Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кобальт анализ, спектральный

    Фотометрия пламени — вид эмиссионного спектрального анализа, в котором источниками возбул<дения спектров являются пламена различных видов ацетилен — воздух, ацетилен — кислород, пропан — воздух, пропан — кислород, водород — воздух и др. Вследствие невысокой температуры в пламенах излучают легко и среднеионизующиеся элементы щелочные и щелочноземельные металлы, галлий, индий, магний, марганец, кобальт, медь, серебро и ряд других, причем их число растет с увеличением температуры пламени. В наиболее холодных пламенах, таких как, например, пропан — воздух, светильный газ — воздух излучают только атомы щелочных и щелочноземельных металлов. Вследствие невысокой температуры спектры, излучае-МЕле пламенами, состоят из небольшого числа спектральных линий, главным образом резонансных, что позволяет выделять характеристическое излучение элементов при помощи светофильтров и использовать простые и имеющие невысокую стоимость спектральные приборы — пламенные фотометры. Кроме атомных спектральных линий в спектрах пламен присутствуют полосы ряда в основном двухатомных молекул и радикалов С2, СиС1, СаОН и др. Некоторые из них используют в аналитических целях. Так, в случае элементов, образующих термически устойчивые оксиды, которые практически не диссоциируют в пламенах с образованием свободных атомов, молекулярные спектры являются единственным источником аналитического сигнала. Практически не атомизируются в низкотемпературных пламенах оксиды скандия, титана, лантана и других элементов, ирлеющих относительно невысокие потенциалы ионизации. Наиболее часто фотометрию пламени применяют для определения щелочных и щелочноземельных металлов. [c.35]


    В процессе изучения факторов, влияющих на степень химической деструкции НПАВ в пластовых условиях конкретных месторождений, были проведены спектральные анализы пород. При этом было установлено присутствие в них значительного количества металлов переходной валентности (медь, марганец, цирконий, кобальт, никель), которые, как известно, обладают каталитической активностью. Предварительными лабораторными опытами по определению химической деструкции НПАВ было установлено, что на стабильность последних существенное влияние оказывают сера и ее соединения. Поэтому при анализе пород различных нефтяных месторождений особое внимание было уделено содержанию серы (табл. 5). [c.28]

    Предложено определять кобальт и молибден в металлокомп-лекскых присадках к смазочным маслам [284], серу в нефтепродуктах [285] методом РФА с использованием рентгено-спектрального анализатора БАРС-1. Высоковязкие продукты разбавляли органическим растворителем. Содержание металлов определяли методом внешнего стандарта. Он позволил обнаружить содержание серы в дизельных топливах от 0,1 % и выше, а в вакуумных газойлях и твердых металлокомплексных соединениях—при концентрации 0,1%. Пробы органического происхождения сжигали в кислороде под давлением, в их золах устанавливали содержание свинца, кадмия, ртути и мышьяка [287]. Предварительное концентрирование микроэлементов использовано в [289]. Пробы нефти и нефтепродуктов обрабатывали серной и смесью (1 1) азотной и хлорной кислот. Ванадий, никель, железо осаждали из раствора, полученного после минерализации нефти, нефтепродуктов, диэтилдитиокарбаминатом натрия. Выпавший осадок помещали на фильтровальную бумагу, покрывали 6 мкм майлоровой пленкой и анализировали. Пределы обнаружения ванадия, никеля, железа составили 0,04 0,03 0,05 мкг соответственно. При анализе твердых проб подготовка образца к анализу проще. Для определения кобальта, никеля и [c.71]

    Имеются методы спектрального анализа силикатов без переведения пробы в раствор [100, 116, 1311]. По одному из них [100] пробы спекают при 950° С с перекисью натрия п бурой в присутствии угольного порошка, содержащего карбонаты кобальта и бария (внутренние стандарты). Пек растирают с графитовым порошком и анализируют на приборе ИСП-28 или квантометре ДФС-10. Использование квантометра сокращает в 2 раза продолжительность анализа. [c.134]

