Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектроскопия методы исследования

    В отличие от ИК-спектров, в которых проявляются колебания, связанные с изменением дипольных моментов молекул, в спектрах КР активны те колебания, которые сопровождаются изменением поляризуемости молекулы в поле электромагнитного светового излучения. Это приводит к тому, что оба метода дополняют друг друга в определении частот колебаний в молекулах. Из спектров. КР газообразных веществ можно получить также информацию относительно вращательного движения молекул. Комбинационное рассеяние света, так же как и ИК-спектроскопия, является эффективным методом исследования строения молекул и их взаимодействия с окружающей средой. Спектры КР специфичны для каждого соединения и могут служить как для его идентификации, так и для обнаружения в смеси с другими веществами. [c.222]


    При изложении теории химической связи, строения и свойств молекул рассмотрены метод молекулярных орбиталей МО ЛКАО, широко применяемый сегодня в практике расчетов строения электронной структуры и реакционной способности молекул, и наиболее информативный экспериментальный метод исследования — молекулярная спектроскопия. [c.3]

    ЯМР-спектроскопия основана на поглощении веществом, помещенным в сильное однородное магнитное поле, энергии радиочастотного излучения. Сущность этого физического метода исследования молекулярных структур излагается в специальных руководствах. [c.62]

    Для выяснения природы взаимодействия ионита с ионами переходных металлов использовали ИК-спектроскопию. Метод исследования описан ранее [ ]. [c.63]

    Таким образом, гамма-спектроскопия позволяет оценить характер распределения электронной плотности в соединении, выяснить его строение. Важна роль этого метода исследования для установления концентрации и состояния элементов в рудах и минералах, для установления промежуточных стадий прохождения реакций и т. д. [c.150]

    Расширение и углубление теоретических основ нефтехимического синтеза как и всей органической химии, обусловленное усилением их связей с математикой, физикой и инженерно-техническими дисциплинами, вызвало необходимость достаточно полного отражения в словаре терминологии спектроскопии, хроматографии и других современных методов исследования химических соединений, в частности полимеров. [c.7]

    Как способ отождествления различных изомеров колебательная спектроскопия очень широко применяется в органической химии. Она позволяет установить для данного вещества существование не только мономеров, но и отдельных конформеров. Так как время жизни данного конформера (Ш с) в сотни и тысячи раз больше периода колебаний (10 —10 с), он успевает проявить себя в колебательном спектре. Измерение зависимости интенсивности полос двух конформеров от температуры позволяет определить теплоту превращения одного из них в другой, т. е. относительную их устойчивость. Однако далеко не всегда одни только колебательные спектры достаточны для однозначного определения равновесной конфигурации молекулы. Обычно должна использоваться совокупность данных нескольких взаимозаменяющих методов исследования, например вращательной и колебательной спектроскопии, электронографии, измерения дипольных моментов и др. [c.176]


    Применение комплекса современных физических и химических методов исследования (молекулярная перегонка, хроматография, кристаллография, инфракрасная спектроскопия и масс-спектроскопия, комплексообразование с карбамидом и тиокарбамидом) к изучению строения высокомолекулярных парафинов позволило сделать новый шаг к более глубокому познанию химической природы этого важного и широко распространенного в природе класса углеводородов. Полученные новые экспериментальные данные не только не поколебали, но еще более подкрепили некоторые из основных положений о химической природе парафинов и церезинов, к которым пришли различные исследователи на основании применения других, преимущественно химических и физико-химических методов. [c.107]

    Приведенные выше данные показывают, что выяснение структуры и состава комплексов, образующихся при взаимодействии ароматических углеводородов с каталитическими системами, является сложной задачей. Тем не менее хотелось бы отметить заметные успехи в этой области, и, в первую очередь, благодаря использованию физических методов исследования, особенно ЯМР и ЭПР-спектроскопии. [c.85]

    В последнее время в анализе органических соединений все большее значение приобретают физико-химические методы исследования спектроскопия в инфракрасной, видимой, ультрафиолетовой областях спектра, комбинационное рассеяние света, ядерный магнитный резонанс, масс-спектрометрия, хроматография и др. Эти методы используются для классификации, определения строения и идентификации органических соединений. [c.228]

