей гибкостью, чем тонкие молекулы поли-изопреноидов) действуют значительные межмолекулярные силы, прежде всего в виде водородных связей между ОН-группами, входящими в состав разных цепей. Можно вообще предвидеть, что присутствие в макромолекуле полярных групп, сильно увеличивающих взаимодействие между молекулами, должно приводить к уменьшению упругого растяжения. [c.322]

    Наличие циклов в цепи уменьшает гибкость цепи, повышая тем самым температуру плавления. Однако благодаря отсутствию межмолекулярных водородных связей, обеспечивающих межмолекулярное взаимодействие, полиамид легко растворяется во многих растворителях. [c.106]


    Эффективность акриловых реагентов связана с особенностями их состава и строения. В отличие от реагентов на основе полисахаридов с их нестойкими эфирными и гликозидными связями у акриловых полимеров цепи скрепляются прочными связями углерод — углерод. Это придает им большую энзиматическую, гидролитическую и термоокислительную устойчивость. Существенно и расположение функциональных групп непосредственно у главной цепи, а не в связи с циклическими группировками, как у крахмала или КМЦ. Малые размеры заместителей (группы N, СНз, СООН) и высокая их полярность обеспечивают гибкость полимерных цепей и их развернутые конформации, наиболее выгодные с точки зрения химической обработки и легко регулируемые изменениями pH. Содержание большого числа активных групп, различных по своей природе, и атомов водорода с повышенной способностью к образованию водородных связей обусловливают своеобразие коллоидно-химических свойств реагента и его многофункциональность. С этим связана и склонность полиакрилатов к взаимодействию с щелочноземельными и другими металлами. Большое значение имеет структура макромолекул — распределение в них отдельных звеньев. Для промышленного продукта характерно неупорядоченное строение и размещение функциональных групп. [c.192]

    Чередование связей 1 3 и ]—>4 придает гиалуроновой кислоте необыкновенную прочность и гибкость. Высокая вязкость объясняется полианион-ным характером гиалуроновой кислоты при физиологических значениях pH, что способствует гидратированию цепей этого полисахарида и образованию водородных связей между ними. [c.70]

    Замены подобных остатков происходят чаще, чем другие замены. Требование сохранения функции налагает ограничения на частоту допустимых замен в данном положении полипептидной цепи. По-видимому, многие функции менее всего нарушаются при консервативных замещениях, т. е. заменах на подобные остатки. При этом имеют значение величина, форма, гибкость и заряд боковой цепи, а также ее способность к образованию водородных связей. Так, при замене Lys-> Arg сохраняется подвижная боковая цепь, несущая положительный заряд, а при замене Ile->Leu—относительно объемная неполярная боковая цепь. Принцип консервативных замен использован в разд. 1.6 для выявления эмпирического подобия аминокислот по наблюдаемым частотам встречаемости (табл. 1.2). [c.202]

    Линейные полиуретаны имеют достаточно высокую температуру плавления вследствие образования водородных связей между карбонильными и амидными группами макромолекул. С увеличением числа метиленовых связей в полиуретанах понижается температура размягчения и улучшается растворимость полимера, а также увеличивается гибкость пленок и волокон из него. Присутствие фениленовых групп в макромолекуле способствует повышению жесткости и температуры плавления полимера. Полиуретаны имеют незначительную гигроскопичность, что объясняется присутствием сложноэфирных фупп в алифатической цепи полимера. Они отличаются высокой атмосферостойкостью, устойчивостью к воздействию кислорода воздуха и озона, кислот и щелочей. [c.93]

    Строение макромолекул (присутствие в них полярных групп, способность к образованию водородных связей, размер боковых заместителей) существенно влияет на ],гибкость полимерной цепи. Большое значение имеет специфика межмолекулярного взаимодействия удельная когезионная энергия и характер силового поля, образуемого мономерными единицами [137, с. 2 138, 139, 147, 148, с. 552]. Большую роль играет порядок взаимного расположения мономерных единиц и геометрические факторы, обусловливающие упаковку макромолекул 140], присутствие коротких или длинных боковых ответвлений и макроциклов [149], количество проходных макромолекул и т. п. [c.57]

    Интересное явление, которое отличает механохимическую деструкцию от других видов расщепления, — это так называемая денатурация нуклеиновых кислот. Известно, что при обычных методах расщепления дезоксирибонуклеиновая кислота разрывается на два одинаковых фрагмента вследствие разрыва водородных связей. Изменение pH или повышение температуры вызывает разрыв многочисленных водородных связей, вследствие чего макромолекулярные цепи ДНК теряют гибкость и перестраиваются в более компактную структуру, сохраняя постоянный первоначальный молекулярный вес. [c.243]