    Первая работа по распределительной хроматографии на целлюлозе была выполнена еще в 1949 г. [122] в процессе анализа сплавов, содержащих никель, кобальт, медь и железо. Тогда же был разработан метод отделения ртути от меди, висмута, свинца н кадмия. В дальнейшем Ф. Бар-стелл с сотрудниками [123] применил хроматографию на целлюлозе для выделения урана из руд. Впоследствии разработанная ими методика была использована для получения препаратов урана спектральной чистоты, для очистки урана от продуктов деления. [c.174]


    Определение в агломератах. При анализе агломератов также используются различные приемы введения образца в атмосферу разряда. Спектральный анализ Ъп — РЬ-агломерата производят [911] после сплавления образца при 1050° С со смесью тетрабората лития, тетрабората стронция и окиси кобальта. Кобальт служит внутренним стандартом. Рекомендуют также сплавлять образец со смесью буры и соды при 950—980° С [410]. Полученный расплав втягивают в графитовую трубку, которая после охлаждения служит одним из электродов. В этом случае анализ агломерата производят с помощью искры от генератора ИГ-3 на квантометре ДФС-10 или спектрографе. Сравниваются пары линий Са 3158,8 и и 4378,2 А. [c.117]

    Чугун. Метод фотоэлектрического спектрального анализа Чугун и сталь. Методы спектрографического анализа Порошок железный. Метод фотоэлектрического спектрального анализа Сталь. Метод фотоэлектрического спектрального анализа Кобальт Методы химико-атомно-эмиссионного спектрального анализа [c.821]

    Бронзы безоловянные. Метод спектрального анализа по окисным стандартным образцам с фотографической регистрацией спектра Бронзы безоловянные. Метод рентгеноспектрального флуоресцентного определения алюминия Бронзы жаропрочные. Метод определения меди Бронзы жаропрочные. Методы определения кремния Бронзы жаропрочные. Методы определения хрома Бронзы жаропрочные. Метод определения фосфора Бронзы жаропрочные. Методы определения железа Бронзы жаропрочные. Метод определения никеля Бронзы жаропрочные. Метод определения свинца Бронзы жаропрочные. Методы определения циркония Бронзы жаропрочные. Метод определения кобальта Бронзы жаропрочные. Методы определения титана Бронзы жаропрочные. Определение хрома, никеля, кобальта, железа, цинка, магния и титана методом атомно-абсорбционной спектрометрии [c.576]

    Кобальт. Методы химико-атомно-эмиссионного спектрального анализа [c.583]

    Одновременное концентрирование большой группы элементов. В обогащенной пробе концентрируются примеси всех элементов, не образующих летучие фториды — натрия, калия, меди, серебра, магния, кальция, стронция,бария, цинка, кадмия, алюминия, свинца, хрома, марганца, железа, никеля, кобальта и др. Это особенно ценно, если определение примесей в концентратах проводится таким групповым методом, каким является спектральный анализ. [c.131]

    Для определения алюминия обычно используют дуговое возбуждение. Проба интенсивно испаряется и спектральные линии хорошо возбуждаются. Искру применяют сравнительно редко (при анализе растворов и брикетов). У алюминия невысокие энергия ионизации (5,98 эв), а также энергия возбуждения чувствительных линий. Поэтому с введением в пробу щелочных элементов чувствительность анализа резко повышается. В качестве внутреннего стандарта при определении алюминия хорошие результаты дают соединения магния, кремния и кальция. Однако эти элементы широко распространены в природе и их использование затруднительно. Удовлетворительные результаты получают, используя бериллий, барий, хром, кобальт и никель. [c.194]

    Чаще всего при спектральном анализе нефтепродуктов кобальт используют как универсальный внутренний стандарт. Это объясняется его малым распространением в природе и средней летучестью. Необходимо, однако, отметить, что такое универса,) ьное применение внутреннего стандарта иногда приводит к значительным ошибкам. [c.226]

