Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ферменты биосинтез скорости реакции

    Настоящий справочник отличается от имеющихся тем, что в нем не только описана химическая структура и биологическая роль основных биохимических компонентов живой клетки, но и охарактеризованы пути метаболизма данных компонентов в живом организме. Он состоит из семи разделов, в каждом из которых в алфавитном порядке дана соответствующая тepминoлorиЯi В разделах Белки , Нуклеиновые кислоты , Углеводы , Липиды приведены структурные формулы и показана биологическая роль биохимических компонентов клетки, описаны и проиллюстрированы схемами основные пути распада и синтеза важнейших биологически активных молекул. В разделе Ферменты содержатся сведения о типах ферментативного катализа, скорости ферментативных реакций, единицах измерения ферментативных реакций, о принципах классификации ферментов, регуляции биосинтеза и активности ферментов. Раздел Витамины включает характеристику отдельных представителей водо- и жирорастворимых витаминов. Особое внимание уделено ферментным реакциям, в которых участвуют витамины, приведены данные о содержании витаминов в продуктах питания, о суточной потребности человека в витаминах, о применении витаминов и витаминных препаратов в медицинской практике, сельском хозяйстве и т. д. В разделе Гормоны -освещены достижения по биохимии пептидных, белковых и стероидных гормонов. Рассмотрены вопросы биосинтеза, механизм действия гормонов на молекулярном уровне, взаимодействие гормонов с [c.3]


    Открытие феномена биосинтеза простагландинов послужило толчком к исследованию ферментов, принимающих участие в этом процессе. Важнейший вывод из этих исследований синтез простагландинов из ненасыщенной жирной кислоты осуществляется двумя последовательно работающими ферментами, причем первый, лимитирующий скорость всего процесса, независимо от места локализации в организме катализирует по универсальному механизму одну и ту же химическую реакцию, продуктом которой является простагландин Н. Второй фермент синтеза имеет строгую специализацию в зависимости от органа или ткани, в которой он находится. Эта их органная специфичность обеспечивает выработку определенного простагландина в отдельных видах клеток и многообразие различных представителей класса простагландинов в организме в целом ( классические простагландины Е и f, например, в репродуктивной системе, простациклин и тромбоксан в системе крови, простагландин D в нервных тканях и т. д.). [c.206]

    Гетерогенность разных видов и клонов бактерий по магнитной восприимчивости определяется количественным соотношением в них диа- и парамагнитных соединений (Павлович, 1984, 1985 Павлович, Галлиулин, 1986 Галлиулин, 1986). Развивающиеся микроорганизмы не находятся в строгом равновесии с окружающей средой и являются неравновесными открытыми системами, т. е. в течение определенного времени в химическом составе клеток каких-либо изменений не происходит, хотя клеточные вещества постоянно и очень интенсивно обновляются. Кажущееся постоянство химического состава объясняется тем, что процессы обмена веществом и энергией между питательной средой и микробными клетками уравновешены. Отличаясь устойчивостью, метаболизм микробов в то же время характеризуется и значительной изменчивостью. Скорость катаболизма и биосинтеза структурных элементов в каждый момент определяется потребностями клеток, которые обычно обеспечиваются минимальными количествами вещества, что обусловлено наличием тонких механизмов регуляции обмена веществ и энергии. Самые простые из них, влияющие на скорость ферментативной реакции у бактерий, вызывают изменения концентрации водородных ионов, субстрата, появление ингибиторов или, наоборот, активаторов и т. д. Более сложным уровнем регуляции может быть ингибирование мультиферментных реакций конечным продуктом определенной метаболической последовательности регуляторных ферментов, катализирующих начальные звенья цепи биохимической реакции. Клеточный метаболизм, наконец, детерминируется генотипом, поэтому скорость синтеза ферментов и течение реакций у микроорганизмов высокоспецифичны. [c.81]


    Пренильная группа изопентенилпирофосфата служит прямым предшественником в биосинтезе терпенов, каротиноидов и стероидов (рис. 12-11) [75—78]. Образование этой пятиуглеродной разветвленной структуры обсуждалось уже ранее (гл. И, разд. Г, 10 рис. 11-8) и схематически изображено на рис. 12-11. Один из этапов синтеза мевалоновой кислоты, а именно двухступенчатое восстановление З-окси-З-ме-тилглутарил-СоА, является строго регулируемой реакцией. Предполагается, что у человека скорость этой реакции в печени определяет интенсивность биосинтеза холестерина [44, 79]. Активность фермента снижается по принципу обратной связи при накоплении холестерина или его метаболитов. [c.563]

