Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Условие ядерного магнитного резонанса

    Условие ядерного магнитного резонанса [c.253]

    Основное условие ядерного магнитного резонанса выражается уравнением ..  [c.272]

    Метод ядерного магнитного резонанса (ЯМР), получивший широкое применение, в частности, для определения строения некоторых видов органических молекул, основан на исиользовании различия магнитных свойств атомных ядер. Так, спин ядра в атомах С, равен нулю, в атомах Н, ои равен половине, а в атомах Ы, — единице . Метод ЯМР дает возможность определять строение молекул некоторых органических соединений, подвижность частиц в кристаллах в разных условиях. Он все шире применяется при изучении кинетики и механизма химических реакций, состоятя веществ в растворах, процессов протонного обмена между молекулами в растворах, для анализа сложных смесей продуктов реакций и для других целей. [c.90]


    Выражение (Х.З) отражает условия наблюдения ядерного магнитного резонанса. Так, в соответствии с табл. 23 и уравнениями (Х.З) — (Х.4) во внешнем постоянном магнитном поле напряженностью 1,4092 кГс резонансные частоты для ядер Н, и равны соответственно 60,54 56,446 24,4 МГц. [c.254]

    В основе конструкции любого, спектрометра лежит осуществление условий ядерного магнитного резонанса (гл. 1)  [c.117]

    По спектру ядерного магнитного резонанса можно определить свойства ядер, строение молекул, подвижность частиц в кристаллах в разных условиях, ЯМР применяется при изучении кинетики и механизма химических реакций, состояния вещества в растворах, процессов протонного обмена мел<ду молекулами в растворах, для анализа сложных смесей продуктов реакции. [c.62]

    Устройство спектрометров ЯМР имеет в своей основе возможность выполнения условий ядерного магнитного резонанса (1.10), и при рассмотрении в гл. I (1.3) принципов реализации этих усло- [c.44]

    Ядерный магнитный резонанс (ЯМР). Много общего с ЭПР имеет явление резонансного поглощения электромагнитной энергии, обусловленное переориентацией магнитных моментов ядер, — ядерный магнитный резонанс. Явление это наблюдается на ядрах далеко не всех атомов. Ядра с четными числами протонов и нейтронов имеют спин / = О и, следовательно, не магнитны. Обычно ЯМР исследуют на ядрах Н , Р и спин которых / = /г. Магнитное квантовое число спина гП] в этом случае принимает два значения пц = Ч- /а и пц = —1/а. Этому отвечают в статическом магнитном поле две ориентации магнитного момента ядра— в направлении поля (т/ = = 1/2) и в противоположном (т/ — — /2), различающиеся по энергии на величину АЕ. При наложении слабого радиочастотного поля, перпендикулярного статическому, происходит резонансное поглощение, приводящее к переориентации спинов при частоте, определяемой условием резонанса V = АЕ/к. Обычно в поле порядка 10 ООО Э ([10 /4я]А/м) ЯМР наблюдается на частоте ч =42,57 мГц. Частота резонанса для ЯМР во столько же раз меньше частоты ЭПР (при одном и том же Н), во сколько раз масса ядра больше массы электрона. (Соответственно ядерный магнитный момент меньше электронного магнитного момента.) [c.149]

    Подставляя выражение АЕ из последней формулы в предшествующую, получаем условие ядерного магнитного резонанса, связывающего частоту Уо возбужденных переходов между двумя уровнями для атомов, имеющих гиромагнитное отношение у и находящихся в постоянном магнитном поле напряженности  [c.280]

    Физической величиной, измеряемой в условиях ядерного магнитного резонанса, является не магнитный момент одиночного атомного ядра, а так называемая ядерная намагниченность вещества, представляющая собой сумму средних значений магнитных моментов всех атомных ядер данного тина, заключенных в единице объема этого вещества  [c.53]