    В [155] для нахождения примесей никеля, железа, ванадия в сырье для крекинг-установок 10 г пробы озоляли в тигле в присутствии 10 мл бензолсульфокислоты с добавлением 2,5-10 г кобальта и 2,5-10 хрома как внутренних стандартов. Для повышения чувствительности определения ванадия, никеля в нефти путем получения и сжигания кокса рекомендуют предварительно пропитывать электроды раствором уксуснокислого лития [156]. Многоэлементный спектральный анализ коксов и золы использован рядом авторов для изучения состава минеральной части нефтей различных месторождений [2, 157—163]. [c.51]

    Ход анализа. В зависимости от чистоты анализируемой кислоты в чашку предварительно вносят 50 или 10 мг угольного порошка, со-держаш,его в качестве внутреннего стандарта кобальт (0,01%), приливают 10 ли анализируемой кислоты и перемешивают плексигласовым шпателем. Упаривают досуха на водяной бане, а затем высушивают на электроплитке, покрытой кварцевой кюветой. Сухой остаток поступает ка спектральный анализ. При упаривании кислоты с 10 мг коллектора весь сухой остаток вносят в кратер электрода . При упаривании с 50 лг коллектора и для эталонов берут на торзионных весах навески по 10 мг. [c.514]

    В зависимости от температуры прокаливания получаются окислы с различными свойствами (структура, плотность, содержание связанного и активного кислорода, дисперсность). Это явление характерно для окислов никеля (см. табл. 46), кобальта, алюминия, кремния, меди, цинка и ряда других элементов. При низких температурах разложения нитратов (400—600° С) образуются мелкодисперсные порошки с кристаллической решеткой, близкой к решетке исходных соединений. С повышением температуры разложения идет образование крупнозернистых структур. Все это может сказаться на результатах спектрального анализа, поэтому прокаливание материала эталонов и материала анализируемых образцов должно проводиться при одинаковой и постоянной температу ре. Например, для никеля она составляет 850—880° С, для [c.364]


    При анали.зе различных объектов (см. табл. 22) концентрирование примесей проводят путем отделения основного количества элемента-основы экстракцией различными реагентами, а раствор содержащий примеси (например, в случае анализа таллия), выпаривают или с угольным порошком, содержащим 4% Na l [156], или с угольным порошком, содержащим в качестве усиливающей добавки галлий и кобальт (последний служит внутренним стандартом), или на угольном порошке, содержащем 5% Iii при анализе фосфида индия [447]. Проводят спектральный анализ концентрата. При анализе воды, кислоты п легколетучцх соединений (табл. 24) обогащение проводят путем выпаривания. Прх меси ири этом [c.109]

    По сравнению с методом возбуждения сухого остатка после выпаривания раствора на торцовой поверхности электрода предлагаемый вариант получения сухого остатка раствора на электроде имеет преимущества. Во-первых, сухие остатки на верхнем электроде после искрового анализа аэрозолей имеют плотную однородную структуру, прочно удерживаются на поверхности угольного электрода и при обработке искровым разрядом не разрушаются, что позволяет получать хорошо воспроизводимые результаты. Во-вторых, после проведения искрового анализа аэрозолей верхние угольные электроды с сухими остатками могут быть использованы для дополнительного спектрального анализа в искровом или дуговом разряде. В этом случае чувствительность определений по искровым линиям увеличивается, по-видимому, за счет повышения температуры искрового разряда. А чувствительность определений некоторых элементов по дуговому спектру (алюминий, индий, кадмий, кобальт, медь и др.) может быть значительно повышена. [c.147]

    Экспериментально установлено, что наиболее чувствительные линии в поглощении часто не совпадают с наиболее интенсивными линиями элементов, применяемыми в эмиссионном спектральном анализе. Более интенсивными в испускании являются резонансные линии с больщей длиной волны. Более чувствительные в поглощении линии лежат в коротковолновой области от наиболее интенсивной в испускании резонансной линии или совпадают с ней. Так, абсорбционная линия кобальта Со 240,7 нм поглощает в 50 раз сильнее, чем наиболее интенсивная эмиссионная линия Со 352,7 нм. Это несоответствие объясняется больщей концентрацией атомов на верхнем уровне для линии с большей длиной волны по сравнению с концентрацией возбужденных атомов на верхнем уровне для линий с меньшей длиной волны. Наиболее сильные абсорбционные линии большинства элементов располагаются в области 300,0—200,0 нм, что существенно упрощает атомно-абсорбционный метод анализа. [c.98]