    Присутствие в нефтях значительных количеств углеводородов с пятичленными циклами, а также трудности анализа этих углеводородов обычными спектральными методами побудили к разработке специального метода исследования этих углеводородов. Сущность метода заключается в превращении циклопентановых углеводородов в циклогексановые путем расширения цикла за счет а-углеродных атомов боковых цепей. Ценность этого метода заключается в том, что после расширения кольца (или колец) вновь образованные углеводороды с 6-членными циклами подвергаются каталитическому дегидрированию и превращению в углеводороды ароматического ряда, анализ которых методами молекулярной спектроскопии, как уже указывалось, является уже значительно более простой операцией. Кроме того, этим путем можно отделить циклопентановые углеводороды от углеводородов мостикового тппа, не способных к образованию в результате этих реакций углеводородов ароматического ряда. Таким образом, метод селективной изомеризации фактически должен называться методом селективной изомеризации с последующим дегидрированием . [c.317]

    В данной главе рассматриваются наиболее важные и широка применяемые методы исследования структуры силикатов дифференциальный термический анализ, рентгеноструктурный и рентгенофазовый анализ, электронная микроскопия, инфракрасная спектроскопия, спектры комбинационного рассеяния и электронный парамагнитный резонанс. [c.150]

    Представления большинства авторов о происхождении фюзена основаны на его внешнем сходстве с древесным углем. Эти представления базируются на теоретических рассуждениях, не подкрепленных достаточным экспериментальным материалом. Современные методы исследования — дифференциальный термический анализ и инфракрасная спектроскопия, дополненные петрографическим анализом, —позволят получить такой материал [19]. [c.81]

    Успешному разрешению этой весьма грудной задачи в последнее время способствовал значительный прогресс в создании сложной и автоматизированной аппаратуры для проведения газожидкостной хроматографии и спектральных методов исследования. Именно эти аналитические приемы позволяют расшифровать состав многокомпонентных нефтяных смесей не только узкого, но и широкого фракционного состава. Так, сочетание газожидкостной хроматографии и масс-спектроскопии дает возможность устанавливать индивидуальный состав бензинов с пределами кипения 35—180°С. [c.61]

    Комбинированный метод исследования индивидуального углеводородного состава бензинов прямой гонки был разработан совместно Институтом органической химии им. Н. Д. Зелинского, Физическим институтом им. П. Н. Лебедева и Комиссией но спектроскопии Академии наук СССР. [c.503]

    Из рассмотрения данных, полученных разными авторами при применении метода инфракрасной спектроскопии к исследованию высокомолекулярной части нефтей с целью выяснения химической природы ее, видно, что метод этот весьма плодотворный. Он позволяет получить очень полезные и необходимые качественные сведения [c.481]

    Самым популярным методом исследования структуры производных фуллеренов, в частности, их бис-аддуктов, является С ЯМР-спектроскопия [7]. Значительное число публикаций по ЯМР на ядрах С [б, 8, 14] обнаруживают практически полное совпадение экспериментальных и расчетных данных между числом линий и неэквивалентных позиций, между их интенсивностями и числом атомов в такой позиции. [c.9]


    Одним из наиболее эффективных методов исследования можно считать оптическую спектроскопию. При прохождении света (УФ, видимого или ИК, т. е. электромагнитных волн с определенной энергией) через раствор органического вещества происходит его частичное или полное поглощение (это зависит от энергии светового пучка и от строения органического вещества). Другими словами, оптическая спектроскопия исследует зависимость интенсивности поглощения света от длины волны (энергии). Поглощенная молекулой энергия может вызвать или переход электрона с одного энергетического уровня на другой, энергия которого выше (УФ-спектро-скопия), или привести к колебанию и вращению атомов (ИК-спек-троскопия). Поскольку спектры поглощения в УФ и видимой областях связаны с электронными переходами, то эти спектры называются также электронными спектрами. В общем спектре электромагнитных волн они находятся в интервале от 200 до 1000 нм.  [c.33]

    Практикум представляет совой руководство к лабораторным и семинарским занятиям. Подобран с учетом специализации, связанной с химической технологией строительных материалов, производством строительных изделий и конструкций. В практикуме приведен раздел, посвященный современным методам исследования органических сведи-нений (спектроскопия. ЯМР, хроматография и электрические моменты диполя). Кратко рассмотрены, основы технического анализа некоторых полимерных соединений. [c.2]

    Подчеркивая значение для органической химии современных методов исследования, в книгу включен раздел, посвященный физико-химическим (инструментальным) методам исследования (УФ, ИК и ЯМР спектроскопии, хроматографии и методу электрического момента диполей). [c.4]

    Наряду с методами оптической спектроскопии для исследования органических соединений широко используется метод ядерного магнитного резонанса (ЯМР). Ядерный магнитный резонанс — избирательное взаимодействие магнитной компоненты радиочастотного электромагнитного поля с системой ядерных магнитных моментов вещества. Это явление наблюдается в постоянном магнитном поле напряженностью Но, на которое накладывается радиочастотное поле напряженностью Я , перпендикулярное Но- Для диамагнитных веществ, у которых спин атомных ядер равен 1/2 ( И, С, Р и др.), в постоянном [c.283]