    Ядерный магнитный резонанс. Все рассмотренные нами до сих пор методы атомного и молекулярного спектрального анализа относились к оптическим областям спектра. Но оказалось, что и в радиоволновой области в определенных условиях можно получать ценные сведения о структуре химических, особенно органических, соединений. Метод ядерного магнитного резонанса, первые практические применения которого имеют всего 10 — 15-летнюю давность, стал в настоящее время одним из основных методов установления структуры органических соединений. Одновременно быстро увеличивается круг его применения для целей качественного и количественного анализа, особенно в случае сложных задач, когда применение других методов мало эффективно. Уже в настоящее время в ряде производств сложных органических соединений в химико-фармацевтической промышленности и производстве красителей для цветных фотоматериалов ход производства и качество готовой продукции контролируется методом ядерного магнитного резонанса. Несомненно, что и в ближайшем будущем применение этого метода в аналитических целях будет стремительно расти. [c.342]

    Величина магнитного момента всех ядер одного изотопа строго одинакова и поэтому на первый взгляд кажется, что в спектре должна присутствовать только одна линия поглощения. На самом деле это не так. Кроме внешнего магнитного поля, в любой молекуле имеются внутренние поля, обусловленные движением электронов. В зависимости от положения, которое занимает данный атом и его ядро в молекуле, оно окажется в определенном внутреннем поле. Поэтому для ядер, находящихся в молекуле в различных положениях, условие резонанса будет наступать при различных значениях внешнего поля в зависимости от того вклада, который вносит в данном месте внутреннее поле. Этот вклад очень мал обычно внутренние поля примерно в миллион раз слабее внешнего. Однако современные спектрометры ядерного магнитного резонанса имеют очень высокую разрешающую способность и дают отдельные линии поглощения для ядер, которым соответствует разница в напряженности внутренних полей, меньшее одной стомиллионной доли от напряженности внешнего поля. [c.343]

    Дальнейшее развитие теории требует уточнения количественных оценок и рассмотрения кинетики самоорганизации. Экспериментальный подход к проблеме состоит в изучении кинетики ренатурации белков при постоянных внешних условиях. Сведения о термодинамически устойчивых стадиях ренатурации при изменяющихся внешних условиях можно получить с помощью ядерного магнитного резонанса (см. 5.10). [c.254]

    Сущность ядерного магнитного резонанса заключается в резонансном поглощении электромагнитных волн веществом, находящимся в постоянном магнитном поле, при условии, что это поглощение обусловлено ядерным магнетизмом (этим ЯМР отличается от ЭПР). [c.213]

    Спектроскопия магнитного резонанса отличается от других видов спектроскопии тем, что расщепление энергетических уровней существует только в присутствии магнитного поля. Для обычно достижимых в лабораторных условиях магнитных полей переходы между уровнями энергии ядер, являющихся магнитными диполями, наблюдаются в радиочастотной области, а переходы между уровнями энергии спинов неспаренных электронов —в микроволновой области. Эти новые спектроскопические методы — ядерный магнитный резонанс (ЯМР) и электронный парамагнитный резонанс (ЭПР) дают богатую структурную информацию, что делает их незаменимыми в химии. [c.495]

    Измерение ядерного магнитного резонанса (ЯМР) — метод анализа, основанный на резонансном поглощении электромагнитных волн веществом, помещенным в постоянное магнитное поле. Ядерный магнитный резонанс использует явление ядерного магнетизма. Атомные ядра многих химических элементов имеют определенный момент количества движения, т. е. вращаются вокруг собственной оси (спин ядра). Спин ядра аналогичен спину электрона. Магнитный момент возникает потому, что каждое ядро имеет электрический заряд. Для наблюдения ЯМР ампулу, содержащую анализируемое вещество, помещают в катушку радиочастотного генератора. Образец может быть жидким, твердым или газообразным. Катушку с ампулой помещают в зазоре магнита перпендикулярно направлению магнитного поля Ни- Генератор создает на катушке слабое переменное магнитное поле Нх- Резонанс наступает при условии ф=фо= У о, где ф — скорость вращающегося поля Нх, фо — скорость прецессии ядер в поле На, 7 — гиромагнитное отношение у = т1Р (т — магнитный момент ядра атома, Р — момент количества движения ядра). При выполнении условия приемник регистрирует небольшое изменение напряжения на рабочем контуре в виде сигнала в форме гауссовой кривой. Кривая характеризуется высотой сигнала и шириной кривой (полосы), [c.452]


