Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углерод карбида, определение в железе

    Показано, что в твердом растворе при высоких температурах, когда карбидная фаза растворена, распределение компонентов стали не вполне равномерно [9]. Вокруг атомов углерода имеются комплексы с повышенной концентрацией сильных карбидообразующих элементов. При последующем охлаждении стали или же ее выдержке при более низких температурах происходит перемещение этих комплексов к растущим центрам карбидной фазы. Таким образом, вполне логично ожидать, что уже на начальных стадиях формирования карбидная фаза в определенной степени обогащена сильными карбидообразующими элементами. Образование карбидов, обогащенных железом, несмотря на его высокую концентрацию в сплаве, представляется менее вероятным. [c.23]


    Рассмотрим, какие возможны превращения раствора углерода в жидком железе. Пока этот раствор не насыщен, он представляет собой одну фазу. При охлаждении до некоторой определенной температуры из раствора начнется выделение новых фаз. Сколько же таких фаз может выделиться Вообще говоря, при охлаждении железо и углерод могут образовать, по крайней мере, четыре новые фазы чистое твердое железо, твердый раствор углерода в железе, графит и химическое соединение углерода с железом — карбид железа (цементит). Таким образом, включая первоначально взятый раствор углерода в жидком железе, казалось бы, одновременно может присутствовать пять фаз. Однако опыт показывает, что при заданной температуре из железоуглеродистого расплава может выделиться не больше двух новых фаз, например, твердый раствор углерода в у-железе и цементит. При этом уже невозможно выделение графита и чистого твердого железа. [c.93]

    В опытах, в которых применяли метод кислотного разложения, осажденную окись железа в виде геля (вероятно, подщелоченную) предварительно обрабатывали окисью углерода при 0,1 атм и 325° в течение 24 час. Затем в этом катализаторе определяли карбидный углерод, причем определение производили как перед применением его в синтезе, так и после испытаний различной продолжительности в опытах при 235° и 15 ат. Каталитическая активность оставалась достаточно высокой, чтобы обеспечивать почти полное превращение во всех опытах. После 7 суток содержание карбидов падало примерно до 70—90% от исходного количества и после 112-дневного периода оставалось примерно таким же. За 112 суток содержание кислорода возрастало с 0,59 до 1,6 г на 100 г железа. Авторы сделали вывод, что правильно введенный в синтез катализатор достигал постоянного состава в течение первых нескольких дней и что постоянство активности отражало собой постоянство его состава. Катализаторы, становившиеся неактивными при продолжительной работе или в синтезе при высокой температуре, содержали значительно меньше карбидного углерода и больше окисла. [c.459]

    В исследованиях, выполненных за последние годы [15], установлено, что в железо-углеродистых сплавах углерод,- помимо присутствия в форме фаз (а-гвердого раствора с невысокой концентрацией дефектов, остаточного аустенита, карбидов и графита), может еще находиться в состояниях, которые не соответствуют классическому определению фазы и требуют специального обсуждения. При этом можно ожидать, что значительная, а в некоторых случаях даже большая часть углерода находится в сплавах Fe- именно в этих сосгояниях. [c.18]


    Углерод присутствует в сплавах железа в трех формах связанный в твердом растворе (феррите), в карбидах и в виде графита Определение содержания различных видов углерода в сталях и чугунах основано на их различных физических и химических свойствах и их реакциях в растворах электролитов. [c.29]

    Прямое определение Sb в сочетании с рядом других элементов производится в самых разнообразных материалах, в том числе в алюминии [54, 55, 1134, бериллии и его соединениях [305, 1297], боре [778, 11171 и фосфиде бора [26], ванадии и его окислах [234, 491, 1117], висмуте [809, 909, 1134], вольфраме и его соединениях [195, 739, 795, 1265], вольфрамовых рудах [1480], германии и его соединениях [559, 634, 905], горных породах [386, 730, 1182, 1240, 1336, 1443, 1599], графите и углероде [235, 397, 612], жаропрочных и тугоплавких сплавах [176, 177, 379, 1278, 1593], железе [425, 1134, 14411, железных рудах и минералах [198, 386, 636, 971, 1336], сталях [176, 546, 1278, 1441, 1593] и чугуне [61, 274, 546, 1250], золоте [404, 754, 909, 1095] и его сплавах [196, 389,390, 1167], индии [1168, 1308] и сплавах на его основе [814, 815, 1267], иттрии и его окислах [234, 272], алюмоиттриевом гранате [82], кадмии [598, 599, 1134] и кадмиевых сплавах [819], кобальте [60, 153, 1134], кремнии [252, 1619], кварце [154], карбиде кремния 109, 110, 288, 789, 790, 1353], кремниево-медных сплавах 594], силикатах [1586], технических стеклах [612, 1579], меди 129, 482, 964, 997, 1176, 1599, 1609, 1645, 1654], медных сплавах 96, 482, 1048, 1188, 1457,1463, 1566], окиси меди [199], продуктах медеплавильного производства [3601 и медных электролитах [1298, 1600], молибдене и его соединениях [104, 237, 308, 795, 1325, 1347, 1443], мышьяке [472, 1134], никеле и никелевых сплавах [486], ниобии и его окислах [49, 972], олове [582, 744, 782, 812, 900, 1684] и его сплавах [1210, 1494, 1495], полупроводниковых материалах [668, 678, 806, 1298, 16841, припоях [210, 1101], свинце [481, 534, 908, 1154, 1155,1193, 1543,1655], свинцовых сплавах [126, 871], рудах [53, 667, 806, 1143] и пылях [811], РЗЭ и их окислах [234, 353], селене [154, 155, 499, 747, 818, 1134], селениде ртути [715], сере [189, 1134], серебре [388, 390, 391, 909, 1598], хло- иде серебра [1362], стеклоуглероде [397], сульфидных рудах 638], тантале [237], теллуре [156, 591, 592, 1134, 1613], теллуровом баббите [1656] и теллуриде свинца [342], типографских сплавах [323], титане и двуокиси титана [288, 306, 1262], тории и его окислах [272], уране [1447], окислах урана [878, 1182, 1240] и урановых рудах [1443], ферросплавах [792, 793], фосфоритах [879], хроме [555, 729, 792] и его окислах [54, 55, 571], цинке [976] и цинковых рудах и минералах [1142], цирконии [679] и двуокиси циркония [1368], производственных растворах [205, 882, 1290, 1323, 1324, 1483], сточных и природных водах [429], азотной, серной, соляной, уксусной, фтористоводородной и бромистоводородной кислотах [111, 121, 407, 552, 574, 10081, воздушной пыли [121. [c.81]