    При спектральном анализе диэлектрических веществ из раствора в пробу часто вводят щелочные элементы. Это обусловлено тем, что растворение таких проб обычно невозможно без сплавления (разд. 2.3.4). Присутствие щелочных элементов стабилизирует условия определения основных компонентов. Подобно вышеприведенному примеру, в качестве внутреннего стандарта в пробу вводят один или несколько элементов. В дополнение к щелочным буферам для стабилизации условий возбуждения основных компонентов в пробу желательно вводить в количествах, в несколько раз превышающих количество определяемых элементов, элемент с высоким потенциалом ионизации, который используется в качестве внутреннего стандарта [например, кобальт (7,86 эВ) или медь (7,72 эВ)] [3]. [c.75]

    Фотометрический метод, описанный на стр. 40, основан на реакции кобальта с нитрозо-Р-солью. Этот метод применим для определения кобальта в 2г10, 2г30 и в гафнии и используется в тех случаях, когда спектральные методы неприменимы или когда необходим точный анализ. К анализируемому сплаву 2г30, содержащему медь, до растворения пробы добавляют 0,1 г высокочистого титана, а осажденную медь перед окислением раствора азотной кислотой отфильтровывают. [c.133]

    Химико-спектральный метод анализа примесей кобальта, меди, олова и цинка в никеле высшей чистоты, Д. М. Шварц, А. И. Г р а н ф е л ь д. Зав. лаб., 25, № 8, 946 (1959). [c.432]

    Определение кобальта в водах. При определении кобальта в воде главное внимание обращается на метод концентрирования. Кобальт определяют спектральным методом после выделения экстракцией диэтилдитнокарбаминатов и 8-оксихинолинатов тяжелых металлов (1189], а также дитизонатов [234, 1116]. Применяется также полярографическое определение после экстракции дитизонатов [821]. Описаны предварительное отделение кобальта и его концентрирование при анализе минеральных вод пропусканием через колонку с анионитом определение заканчивают спектральным методом [179]. Для определения кобальта в морской воде рекомендуется метод с 1-нитрозо-2-нафто-лом [1472]. [c.216]

    Скорость пропускания через такой фильтр составляет 100 объемов в час на объем бисульфата. Таким образом, полупромышленные установки, оборудованные фильтром емкостью на 5 л, в который загружали 2 кг бисульфата натрия и 2 кг соли, имели пропускную способность 200 л/час. В одной из операций было обработано 10 термического крекинг-бензина, который хотя и был обессерен, но содержал еще 0,1 мг/л кобальта. Из фильтра он выходил, не содержа даже следов кобальта, обнаруживаемых спектральным анализом при дальнейшем хранении никаких признаков помутнения не наблюдалось. [c.356]

    Синие кристаллы кварца впервьге были получены в 1958 г. на затравках базисной ориентации при введении в систему Н2О— 5102 — Na20 — СО2 соединений кобальта, растворимых в гидротермальных условиях. Концентрация пигментирующей примеси в исходном растворе и температурные параметры режима выращивания существенно влияют на интенсивность окраски, распределение которой подчиняется закономерностям зональной и секториальной сегрегации неструктурной примеси. На основании результатов спектрального анализа окрашенных кристаллов и характера распределения синей окраски можно заключить, что ион-хромофор Со + адсорбируется коллоидно-дисперсными комплексами силиката натрия и вместе с ним захватывается во время роста кристалла гранью пинакоида. Связь центров синей окраски искусственных кристаллов кварца с ионами Со2+ подтверждена спектрами поглощения, измеренными в поляризованном свете. На всех полученных кривых отчетливо наблюдается широкий максимум с тремя пиками при 545, 595 и 640 нм. Полное отсутствие дихроизма в этих спектрах и наличие тиндалевского рассеяния света подтверждает коллоидальный характер окрашивающей примесной фазы, захват которой начинается при максимальной скорости порядка 0,2 мм/сут на сторону в направлении оси Ц. С увеличением скорости до 0,25 мм/сут массовое содержание кобальта в пирамиде <с> достигает 1-10 3 7о, что обеспечивает образование кристаллов голубого цвета. Синие ярко окрашенные кристаллы с концентрацией кобальта до 1—2 10" % вырастают со скоростью 0,3—0,4 мм/сут при температуре 330—395 °С. В процессе выращивания синего кварца на дне автоклава выделяется стеклообразный осадок тяжелой фазы , окрашенной в темно-синий цвет и содержащей около 3-10" % СоО. Интенсивность синей окраски при нагревании кварца выше точки ач=ьр перехода несколько снижается. После высокотемпературной термообработки образцы голубого цвета теряют прозрачность и, подобно бесцветному кварцу, выращенному с высокими скоростями, приобретают опаловидный характер, сохраняя прочность 12 179 [c.179]