    Особое место занимают такие методы анализа поверхностей, как комбинированная фотоэлектронная спектроскопия илн электронная оже-спектроскопия. Эти методы позволяют установить распределение элементов в слоях твердых тел, а также проводить градиентный анализ по глубине. Это физические методы исследования структуры, но с их помощью можно с, очень большой чувствительностью определить следовые количества элементов. Однако из-за высокой стоимости оборудования и необходимости высококвалифицированного обслуживающего персонала методы все еще применяют только в специализированных лабораториях. [c.417]

    Инфракрасная спектроскопия — один из прямых и точных методов исследования структуры вещества. Изучая положение и интенсивность линий инфракрасного спектра данного вещества, можно получить сведения о строении основных структурных группировок его, наличии в структуре вещества тех или иных функциональных групп. [c.157]

    К спектральным методам исследования структуры веществ наряду с инфракрасной спектроскопией относится спектроскопия комбинационного рассеяния. [c.159]

    Третье издание практикума существенно отличается от первых двух изданий. Получили значительное развитие работы по молекулярной спектроскопии, а работы по атомным спектрам сокращены — в связи с изменениями учебных планов. В практикум введены новые работы, знакомящие со спектральными методами изучения свойств молекул и определения молекулярных констант веществ, работы по расчету сумм состояния и термодинамических функций на основе непосредственно полученных опытных данных. Студенты знакомятся с применением методов статистической термодинамики для расчета химических равновесий. Существенно изменены работы, связанные с применением термохимических, рентгеноструктурных и некоторых электрохимических методов исследования. [c.4]

    Масс-спектрометрия (масс-спектрография, масс-спектроскопия) — метод исследования вещества по спектру (набору) масс атомов и молекул, входящих в его состав. Метод заключается в том, что ионизированные атомы и молекулы вещества разделяют в электрических и магнитных полях по величине отношения массы к заряду иона (mie) и раздельно регистрируют на соответствующих приборах (масс-спект-ро.метрах). Из полученного масс-спектра находят величины масс и относительное содержание компонентов в исследуемом веществе. М.-с. применяют для точного определения масс ядер, анализа изотопного и химического состава вещества, уста-навлении структуры молекул и др. [c.80]

    Идентификация соединений и качественный анализ стабильных продуктов химических реакций. При исследовании механизма хими-ческо11 реакции очень важно знать, какие вещества и в каких соотношениях образовались в результате реакции это дает ценную информацию о возможных нутях протекания процесса, а также о промежуточных веществах. В этом отношении ИК-сиектроскопия дополняет другие методы исследования. Особенно большую ценность представляет метод ИК-спектроскопии для обнаружения и идентификации различных веществ. Так, многие вещества (предельные углеводороды, олефины с несопряженной двойной связью) не поглощают в видимой и УФ-областях спектра, но дают характерные ИК-сиектры. [c.211]

    В ряде регионов Советского Союза нами была проведена генетическая типизация нефтей, которой предшествовали детальные геохимические исследования нефтей. Схема их приведена на рис. 6. Особенно широко использовались спектральные методы исследования нефтей. На первом этапе нефракционированные нефти изучались методами ИКС (для выявления степени их окисленности) и люминесцентным — в целях первичного разделения их на группы. На втором этапе детально исследовались спектральными методами отдельные фракции отбензиненной нефти парафино-нафтеновая методом ИКС, нафтено-ароматическая - УФС, масс-спектроскопии и тонкоструктурной спектроскопии (рис. 7). Широко применялись математические методы обработки полученных материалов. [c.45]

    Практикум содержит работы iio основным paJдeлaм фнничсско химии. В пособии рассмотрены методы физико-химических измерении, обработки экспериментальных данных и способы их расчетг)в. Большое внимание уделено строению вещесто, первому началу термодинамики, фазовому равновесию 13 одно-, двух- и многокомпонентных системах, химическому равновесию в гомогенных системах и др. Интерес представляют работы по молекулярной спектроскопии и кинетике гомогенных и гетерогенных [)еакций. Изменены работы, связанные с применением термохимических, рентгеноструктурных и некоторых электрохимических методов исследования. Введены работы по расчету сумм состояния и термодинамических функций. [c.2]

    Во втором томе рассматривается теория таких важных современных спектроскопических методов исследования, как ЯМР, ЭПР, мёссбауэровская спектроскопия, и на примере большого числа соединений самых различных классов показывается, как проводят изучение их структуры и реакционной способности. [c.4]