    Сущность метода ядерного магнитного резонанса (ЯМР) заключается в том, что, помещая вещество, содержащее атомы (водорода), ядра которых обладают магнитным моментом, в сильное постоянное магнитное поле и накладывая на эту систему значительно более слабое высокочастотное электромагнитное излучение, можно ири соблюдении определенных условий наблюдать резонансное поглощение энергии, происходящее на строго определенной частоте, зависящей от положения атома (водорода) в молекуле вещества. По спектрам ядерного магнитного резонанса в компонентах битума можно определить относительное количество протонов, находящихся в ароматических кольцах, в метиленовых и метильных группах, а также при насыщенных атомах углерода, непосредственно связанных с кольцом ( бензольный водород ). Используя эти данные и данные [c.25]

    Спектры ядерного магнитного резонанса состоят из линий, каждая из которых отвечает переходу между определенной парой (т, п) уровней энергии ядерных спинов. Положение этих спектральных линий соответствует резонансному условию [c.77]

    Оценим чувствительность метода СПЯ для регистрации спектров ЭПР короткоживущих РП. При комнатной температуре в полях порядка нескольких тесла, которые применяются в современных экспериментах по ядерному магнитному резонансу, равновесная поляризация спинов протонов порядка 10 В этих условиях удается регистрировать спектр ЯМР, если в образце находится порядка 10 протонов. Значит, спектрометры ЯМР позволяют измерить поляризацию порядка = 10 - 10 = 10 . Пусть г - время жизни РП, оно порядка наносекунд, а Т, - время релаксации поляризованных ядер - это время порядка секунд. Если стационарная концентрация РП равна N, то стационарная концентрация поляризованных ядер равна [c.132]

    Таким образом, для наблюдения ядерного магнитного резонанса необходимо поместить образец в сильное однородное магнитное по ле Яо и подействовать на него излучением с частотой V, удовлетворяющей уравнению (1). При этих условиях будут происходить переходы с одного ядерного магнитного уровня на другой. Вероятность переходов на верхний и на нижний уровни одинаковы. Однако число магнитных ядер, находящихся на каждом из уровней, различно заселенность нижнего уровня выше, поскольку система всегда стремится перейти в состояние с более низкой энергией. При обычных температурах разность заселенности верхнего и нижнего уровней не превышает 10 от общего числа магнитных ядер. Именно эта незначительная разница обусловливает явление ядерного магнитного резонанса, т, е. поглощение радиочастотного излучения в соответствии с уравнением (1). Разность в заселенности уровней, обеспечивающая непрерывность поглощения, поддерживается за счет так называемой спин-решеточной релаксации. [c.97]

    Следует обратить особое внимание на то, что простые правила, сформулированные выше для объяснения сверхтонкой структуры в спектрах ядерного магнитного резонанса, применимы только к группам магнитно эквивалентных ядер. Если ядра в группе магнитно неэквивалентны, то непосредственно из спектра уже нельзя получить отдельные константы спин-спинового взаимодействия, а химический сдвиг можно с достаточной точностью определить по центру мультиплета без анализа спек тра лишь при условии, что выполняется соотношение 7/уоб С 0,1 разд. 2.3.2 этой главы). Это легко видеть, сравнив спектры [c.56]

    В то же время в периодической системе элементов имеется достаточное количество магнитных ядер, подходящих для экспериментов по ЯМР, н, таким образом, вещество как бы содержит различные датчики, позволяющие исследовать свойства составляющих его молекул и вещества как целого. В гл. X будут обсуждены некоторые из этих возможностей. Кроме того, в ЯМР всегда возможны разнообразные вариации экспериментальных условий, а физика спиновых систем остается и до сих пор столь же волнующей областью, какой она была в период становления спектроскопии ЯМР. Поэтому ядерный магнитный резонанс, несомненно, относится к числу наиболее универсальных спектроскопических методов. В настоящей главе читателю предстоит познакомиться с теми из специальных методик ЯМР, которые зарекомендовали себя как наиболее важные для химии. [c.300]