    Можно предположить, что образование алкилфенолов с разветвленной алкильной цепью происходит при разрыве окси-этильного фрагмента под влиянием каталитических количеств солей переходных и непереходных металлов, содержаш ихся в пластовой воде по механизму гомогенного катализа. Установлено, что в качестве центрального атома металла, ответственного за превращение НПАВ, выступают соединения железа, меди, кобальта и марганца. Это определено на основании данного спектрального анализа по взаимодействию сдвигающихся шифт-реагентов с оксиэтильными фрагментами Неонола АФэ-12. [c.100]

    Содержание в порошках железа особой чистоты микропримесей марганца, меди, никеля, хрома, кобальта, алюминия, свинца, магния и кремния определяют общепринятыми методами химИко-спектрального анализа. [c.250]

    Кататтические методы анализа отличаются высокой чувствительностью, которая для многих неорганических веществ сравнима с чувствительностью масс-спектральных и активационных методов анализа, а для органических — с наиболее чувствительными вариантами хроматографии. В отдельных случаях, например, для серебра, хрома, кобальта, каталитические методы — наиболее чувствительные из всех известных методов aнaJШзa. При этом преимуществом каталитических методов является сочетание высокой чувствительности с простотой аппаратурного оформления и методики проведения анализа. [c.272]

    Руды и промпродукты медно-никель-кобальтового производства. Определение массовых долей меди, никеля, кобальта, железа методом атомно-эмиссионной спектрометрии с индуктивно-связанной плазмой (ИАЦ РАО Норильский никель ) Руды, концентраты, промежуточные и отвальные продукты. Определение массовых долей кремния, алюминия, кальция, магния, железа, хрома, марганца, титана, ванадия, калия и натрия методом атомно-эмиссионной спектрометрии с индуктивно-связанной плазмой (ИАЦ РАО Норильский никель ) Минеральное сырье, руды, продукты их переработки, содержащие свинец, цинк, кадмий и мышьяк. Определение массовых долей свинца, цинка, кадмия и мышьяка методами атомной спектрометрии (ИАЦ РАО Норильский никель ) Никель. Методы химико-атомноэмиссионного спектрального анализа [c.823]

    Полезна информация о наиболее распространенных методах определения отдельных микроэлементов. Выберем элементы биологического значения и некоторые токсичные. Среди методов, которыми пользуются для определения меди, на первом месте атомная абсорбция (41 лаборатория из 188), затем идут методы фотометрические (24), полярографические (19), эмиссионный спектральный анализ (19), активационный метод (11), рентгеноспектральный (10). В случае кобальта последовательность похожая атомно-абсорбционная спектроскопия (19), эмнссионный спектральный анализ (17), фотометрические методы (14), полярография (7), активационный анализ (6). При определении микроколичеств железа [c.96]