    Физиологическая роль тирозин-3-монооксигеназы чрезвычайно велика, поскольку катализируемая этим ферментом реакция определяет скорость биосинтеза катехоламинов, регулирующих деятельность сердечно-сосудис-той системы. В медицинской практике широко используются ингибиторы декарбоксилазы ароматических аминокислот, в частности а-метилдофа (альдомет), вызывающий снижение артериального давления. [c.443]

    Образование анаболических ферментов (процесс биосинтеза) регулируется главным образом механизмом репрессии. Репрессией называют процесс уменьшения скорости биосинтеза какого-либо фермента или группы ферментов, катализирующих цепную реакцию определенного процесса при помощи специальных веществ — репрессоров. Им может быть конечный продукт [c.48]

    Аспарагин, по-видимому, образуется в аналогичной реакции из аспарагиновой кислоты. При использовании в качестве источника фермента экстрактов из проростков люпина или зародышей пшеницы синтез аспарагина наблюдался, но только в том случае, если условия реакции существенно отличались от условий реакции биосинтеза глутамина [42]. Для достижения максимальной скорости реакции требуются значительно более высокие концентрации аминокислоты и гидроксиламина и несколько меньшая концентрация оптимум pH в случае этой реакции лежит при 8,3. [c.209]

    В живой клетке протекают тысячи различных химических реакций. каждая из которых катализируется специфическим ферментом. Каким же образом достигается их гармоническая синхронизация Очевидно, что клетке выгодно осуществлять реакции, поставляющие энергию, со скоростями, соответствующими ее энергетическим потребностям, и вырабатывать мономериые единицы (аминокислоты, нуклеотиды, сахара) со скоростями, соответствующими потребностям в этих соединениях для синтеза биополимеров белков, нуклеиновых кислот, полисахаридов). Механизмы, благодаря которым осуществляется такая регуляция, стали предметом исследования биохимиков относительно недавно. Хотя некоторые детали остаются невыясненными, удалось установить общие принципы регуляторных механизмов примеры регуляции скорости ферментативных превращений можно найти в разных разделах этой книги. Сюда относятся механизмы, подобные системам положительной и отрицательной обратной связи в инженерной электронике они реализуются при функционировании ряда ферментов, участвующих в процессах биосинтеза при этом обеспечивается постоянный поток, но не избыток необходимых промежуточных продуктов. В других случаях регуляция осуществляется путем репрессии или дерепрессии процесса образования ферментов биосинтеза. [c.18]

    В организме имеется большое количество НАД-зависимых ферментов, которые не только участвуют в реакциях энергообразования, но и катализируют другие реакции, например реакции биосинтеза веществ. Достаточно изученным НАД-зависимым ферментом является лактатдегидрогеназа, которая катализирует обратимую реакцию окисления пировиноградной кислоты в молочную. От активности этого фермента зависит скорость аэробного и анаэробного окисления глюкозы в мышцах. [c.48]

    Любой фактор, влияющий на скорость реакции, участвующей в процессах биосинтеза или распада любого компонента клетки, должен оказывать прямое нли опосредованное воздействие на общую картину метаболизма. Таким образом, можно уверенно утверждать, что любая химическая реакция, которая вносит хотя бы незначительный вклад в метаболизм, может играть роль регулятора. Поскольку молекулы могут взаимодействовать друг с другом самыми разнообразными путями, число реакций, оказывающих регуляторное влияние на метаболизм, очень велико. Маленькие молекулы действуют на макромолекулы в качестве эффекторов, изменяющих конформацию и реакционную способность биополимеров. Ферменты взаимодействуют друг с другом, следствием чего может явиться их расщепление, окисление, а также образование агрегатов с поперечными связями. Трансферазы присоединяют фосфатную, гликозильную, метильную и другие группы к разным ак- [c.502]