    Распространяя такой подход на все остальные колебательные полосы воды, можно получить еш е пятую характеристику структуры воды. На этот раз удается установить два ее кинетических свойства. Как было описано выше (см. гл. III, п. 5), достаточно интенсивная при 5° С полоса трансляционных колебаний воды vj, положение максимума которой не зависит от температуры, при 50° С практически полностью исчезает (см. рис. 61). Выше было показано, что положение V7-полосы не зависит от размера комплекса (см. гл. III, п. 5). Энергия и силовая постоянная водородной связи, последняя из которых определяет частоту vy, при повышении температуры от 5 до 50° С почти не меняются (см. гл. III, п. 2 и гл. V, п. 3). Таким образом, исчезновение vr-полосы жидкой воды при нагревании ее на 45° можно объяснить только тем, что в результате указанного повышения температуры число водородных связей со временем жизни больше 1,5-10 сек уменьшилось на порядок. Этот вывод полностью согласуется с данными, полученными методом ядерного магнитного резонанса, по которым это время при нормальных условиях оценивается lO ii — 10 сек. Кроме того, из температурного поведения vt-полосы следует, что при 50° С практически не остается молекул воды, живущих в связанном состоянии хотя бы 2-10 сек. [c.153]

    Метод спектроскопии ядерного магнитного резонанса (метод ЯМР) в принципе применим для обнаружения, выяснения положения в молекуле и количественного определения Щ (и Н), и а также комбинированных меток типа — С, и т. п. Метод не требует никакой химической обработки меченого соединения и даже его выделения в особо чистом состоянии интерпретация основывается на результатах исследования немеченого соединения в тех же условиях тем же методом. Метод находит все более широкое применение, что связано с растущей доступностью соответствующих приборов, особенно для определения С. Метод ЯМР может не только заменить радиоизотопный метод, но и обеспечить информацией, не доступной при использовании других методов. Поэтому широкое внедрение метода ЯМР привело [c.475]

    В условиях ядерного магнитного резонанса эквивалентные ядра проявляют одинаковые химические сдвиги как в хиральн1з1Х, так и в ахиральных раство- [c.26]

    Химический функциональный анализ далеко не всегда позволяет однозначно установить структуру органических соединений. Некоторые группы дают сходные реакции. Иногда вещества в условиях определения оказываются неустойчивыми. Функциональный анализ не нозволяет судить о составе смесей, числе тех или иных групп и о макроструктуре вещества (простраиствеином строении, структуре кристаллов или жидкости, межмолекулярных взаимодействиях и т, п.). Вследствие этого существенную роль в исследовании строения и свойств соединений играют физико-химические, или инструментальные, методы анализа спектральные, электрохимические, хроматографические, радиометрические и др. Для установления структуры вещества чаще всего используют методы, основанные на взаимодействии вещества или смеси веществ, их растворов с различного вида излучениями. К ним относятся ультрафиолетовая, видимая, инфракрасная спектроскопия, метод люми-иесценцин, оптический и рентгеновский спектральный анализ, рефрактометрия, поляриметрия, метод ядерного магнитного резонанса. На взаимодействии с магнитным полем основан метод электронного парамагнитного резонанса, а последовательно с электрическим и магнитным — масс-спектрометрия. Некоторые из этих методов рассмотрены в посебии. [c.82]

    В тридцатых — сороковых годах произошел резкий скачок в технических возможностях изучения химического состава сложных смесей. Для разделения тяжелых нефтяных фракций наряду с методами перегонки и ректификации начали использовать хроматографию на адсорбентах, комплексообразование с карбамидом, термическую диффузию. Получили широкое распространение многочисленные физические методы исследования УФ- и ИК-опектроскопия, ядерно-магнитный резонанс, масс-опектрометрия, дифференциально-термический анализ, электрофизические методы (определение диэлектрической проницаемости, удельного и объемного сопротивлений, диэлектрических потерь) и др. Большое применение нашли расчетные методы определения структурно-группового состава, позволившие в первом приближении получить представление о соста1ве масляных фракций. Новые методы разделения и анализа значительно углубили наши познания о составе и структуре тяжелых компонентов нефти и позволили более обоснованно решать технологические задачи производства масел и химмотологические проблемы рационального их использования в условиях эксплуатации. [c.8]