    Еще один микрометод, основанный на анализе сухого остатка, заключается в следующем. На токарном станке из спектральных углей вырезают диски диаметром 4 мм и толщиной 0,5 мм, которые дополнительно очищают обжигом в дуге постоянного тока силой 12 А в течение 15 с. Затем на диск наносят микропипеткой 20 мкл анализируемого раствора, сушат под ИК-лампой при 80 °С и помещают в кратер нижнего электрода, который служит анодом дуги постоянного тока. Достигнуты следующие абсолютные пределы обнаружения (в нг) qpeб-ро — 0,08 висмут — 0,4 магний, марганец, медь — 0,5 алюминий, кремний, молибден, титан — 2 ванадий, кобальт, хром, цинк — 3 железо — 4 никель, олово — 5 кальций — 6 свинец— 7 кадмий, сурьма — 10 мышьяк — 90. При увеличении толщины дисков свыше 1,5 мм резко ухудшаются чувствительность и точность анализов [52]. [c.27]

    Метод вращающихся графитовых дисков применялся уже для большого числа материалов и может рассматриваться как наиболее распространенный метод спектрального анализа растворов (табл. 9.4.10.7), метод N6). Его применение облегчалось тем, что фирма A.R.L. (США) продавала промышленный прибор, который легко управлялся и монтировался на электрододержателе [3]. Такой прибор можно было также легко изготовить в мастерской исследовательской лаборатории. Приборы этого типа теперь производятся многими фирмами. Этим методом в низковольтной искре проводили полный анализ латуни и бронзы с воспроизводимостью 1,5% [4]. Шлаки анализировали в высоковольтной искре в виде кислых растворов после сплавления с бурой, используя в качестве внутреннего стандарта медь или кобальт [5]. Анализ растворов оксидных включений, выделенных из сталей (0,5— 1,0 мг) и сплавленных с бурой, выполняли в высоковольтной искре U= 2 кВ, С = 6 нФ, L=l,5 мГ EF N5 ЕАС КОЗОХ X 3 5 об/мин) при использовании кобальта в качестве внутреннего стандарта [6]. Сухой графитовый диск обыскривалн в течение 1 мин, затем с раствором — еще 2 мпн. Спектр регистрировали (1 мин) на кварцевом спектрографе средней разрешающей силы. Прп анализе микроколичеств проб с учетом фона воспроизводимость составила 4—6%. Анализ железных руд и атмосферных пылевых частиц методом вращающегося диска (в растворе хлористоводородной кислоты, после кипячения с борной кислотой) [c.163]

    Абрамов В. Л. Быстрый метод определения серы в черных металлах. Бюлл. литейщика, 1946, № 2, с. 13—14. 2811 Абрамов В. Л., Богданова В. Т. и Таганов К. И. Спектральный метод количественного анализа ковкого чугуна на кремний и углерод. Зав. лаб., 1950, 16, № 10, с. 1218—1224. Библ. 5 назв. 2812 Абрамович А. Я. Экспресс-метод определения концентрации плава амселнтры. Зав. лаб., 1941, 10, № 5, с. 541—542. 2813 Абрамович Я. 3. и Мейер Л, П. Применение сульфата закиси меди [с] р-нафтолом при тазовом анализе. Электр, станции, 1950, № 2, с. 55—56. 2814 Абросимов Е, В. и Строганов А. И. Предпосылки к развитию экспресс-анализа на содержание кислорода в жидкой стали. Зав. лаб., 1951, 17, № 10, с. 1169—1174. Библ. 6 назв. 2815 Абуладзе К. Л. Определение никеля и кобальта в марганцевой руде методом внутреннего электролиза. Научно-исследовательские работы химических институтов и лабораторий АН СССР за 1940 г. Сборник рефератов. М.— Л., Изд-во АН СССР, 1941, с. 191. 2816 [c.119]


Библиография для Кобальт анализ, спектральный: [c.432]   
Смотреть страницы где упоминается термин Кобальт анализ, спектральный: [c.391]    [c.218]    [c.76]    [c.38]    [c.362]    [c.590]    [c.80]    [c.362]    [c.171]   
Физико-химичемкие методы анализа (1964) -- [ c.432 ]

Физико-химические методы анализа (1964) -- [ c.432 ]




ПОИСК





Смотрите так же термины и статьи:

Спектральный анализ



© 2024 chem21.info Реклама на сайте