    Регуляция синтеза ферментов. В живых клетках на уровне генетического аппарата запрограммировано относительное постоянство количества белков, в том числе так называемых конституционных ферментов. Однако при изменении питания, длительном голодании, спортивных тренировках количество отдельных белков изменяется. Существует адаптивный контроль биосинтеза белка на уровне отдельных генов, вызывающий индукцию (усиление) или репрессию (уменьшение) скорости синтеза РНК. Индукторами или репрессорами могут быть субстраты ферментов либо продукты данной реакции. Индукция синтеза определенного фермента приводит к его накоплению при увеличении концентрации его субстрата либо при необходимости усиления скорости его обмена. Репрессия происходит в случаях, когда отсутствует субстрат и фермент уже не нужен или когда клетка экономит свои энергетические ресурсы. [c.271]


    В пионерских работах Крама и сотрудников был разработан важный метод для разделения энантиомеров. С тех пор было синтезировано и применено для расщепления на оптические изомеры много оптически активных краун-соединений. Крам с сотрудниками назвали приспособление для расщепления на оптические изомеры (с помощью извлечения из жидкости в жидкость или хроматографии на колонке), где использованы оптические активные краун-соединения, "разделителем аминокислот". "Разделитель" разрабатывается для практического использования. Как ожидают, он сделает возможным коммерческий процесс расщепления на оптические изомеры при использовании дешевых оптически активных краун-соединений. Следует ожидать, что оптически активные краун-соединения найдут дальнейшее применение для разделения, а также как модели ферментов, позволяющие добиться высокой избирательности асимметрических химических реакций и высоких скоростей процесса в мягких условиях биосинтеза. [c.283]

    Выше мы уже обсуждали один из механизмов, препятствующих участию ацетилкофермента А в обмене веществ, а именно ингибирование биосинтеза жирных кислот ацильными производными кофермента А с длинной цепью. Сейчас в результате работы группы ученых Мюнхенского университета выясняется, что аналогичный механизм может регулировать окисление ацетилкофермента А в цикле трикарбоновых кислот [29]. Было найдено, что фермент цитрат-синтаза из печени, катализирующий конденсацию ацетилкофермента А со щавелевоуксусной кислотой, сильно ингибируется тиоэфирами кофермента А жирных кислот. Характер кинетики ингибирования позволяет предположить, что при этом осуществляются аллостерические взаимодействия. Так, для стеарилкофермента А была получена сигмоидальная кривая зависимости скорости реакции от его концентрации фермент утра- [c.64]

    Как следует из материала, рассмотренного в данном разделе, для того чтобы объяснить механизмы реакций живых организмов на давление в биохимических терминах, необходимо рассмотреть его действие на процессы химического равновесия и скорости реакций. Наиболее яркими примерами действия давления на процессы равновесия может служить вызываемая им диссо-цпация специфических полимерных агрегатов, таких, как микротрубочки или ферменты, построенные из нескольких субъединиц. Важную роль в природных условиях может также играть денатурирующее действие давлення на белки, особенно если другие параметры окружающей среды, такие, как температура, pH или ионная сила, отличаются от оптимальных. Как показало изучение выделенных белков, они могут подвергаться денатурации под давлением значительно ниже одного килобара. Влияние давления на большинство процессов катаболизма или биосинтеза в клетках проявляется прежде всего в том, что под действием этого фактора меняются скорости реакций. В большинстве случаев они замедляются, если давление составляет 300 или более атмосфер. Однако многие другие реакции при повышении давления ускоряются. Из-за различной, чувствительности к давлению огромного множества внутриклеточных реакций в условиях повышенного давления могут происходить существенные нарушения в метаболической регуляторной системе клеток. [c.144]

    Ацетил-СоА—карбоксилаза - регуляторный фермент катализируемая этим ферментом реакция является лимитирующим этапом, определяющим скорость всего процесса биосинтеза жирных кислот в животных тканях. Главным положительным модулятором этого фермента служит цитрат, инициирующий переход фермента в высокоактивный нитевидный полимер. Как только содержание цитрата в митохондриях увеличивается, что наблюдается при высокой скорости образования митохондриального ацетил-СоА и АТР, цитрат выходит из митохондрий и выступает одновременно в роли предшественника цитозольного ацетил-СоА и аллостерического активатора ацетил-СоА—карбоксила-зы. [c.626]