    В методе ядерного магнитного резонанса минимальная естественная ширина пинии составляет 0,1 с (Гц). Следовательно, уширение снеггральных пиний, регистрируемое этим методом, позволяет, согласно (12.5), фиксировать обменные процессы с временами ХИ31Ш ниже 2 с или со скоростями, превышающими 0,5 с . Для слияния одиночных пиков сигналов, принадлежащих двум вза-имопревращающимся изомерам или топомерам и разделенных, например, на 200 Гц (обычный диапазон химических сдвигов в спектрах ЯМР- С), скорость процесса химического обмена должна быть равна 10 с Поскольку скорость реакции является функцией температуры (8.104), для одного и того же процесса при разных температурах можно выполнить условия как очень быстрого (г >Та), [c.462]

    Если систему ядер, обладающих магнитными моментами, поместить во внешнее магнитное поле, то на них будет действовать сила, которая сориентирует их магнитные оси в направлении этого поля. В определенных условиях, характерных для данного ядра, магнитные моменты ядра будут резонансно поглощать энергию переменного. магнитного поля, частота изменения которого лежит в радиоднапазоне. Это поглощение приводит к возникновению ядерного магнитного резонанса (ЯМР). Первые успешные эксперименты по ядерному магнитному резонансу были проведены в конце 1945 г. независимо двумя группами исследователей под руководством Перселла и Блоха. [c.727]

    Условие резонанса (652) по существу является одним и тем же и для электронных, и для ядерных магнитных переходов. Разница состоит лишь в том, что в случае ядерного магнитного резонанса (ЯМР) в уравнение (652) вместо магнетона Бера и gj — фактора Ланде — входят ядерный магнетон (ЯМ) (см. гл. VI, 1) и яд — фактор ядра, учитывающий сложную структуру ядра. В силу того, что М 1836m, резонансная частота ЯМР заметно меньше частоты электронного парамагнитного резонанса (ЭПР). Поэтому электронный резонанс наблюдается при микроволновых частотах в диапазоне 1 —10 Гц [8, 91, тогда как при исследовании ядерного магнитного резонанса обычно используют диапазон коротких радиоволн [10, 11]. [c.366]

    Баргон И., Фишер X. и Йонсен Ю., изучая спектры ядерного магнитного резонанса (ЯМР) диамагнитных продуктов сразу после их образования, впервые наблюдали химически индуцированную неравновесную поляризацию ядерных спинов [5] интенсивность линий в спектре существенно превосходила соответствующую величину в условиях термодинамического равновесия. Вскоре было показано, что химически индуцированная поляризация ядер может привести и к эмиссии на резонансных частотах ЯМР. В продуктах химических реакций спектры ЯМР обнаруживают два типа эффекта ХПЯ - интегральный и мультиплетный. Интегральный эффект характеризует суммарную интенсивность отдельных мультиплетов в спектре ЯМР, которые возникают благодаря спин-спиновому взаимодействию ядер. Мультиплетный эффект характеризует появление эмиссии и усиленного поглощения линий внутри мультиплетов. Для иллюстрации на рис. 2 приведены Фурье-образы спада сигнала свободной индукции, полученные после действия 7г/4 и 37г/4 импульсов (два верхних спектра, соответственно). Эти результаты получены для фотолиза ди-терт-бутил кетона. Их сумма дает интегральный эффект ХПЯ, в то время как их разность (нижний спектр на рис. 2) дает мультиплетный эффект ХПЯ. [c.6]