    СНг — СО — и — СНг — NH — в общем более затруднено, чем вокруг связи —СНг — О—, хотя заметно не отличается от вращения вокруг связи — СНг —СНг—. Так, высокие точки плавления найлонов нельзя объяснить просто с точки зрения пониженной гибкости цепей по-видимому, они должны быть обусловлены скорее преобладающим влиянием межмолекулярных водородных связей, приводящих к свободно упакованной и в то же время прочной кристаллической структуре. Кроме того, имеются многие возможности изгибов цепей ниже точки плавления, и сложные свойства этих веществ (Слихтер [121]) наглядно свидетельствуют о характере затруднений, которые следует учитывать при попытках подробного рассмотрения процесса плавления, особенно у полимеров с сильными межмолекулярными взаимодействиями. Более того, в случае полиэтилентерефталата (плавится при 265°) показано, что роль связей, допускающих свободное вращение, не всегда ощущается достаточно сильно. Между, сложноэфирными связями в молекуле этого вещества расположены жесткие плоские группы (см. табл. 1), у которых асимметричные поперечные сечения , по всей вероятности, мешают вращательным движениям, возможным в других случаях. [c.418]


    Большая длина и гибкость макромолекул обусловливают ряд особенностей твердого А. с. полимеров. Если линейные макромолекулы достаточно жестки, то кристаллизация таких полимеров не происходит вследствие малой подвижности этих макромолекул и образуется стеклообразное тело, обладающее лишь ближним порядком в расположении макромолекул, т. е. упорядочением, простирающимся на расстояния, сравнимые с размерами макромолекул. В связи с большой длиной цепных макромолекул абсолютные размеры трехмерно упорядоченных областей могут достичь значений, намного превышающих размеры молекул низкомолекулярных веществ. В случае гибких макромолекул возникает ряд возможностей образования твердого А. с. В связи с большой длиной макромолекул их поступательное движение м. б. ликвидировано образованием связей между отдельными местами цепей, т. е. пространственным структурированием, возникающим как вследствие химич. взаимодействия отдельных групп атомов в соседних макромолекулах (см. Трехмерные полимеры), так и вследствие достаточно сильных взаимодействий физич. характера, напр, при образовании водородных связей. Если сильные межмолекулярные связи расположены достаточно часто, происходит потеря поступательного движения не только самих макромолекул, но и их сегментов, т. е. образуется стеклообразное пространственно-структурированное тело. Если же эти связи расположены редко, т. е. на расстояниях, значительно превышающих размеры сегментов, то теряется возможность поступательного движения макромолекул в целом, но сохраняется свобода поступательных перемещений их сегментов, т. е. образуется высокоэластич. пространственно-структурированное тело. [c.7]

    Свойства. Полиуретаны принадлежат к числу кристаллических, волокнообразующих полимеров, имеющих достаточно высокие температуры плавления вследствие образования водородных связей между макромолекулами полимера за счет амидных групп. Однако их температура плавления ниже, чем у соответствующих полиамидов благодаря большей гибкости цепи, связанной с присутствием в макромолекуле простой эфирной связи. Так, если полиуретан состава [c.180]

    Таким образом, свойства полиуретановых эластомеров зависят от гибкости сегментов, степени разветвления полимерных цепей, ориентации сегментов, наличия водородных связей и других сил межмолекулярного взаимодействия, жесткости ароматических участков молекул и количества поперечных связей. В отличие от хорошо известных олефиновых эластомеров в уретановых эластомерах значительную роль играют водородные связи и силы Ван-дер-Ваальса. [c.341]

    Цафар, Хастед и Чемберлен [28г] измеряли гибкость водородных связей, определяя дисперсию диэлектрической проницаемости воды в субмиллиметровом диапазоне длин волн. Результаты измерений позволяют сделать вывод, что небольшая доля молекул НгО может изменять свою ориентацию без разрыва водородных связей. [c.43]