    Известно, что химические реакции, протекающие в клетке, катализируются ферментами, поэтому предполагают, что регуляция в животном организме возможна на уровне непосредственного влияния различных факторов на скорость ферментативных реакций и биосинтез ферментов. Различают два основных типа регуляции клеточного обмена  [c.432]

    Известны полиферментные системы, в которых скорость ферментативных реакций регулируется концентрацией конечного продукта в цепи последовательных превращений. В основе этого вида регуляции лежит ингибирование (или активация) ферментов первой стадии биосинтеза конечными продуктами реакции, называемое ингибированием (или активацией) по типу обратной связи. Ингибиторы и активаторы, действующие по принципу обратной связи, называются эффекторами. [c.434]

    Патофизиология этой группы заболеваний изучена на примере острой перемежающейся порфирии. Многие больные, у которых понижена активность порфобилиноген-де-заминазы, не страдают характерными для порфирии болями в области живота и нейропатией. Появление этих симптомов наблюдается при повышенной активности синтетазы б-аминолевуленовой кислоты (АЛК), первого фермента на пути биосинтеза порфирина, который определяет скорость всего процесса. Существовало мнение, что первичным нарушением при острой перемежающейся порфирии является как раз нарушение регуляции, приводящее к избыточному синтезу этого фермента. Биосинтез синтетазы АЛК индуцируется многими препаратами, например барбитуратом, стероидными гормонами и т. д., и в норме репрессируется конечным продуктом синтеза-гемом. Последний этап биосинтеза гема катализируется ферментом уропор-фириноген-синтетазой. При острой перемежающейся порфирии уровень фермента понижен, что приводит к снижению синтеза гема и в свою очередь к повышению активности АЛК-синтетазы. Вдвое сниженная активность фермента в этом случае недостаточна для нормального функционирования всей цепи биосинтеза, особенно в условиях стимуляции препаратами типа барбитуратов. В отличие от многих других ферментативных нарушений при острой перемежающейся порфирии мутация нарушает реакцию, которая играет ключевую роль во всем биосинтетическом пути. [c.121]

    Аллостерическая регуляция предполагает наличие у молекулы фермента двух сайтов — каталитического и регуляторного. Под действием эффектора — небольшой молекулы, обратимо нековалентно связывающейся с регуляторным сайтом фермента, происходит конформационное изменение его каталитического сайта (рис. 153). Примером может служить аспартаткарбомоилтрансфе-раза из Е. соИ, для которой ЦТФ (конечный продукт биосинтеза пиримидинов) — негативный эффектор, а АТФ — позитивный эффектор. Эффекторы изменяют но не максимальную скорость реакции (рис. 154). [c.232]

    Скорость-лимитирующей стадией при биосинтезе желчных кислот является реакция, катализируемая 7а-гидроксилазой, а при биосинтезе холестерола — реакция, катализируемая ГМ Г-СоА-ре-дуктазой (рис. 27.1). Часто активности этих двух ферментов изменяются одновременно, и поэтому [c.283]

    Это первый щаг в биосинтезе пиримндннов. Интересная особенность фермента заключается в том, что присутствие пиримидина СТР значительно снижает скорость реакции, катализируемой АТСазой, при любой постоянной концентрации аспарагина. Это ингибирование по механизму обратной связи представляет собой биологически важный регуляторный процесс. Интересно, что ингибирование происходит на первом этапе биосинтеза, благодаря чему предотвращается бесполезное (или даже вредное) накопление промежуточных продуктов реакции. [c.134]

    Начиная со сквалена, все промежуточные продукты биосинтеза холестерина (включая и холестерин) нерастворимы в водной среде. Поэтому они участвуют в конечных реакциях биосинтеза холестерина, будучи связанными со стеринпереносящими белками (СПБ). Это обеспечивает их растворимость в цитозоле клетки и протекание соответствующих реакций. Данный факт имеет важное значение и для вхождения холестерина в клеточные мембраны, окисления в желчные кислоты, превращения в стероидные гормоны. Как отмечалось, реакцией, регулирующей скорость биосинтеза холестерина в целом, является восстановление 3-гидрокси- 3-метилглутарил-КоА в мевалоновую кислоту, катализируемое ГМГ-КоА-редуктазой. Данный фермент испытывает регуляторное воздействие ряда [c.402]