    После того как было изучено регулярное строение натурального каучука, исследователи неоднократно предпринимали попытки синтезировать полимеры, которые бы обладали сходными с ним структурой и свойствами. Многочисленные опыты полимеризации диенов дали интересные результаты, позволившие сделать теоретические выводы о влиянии температуры, инициаторов и роли поли-меризационной среды на способ соединения молекул мономера в цепи. Так, например, была высказана мысль о том, что более высокая температура способствует присоединению мономера по принципу А-Цис, а более низкая — по принципу , А-гранс это объяснялось различием в свободных энергиях активации этих типов реакций. И хотя долгое время не удавалось доказать справедливость этой гипотезы для полимеризации диенов, именно благодаря ее использованию был достигнут дальнейший прогресс в области получения полимеров с регулярной молекулярной структурой. Только недавно, с применением высокочувствительных физических методов, в особенности ядерного магнитного резонанса, было установлено, что при полимеризации виниловых мономеров с заместителями, имеющими большой объем, в условиях низких температур образуются соединения с повышенным содержанием фракций син-диотактической структуры. [c.8]

    Уравнение (I. 10) описывает так называемое условие резонанса, при котором частота излучения точно соответствует энергетической щели. Спектральная линия ядерного магнитного резонанса соответствует переходу, который обозначен стрелкой на рис. 1.2, 3 vo (ларморова частота) в соответствии с уравнением (I. 10) изменяется в зависимости от величины поля Во, испвйьэввАнж  [c.19]

    Внимание, уделяемое изучению природы воды и ее роли в различных и особенно комплексных соединениях, непрерывно растет. Усиление интереса к природе воды вызвано не столько увеличением числа веществ, в составе которых она обнаружена, сколько тем, что эта миниатюрная, предельно простая молекула проявляет в этих веществах все новые и новые свойства. Наряду с хорошо известными аномалиями воды, такими как тепловое расширение, вязкость и теплопроводность, в последние годы обнаружен еще целый ряд совершенно новых, ранее никогда не предсказывавшихся и поэтому неожиданных свойств воды. Это, во-первых, очень высокая способность паров воды растворять при 400 С такие практически не растворимые при нормальных условиях вещества, как А12О3, Ре Оз, СаСОзИдр. 101, 156, 399], во-вторых, повышение предельных концентраций многих неорганических веществ в водных растворах, набухание клеток и протоплазмы и изменение объемов смешения водных растворов со спиртом под влиянием магнитного поля [165, 172] и, наконец, изменение во времени спектра ядерного магнитного резонанса воды, уже достигшей постоянной температуры [277]. [c.5]

    Это обусловливает необходимость создания и внедрения методов контроля качества сырья, материалов и готовых изделий, что является важным условием развития производства полимеров. Качество полимерного материала характеризуется совокупностью его свойств, определяющих пригодно материала для использованм в тех или иных целях. Современный уровень экспериментальной техники позволяет описать свойства материгша на всех у ювнях атомномолекулярном (фотоэлектронная, рентгеновская, электронная и колебательная спектроскопия, ядерный магнитный резонанс, рассеяние нейтронов, эмиссионный анализ и т.д.) надмолекулярном (диэлектрическая и механическая релаксация, рентгенография, электронография, анш гиляция позитронов, рассеяние синхротронного излучения и т.д.) макроскопическом (вязкость, прочность, удлинение при разрыве, сопротивление изгибу, электрическому пробою и т.д.). [c.22]

    Для измерения температуры стеклования каучуков может быть использован метод многоимпульсного спин-локинга [24]. Этот импульсный метод ядерного магнитного резонанса позволяет проводить релаксационные измерения на частотах порядка 10 Гц. Условия возникновения минимума на релаксационной кривой (см. рис. 14.4) определяются соотношением [c.385]

    Бермудец [69] использовал протонный ядерный магнитный резонанс для определения числа поверхностных силанольных групп даже прп условии покрытия поверхности адсорбированной водой толщиной вплоть до трех монослоев. Силикагель имел удельную поверхность 800 м /г, а найденная концентрация силанольных групп составила 7-10" моль/м или 4,2 ОН-групп/нм . [c.875]


Смотреть страницы где упоминается термин Условие ядерного магнитного резонанса: [c.11]    [c.217]    [c.54]    [c.311]    [c.311]   
Смотреть главы в:

Физические методы исследования в химии -> Условие ядерного магнитного резонанса

Экспериментальные методы химической кинетики -> Условие ядерного магнитного резонанса




ПОИСК





Смотрите так же термины и статьи:

Резонанс г ядерный магнитный

Резонанса условия



© 2025 chem21.info Реклама на сайте