    Перейдем к рассмотрению возможных типов полостей в льдоподобных структурах, образованных из молекул воды. Анализ этого вопроса проводился в работах Г. Г. Маленкова, Джеффри, Ю. А. Дядина с сотрудниками и других авторов. Прежде всего отметим, что даже наиболее стабильная структура, построенная из молекул воды, т. е. обычный гексагональный лед, — конструкция достаточно рыхлая и ее плотность в 1,5 раза ниже, чем соответствующая плотнейшей упаковке молекул воды. Как показал кристаллохимический анализ, проведенный А. Ю. На-миотом и Э. Б. Бухгалтером, в канальных полостях гексагонального льда могут поместиться лишь весьма малые молекулы водорода и гелия. Благодаря известной гибкости водородных связей и тетраэдрической координации кислорода имеется возможность построения из молекул воды ряда близких по энергетическим характеристикам структур, в которых в отличие от гексагонального льда имеются полости клеточного типа, причем значительного (молекулярного) размера. Показано, что энергетически наиболее выгодными полостями (а их можно представить в виде многогранников, вершины которых символизируют атомы кислорода, а ребра изображают водородную связь) являются 12-, 14-, 15-, 16- и 20-гранники (рис. 1.1), обычно обозначаемые D, D, Т, Р, Н, Е, соответственно. При этом 12-гранник (D-полость или пентагональный додекаэдр) оказываются энергетически наиболее выгодным — в нем угол между водородными связями (108°) практически не отличается от тетраэдрического. [c.6]

    Замеш,ение гидроксильных групп оксиалкильными или окси-арильными группами приводит к изменению некоторых свойств полиметиленфенолов. Присутствие гидроксильной группы обусловливает некоторую гигроскопичность полимера, снижает его стойкость к действию растворов щелочей, способствует возникновению водородных связей между отдельными сегментами цепей, снижая их гибкость, а следовательно, и упругость полимера. При <амещении в полиметиленфенолах гидроксильных групп простыми эфирными группами свойства полимера несколько улучшаются. [c.387]

    Наличие в макромолекуле полярных заместителей, наприйер —С1, —ОН, —СЫ, —СООН, делает молекулу менее гибкой, так как взаимодействие между этими заместителями повышает энергетический барьер. Кроме того, полярные заместители обусловливают увеличение взаимодействия с полярными группами соседних молекул. Между этими группами, являющимися диполями, могут возникать как значительные межмолекулярные силы (например, в поливинилхлориде между атомами хлора), так и водородная связь, если имеются соответствующие условия (например, в полимерах акриловой кислоты между карбоксильными группами). Все это приводит к уменьшению гибкости цепи и повышает жесткость полимеров. К полимерам с цепями ограниченной гибкости (из-за содержания в них полярных групп) можно отнести целлюлозу, поливинилхлорид, полиакрилонитрил и т. д. [c.431]

    Свойства полимеров определяются не только гибкостью макромолекул, но и их взаимным расположением, т. е. структурой. Для полимерных веществ с линейными и разветвленными макромолекулами характерны два типа связей. Между атомами в цепных молекулах действуют прочные ковалентные химические связи длиной 0,1 0,15 нм. Взаимодействие между цепными молекулами осуществляется за счет сил Ван-дер-Ваальса, проявляющихся на расстоянии 0,3 0,4 нм. Иногда между макромолекулами возникают и водородные связи. Энергия межмолекулярного взаимодействия на 1—2 порядка меньше энергии химической связи. Например, энергия химической связи С—Н (в углеводородах) составляет 415, С—С-связи — 332 кДж/моль, а энергия взаимодействия между молекулами углеводородов — приблизительно 4,18кДжна группу СНз.При увеличении молекулярной массы вещества (например, у полимеров) суммарный эффект межмолекулярных сил резко возрастает. [c.327]

    Кристаллическое состояние полимеров. Большинство полимеров обычно находится в аморфном состоянии. Однако некоторые полимеры в определенных условиях могут иметь кристаллическую структуру. Способностью кристаллизоваться обладают лишь стереорегулярные полимеры. Благодаря регулярной структуре и гибкости макромолекулы могут сближаться друг с другом на достаточно близкое расстояние, чтобы между ними возникли эффективные межмолекулярные взаимодействия и даже водородные связи, которые приводят к упорядочению структуры. Процесс кристаллизации полимера протекает через несколько стадий. На первой стадии возникают пачки — ассоциаты упорядоченно расположенных молекул. Из пачек образуются фибриллы и сфе-ролиты. Фибриллы представляют собой агрегаты пачек продолговатой формы, а сферолиты — игольчатые образования, радиально расходяш,иеся из одного центра. Наконец, из фибрилл и [c.358]