    Регулирование сложной цепи химических реакций, называемой клеточным метаболизмом, несомненно, является жизненно важным. В настоящее время известно, что для биосинтеза пуринов существует ряд возможных контрольных механизмов, которые включают подавление синтеза метаболитов самими же метаболитами, родственными с ними веществами или конечными продуктами. Так называемое ингибирование по принципу обратной связи может влиять либо на активность, либо на синтез фермента, ответственного за образование метаболита. Так, активность фосфорибозилпирофосфатами-дотрансферазы (которая катализирует синтез рибозиламин-5-фосфата из глутамина и рибозо-1-пирофосфат-5-фосфата) заметно подавляется АМФ, АДФ, АТФ, ГМФ, ГДФ и ИМФ, но не ингибируется большим числом других пуриновых или пиримидиновых производных, в случае некоторых мутантных штаммов бактерий с генетическим блоком, ведущим к накоплению предшественников аминоимида-зола, некоторые пурины могут вызывать аллостерическое торможение, если только генетический блок не препятствует взаимопревращению пуринов. Однако, когда это взаимопревращение затруднено, аденин становится специфическим ингибитором (препятствует накапливанию предшественников имидазола) и контроль по принципу обратной связи осуществляется на уровне аденина (или аденозина, или АМФ), а не с помощью других пуринов. Превращение гуанозин-5 -фосфата в производные аденина (через восстановительное дезаминирование ГМФ до инозин-5 -фосфата) заметно ингибируется АТФ, что свидетельствует о возможности контроля производными гуанина за синтезом адениновых нуклеотидов. Взаимоотношения между этими отрицательными типами контроля за скоростью синтеза и концентрацией нуклеотидов в клетке и положительными моментами взаимосвязи биосинтетических реакций, как, например, потребность АТФ для синтеза ГМФ и ГТФ для синтеза АМФ, представляются исключительно сложными. Как уже упоминалось выше, контроль за синтезом фермента также может быть установлен по принципу обратной связи примером может служить влияние гуанина на образование ИМФ-дегидрогеназы в мутантных штаммах бактерий с подавленным синтезом ксантозин-5 -фос-фатаминазы. [c.310]

    Все это показывает, как широко используется ультрацентрифугирование при изучении нуклеиновых кислот и биосинтеза белка. Ультрацентрифугирование незаменимо также при все более расширяющемся изучении смежных проблем — в частности при изучении механизмов регуляции ферментативных реакций. Метаболические потребности клетки удовлетворяются, как известно, благодаря тонкой согласованности скоростей различных биохимических последовательностей. Такая согласованность возможна благодаря чувствительности аллостерических ферментов к изменениям концентраций отдельных метаболитов, что в свою очередь зависит от конформационных изменений, вызываемых соответствующим метаболитом и, очевидно, передающихся путем взаимодействия субъединиц ферментного белка. Успехи, достигнутые в изучении свойств аллостериче-ского фермента — аспартат-карбамоилтрансферазы, хорошо иллюстрируют большое значение ультрацентрифугирования — особенно когда оно используется в сочетании с другими методами анализа. Так, Герхарт и Шахман [5] показали, что этот фермент, представляющий собой глобулярный белок с молекулярной массой около 3-10 , после обработки соединениями ртути распадается на субъединицы двух типов. Каталитической активностью обладают лишь субъединицы одного типа, в субъединицах же другого типа, не обладающих каталитической активностью, находится центр по которому происходит присоединение цитидинтрифосфата. С этой регуляторной субъединицей связывается 5-бромцитидин-трифосфат, о чем свидетельствует соответствующая картина седиментации. Позже Вебер [6] определил аминокислотный состав и Ы-концевые остатки субъединиц обоих типов и установил, что одна молекула фермента содержит четыре регуляторных и четыре каталитических субъединицы. [c.9]