    Если скорость химической реакции на поверхности катализатора достаточно велика, то адсорбционное равновесие не достигается и степени заполнения поверхности молекулами реагентов нельзя определить из уравнения изотермы адсорбции. В предельном случае, когда адсорбция одного из реагентов является наиболее медленной стадией, скорость процесса лимитируется скоростью адсорбции этого реагента, и можно говорить о протекании реакции в адсорбционной области. Скорость адсорбции определяется константой скорости адсорбции и концентрацией сорбируемого вещества следовательно, кинетика процесса в адсорбционной области формально следует уравнению реакции первого порядка. Поэтому различить кинетическую и адсорбционную области только по кинетическим измерениям нельзя и при необходимости следует ставить специальные эксперименты по измерению скорости адсорбции или применять другие прямые методы исследования, например, спектроскопию адсорбированных молекул. [c.84]

    МР-спектроскопия с импульсным фадиентом магнитного поля является чрезвычайно мощным инструментальным методом исследования динамических характеристик систем. К сожалению, несмотря на свои широкие возможности, он продолжает оставаться малодоступным по причине высокой стоимости и относительной уникальности оборудования. Метод импульсной ЯМ является одним из ответвлений классической ЯМР-спектроскопии. Ег о типичным применением является определение коэффициентов самодиффузии однокомпонентных чистых веществ и бинарных смесей. Долгое время считалось, что использование этого метода для таких сложных многокомпонентных смесей, как НДС, является малоинформативным и нецелесообразным. Однако пионерские исследования, проведенные в работе [17], на примере гудронов и битумов показали применимость этого метода для изучения высокомолекулярных НДС. Вы- [c.11]

    Масс-спектроскопия высокого разрешения находит все более широкое применение. В настоящее время она является одним из основных методов исследования состава нефти и ее фракций. Этот метод может быть применен и к исследованию асфальтенов. Свидетельством служит масс-спектросконический анализ асфальтенов из нефти западного района Техаса [35]. Был получен масс-спектр с широким интервалом масс (24—1900). На основе этого эксперимента было установлено, что асфальтены имеют широкий диапазон молекулярных весов (от 500 до 1900 со средним значением около 900). Пики молекулярных ионов с массами ниже [c.228]

    Для исследования состава поверхностных слоев, определения функциональных групп на поверхности, межатомных и межмоле-кулярных связей широко используются традиционные оптические методы спектроскопия (инфракрасная, ультрафиолетовая, комбинационного рассеяния), рентгенография, электронография и др. Их применение для таких исследований отличается специфическими способами приготовления испытуемых образцов, поскольку информация должна поступать из очень тонкой области системы, тол-щиной порядка нескольких моноатомных или мономолекулярных слоев. Названные методы исследования достаточно подробно из лагаются в курсах физики и физической химии. [c.246]

    Для определения надмолекулярных структур непосредственно в керне был использован метод диэлектрической спектроскопии. Диэлектрические исследования показали, что виды надмолекулярных структур изучаемых остаточных нефтей представлены твер-докристалическими и лиотропными жидкокристалическими фазами, а также молекулярными агрегатами типа сферических мицелл. [c.94]

    Новый метод исследования поля лигандов использует явление поглощения (или, наоборот, эмиссии) атомными ядрами Т -квантов. Наиболее существенное отличие этого метода от электронной спектроскопии состоит в проявлении очень резкого резонансного максимума, соответствующего энергетическим переходам при излучении. Уже относительное изменение энергии на 10 2 7-кванта достаточно для того, чтобы подавить резонанс. Однако это означает, что энергия отдачи ядра при поглощении у-кванта изменяет условия резонанса и подавляет его. Е 1958 г. Мёссбауэр при исследовании ядер Чг нашел условия ядерного резонанса с отдачей на весь кристалл. Энергия отдачи в условиях проявления эффекта Мёссбауэра вследствие прочной связи всех атомов в кристалле достаточно мала для того, чтобы обеспечить возможность резонансного поглощения 7-лу-чей. Тем самым становится возможной -спектроскопия с высокой разрешающей способностью. Даже эффект Допплера, обусловленный перемещением источника уизлучения со скоростью [c.128]


Библиография для Спектроскопия методы исследования: [c.282]    [c.299]   
Смотреть страницы где упоминается термин Спектроскопия методы исследования: [c.76]    [c.600]    [c.76]    [c.477]    [c.76]    [c.3]    [c.224]    [c.202]    [c.72]    [c.6]   
История органической химии (1976) -- [ c.224 ]

История органической химии (1976) -- [ c.224 ]




ПОИСК







© 2024 chem21.info Реклама на сайте