    В гетероцепных полимерах вращение происходит вокруг связей С—О, С—Ы, 31—0, С—С и т, д. Потенциальные барьеры враще-1ШЯ вокруг этих связей невелики, поэтому цеппые молекулы полиэфиров, полиамидов, силиконовых куачуков, полиуретанов, полиэпоксидов должны быть очень гибкими. Но их гибкость может быть ограничена сильным межмолекулярным взаимодействием, особенно в тех случаях, когда между звеньями соседних цепей возникают Прочные водородные связи (см. рис. 12 , например у полиамидов, При образовании прочных межмолекулярных связей ограничивается подвижность не только тех звеньев, которые участвуют в образовании этих связей, но и звеньев, примыкающих к ним, т. е, уменьшается гибкость цепи. Так, цепи полиамидов отличаются значительно меньшей гибкостью, чем цепи полиэтилена. [c.91]

    Наибольиюй жесткостью обладают полимеры, содержащие полярные группы, расположенные на расстояниях, достаточных для реализации сил взаимодействия, напрнмер полиалкнлизс-цианаты. За счет сильных взаимодействий (водородные связи) в этих полимерах реализуются лишь вытянутые конформации (типа упругая струна ), не проявляющие гибкости. Если же зти группы разделены достаточным числом метиленовых групп, то их взаимодействие ослабевает (т. е. их действие можно рассматривать уже как дальнодействие), и такие полимеры характеризуются высокой гибкостью (например, алифатические полиамиды). [c.95]

    Статистический сегмент таких полимеров может достигать 1йО и более звеньев. Жесткоцепными являются полиэфиры и полиамиды. содержащие атомы, способные к образованию сильных меж-молекулярных водородных связей. Жесткость цепей возрастает, если в макромолекулах содержатся большие по объему и массе заместители. Конформационные переходы в таких макромолекулах требуют значительной энергии и длительны. При невысоких те.мпературах они практически отсутствуют, а при высоких проявляются благодаря увеличению общей кинетической гибкости цепей. [c.22]

    Переход спираль - клубок обратим. При охлаждении комплементарные цепочки вновь завязывают между собой водородные связи. При этом расстояние между основаниями вдоль сахаро-фосфатной цепи равно по-прежнему 6,8 А. В то же время энергетически выгодным является непосредственный ван-дер-ваальсов контакт между соседними парами оснований, который соответствует расстоянию 3,4 А. Для сближения на это расстояние соседним парам оснований необходимо повернуться относительно друг друга на 36°. Это требование диктуется стереохимией сахаро-фосфатного остова, причем поворот происходит таким образом, что в обычных условиях образуется правая спираль ДНК. В спиральном состоянии ДНК обладает весьма жесткой структурой. Свобода вращения вокруг одинарных связей почти полностью исключается. Все же некоторая гибкость цепи сохраняется, и двунитевая ДНК представляет собой клубок с очень большим статистическим сегментом — приблизительно 300 пар оснований — такая величина обусловлена непрерывной гибкостью спирали, а не локальными нарушениями спиральной структуры, т.е. ДНК является червеобразной (персистентной), а не энгэагообразной цепью. Таким образом, переход спираль - клубок представляет собой обратимый переход из энергетически выгодного высокоупорядоченного спирального кристаллического состояния в разупорядоченное, жидкое состояние статистического клубка. Существенно подчеркнуть, что последовательность оснований в цепи остается в клубке столь же строго фиксированной, как и в спирали, так как при плавлении ДНК разрушаются лишь слабые межмолекулярные силы, ковалентные связи внутри сахаро-фосфатных цепей остаются нетронутыми. [c.73]

    Свойства П. существенно зависят от характера, числа и распределения межмолекулярных связей (водородных и вандерваальсовых). Наличие сильнополяр-иых групп способствует образованию между макромолекулами П. водородных связей трех типов 1) между уретановыми группами, 2) между уретановой и сложноэфирной грунпалш и 3) между уретановой группой и кислородом простой эфирной связи. Осуществление того или иного тииа связей зависит от гибкости макромолекул и концентрации уретановых групп в цепи. Водородные связи могут образовываться также с участием мочевинных, аллофанатных, биуретовых и других групп. [c.33]


Смотреть страницы где упоминается термин Гибкость водородных связей: [c.55]    [c.122]    [c.73]    [c.171]    [c.265]    [c.166]    [c.91]    [c.265]    [c.158]    [c.60]    [c.29]    [c.51]    [c.10]    [c.263]    [c.931]    [c.320]    [c.320]   
Явления переноса в водных растворах (1976) -- [ c.42 ]




ПОИСК





Смотрите так же термины и статьи:

Водородные связи

Связь водородная, Водородная связь



© 2025 chem21.info Реклама на сайте