    Цитидинтрифосфат (ЦТФ) ингибирует действие АТК-азы (аспар-тат-транскарбамоилазы), снижая его родство к субстрату. Степень его ингибирующего эффекта может достигать 90% в зависимости от концентрации субстратов. С другой стороны, АТФ активирует АТК-азу, что увеличивает сродство фермента к субстрату. Связывание АТФ и ЦТФ с регуляторным участком АТК-азы носит конкурентный характер. При высокой концентрации АТФ вытесняет ЦТФ из комплекса и последний не может оказывать ингибиторное действие. Активация АТК-азы под действием АТФ, с одной стороны, уравнивает скорости образования пурин- и пиримидиннуклеотидов, с другой стороны, активация АТК-азы под действием АТФ сигнализирует о достаточной его концентрации в качестве субстрата для некоторых реакций биосинтеза пиримидиннуклеотидов, например, для синтеза карбамоилфосфата и фосфорилирования ИМФ и ИТФ. [c.429]

    При разработке таких схем получения меченых соединений главной задачей является возможно более полное превращение дефицитного и дорогостоящего исходного соединения в искомый продукт. Например, при проведении биосинтезов использовались ферменты с высокой степенью очистки, а также проводился подбор их наилучшего соотношения, чтобы скорость образования высокомеченых препаратов была максимальна. При проведении химических реакций для реализации той же задачи оптимизировались температура, время реакции и концентрации немеченых реагентов. [c.526]

    Скорость биосинтеза жирных кислот определяется главным образом скоростью ацетил-СоА-карбоксилазной реакции, в результате которой образуется малонил-СоА. Ацетил-СоА—карбоксилаза-это аллостерический фермент, который в отсутствие цитрата, играющего роль активирующего модулятора, проявляет очень низкую активность. Повышение концентрации цитрата в митохондриях приводит к тому, что при помощи челночного механизма он начинает поступать в цитозоль. Появление цитрата в цитозоле служит аллостерическим сиг- [c.634]

    Скорость биосинтеза жирных кислот лимитируется стадией карбоксилировання ацетил-СоА, катализируемого ацетил-СоА—карбоксилазой. Высокие уровни цитрата и изоцитрата указывают на то, что синтез жирных кислот протекает в благоприятных условиях вследствие активной работы цикла лимонной кислоты, в процессе которого образуется большой запас АТР, восстановленных пиридиннуклеоти-дов и ацетил-СоА. Следовательно, цитрат стимулирует (увеличивает протекание ферментативной реакции, являющейся лимитирующим этапом биосинтеза жирных кислот. Кроме того, поскольку цитрат прочнее связывается с нитевидной (активной) формой фермента, присутствие цитрата сдвигает равновесие между двумя формами в сторону активной формы. Наоборот, пальмитоил-СоА (конечный продукт биосинтеза жирных кислот) сдвигает равновесие в сторону неактивной формы. Поэтому по мере образования конечного продукта биосинтеза жирных кислот скорость биосинтеза снижается. [c.723]

    Н. Moser [114] предложил уравнение (табл. 1.6), в котором вместо концентрации субстрата используется величина 5 , где k — новый кинетический коэффициент, формально представляющий число молекул субстрата, вступающих в реакцию на ферменте с образованием одной молекулы продукта. При величине k> это уравнение позволяет учесть сигмоидный характер кривой зависимости скорости роста от концентрации субстрата, наблюдаемый в ряде случаев, а при <1 —наоборот, более крутую зависимость р от S при малых значениях S. В качестве примера использования подобной зависимости можно привести работу Л. А. Музыченко и соавт. [51] для процесса биосинтеза лизина, в котором k было равно 2. Во многих микробиологических процессах повышенные концентрации субстрата вызывают торможение роста или биосинтеза. Наиболее известно для описания подобной ситуации уравнение G. F. Andrews [87], (табл. 1.7) В обзоре [94] приведен ряд других математических моделей торможения повышенными концентрациями субстрата, но показано, что почти все они одинаково точно описывают экспериментальные данные. [c.21]


Смотреть страницы где упоминается термин Ферменты биосинтез скорости реакции: [c.501]    [c.183]    [c.156]    [c.183]    [c.358]    [c.364]    [c.272]    [c.65]    [c.415]    [c.373]    [c.384]    [c.389]    [c.910]    [c.24]    [c.65]    [c.241]    [c.256]    [c.223]   
Метаболические пути (1973) -- [ c.56 , c.57 , c.61 ]




ПОИСК





Смотрите так же термины и статьи:

Ферменты скорость реакции



© 2025 chem21.info Реклама на сайте