    Рис. 4.15 показывает, что если химическая прочность карбида хрома почти не сказывается на испарении углерода, то химическая прочность карбида железа значительно влияет на испарение железа. Из этого следует, что АУс, ре уменьшается, когда хром присутствует в качестве третьего элемента. Влияние третьего элемента при определении углерода может быть существенно снижено, если интенсивность линии углерода измерять по отношению к интенсивности фона, а не к интенсивности линии железа. [c.223]

    На сходных принципах основана оценка механизма реакции карбидирования железа в диффузионной области пои использовании радиоактивного изотопа углерода С [21]. Образцы железа карбидировали до заданного содержания карбида железа неактивной окисью углерода в циркуляционной установке при атмосферном давлении. По окончании карбидирования неактивную окись углерода удаляли из системы образец дополнительно карбидировали определенным количеством радиоактивной окиси углерода. Затем полученный карбид железа подвергали [c.151]

    Количественное определение карбидного углерода в обуглероженном образце стандартного железного катализатора Института угля посредством обработки водородом при атмосферном давлении и 263° показало наличие карбида железа, содержащего 8,64% углерода. Такое содержание углерода соответствует карбиду, имеющему формулу Feg.asG [116]. [c.246]

    Углерод сарбида. Отдельное определение углерода карбида требует предварительного отделения карбида железа от металлического железа, заключающего это химическое соединение. Так как, согласно основательным исследованиям С. G. Friedri h Muller a, это соединение остается нерастворенным только в очень разбавленных холодных кислотах, а в концентрированных кислотах или при повышенной температуре частью переходит в раствор, частью разлагается с выделением углерода, то работать нужно очень осторожно. В зависимости от содержания углерода, растворяют от 1 до 3 г как можно лучше измельченного железа в колбе, устранив доступ воздуха током двуокиси углерода, водорода или светильного гйза, в сильно разбавленной серной кислоте (1 9 или 1 10, 30 мл на каждый грамм железа) при обыкновенной температуре в течение 2—3 дней, при частом встряхивании. Потом фильтруют через асбестовый фильтр, промывают до исчезновения реакции на железо холодной водой и сжигают в токе кислорода или в хромовой [смеси]. Если железо содержит также графит и углерод отжига, то последние надо определить в другой пробе разность обоих определений даст углерод карбида. [c.122]


    Бак [472] изучил возможности применения различных вариантов амперометрической и потенциометрической индикаций конечной точки при кулонометрическом титровании с использованием двух электрогенерируемых ионов трехвалентного марганца и двухвалентного железа. Дело в том, что для разного рода определений генерируют избыток Мп (или Ре +), проводят реакцию его с определяемым компонентом и затем оттитровывают остаточный Мп + электрогенерированным Ре + (или, наоборот, Мп +). В качестве материала рабочего генераторного электрода были использованы спектрально чистый углерод, карбид бора и платина. Выходы по току в процессах электрогенерирования указанной пары титрантов приведены в табл. 1. [c.55]

    Рассмотрим подробнее наиболее полно изученное мартенситное превращение в системе Fe—С, давшее название этому классу превращений. Этот процесс исключительно важен с практической точки зрения, поскольку позволяет существенно повысить твердость стали. Мартенситом называют пересыщенный твердый раствор внедрения углерода в а-железе (тетрагонально искаженная объемноцентрированная кубическая решетка), образующийся при глубокой закалке твердого раствора углерода в у-железе (аустенита см. подразд. 4.5, рис. 4.11 гранецентрированная кубическая решетка). Образование мартенсита наблюдается при охлаждении аустенита ниже некоторой температуры зависящей от содержания в аустените углерода (значение монотонно понижается от 650 °С для безуглеродного y-Fe до 100 °С для сплава с содержанием углерода 1,6 мае. %) и других легирующих элементов. Кристаллы мартенсита образуются внутри исходных кристаллов аустенита в виде тонких пластинок, расположенных относительно друг друга под углами 60° и 120°. Г. В. Курдюмовым установлено, что в кристаллах мартенсита и исходного аустенита совпадают кристаллографические направления [111] и [110], а также плоскости (ПО) и (111) соответственно. Это открытие позволило предложить сдвиговый механизм роста мартенситного кристалла. При росте мартенситного кристалла в аустенитной матрице возникают и накапливаются механические напряжения, приводящие к тому, что после достижения зернами мартенсита определенного размера их рост останавливается, а для продолжения превращения необходимо постоянное увеличение степени переохлаждения аустенита. Поскольку образование мартенсита требует существенно неравновесных условий, при его нагреве переход в аустенит происходит со значительным температурным гистерезисом или наблюдается образование термодинамически равновесной (точнее — ква-зиравновесной по отношению к выделению углерода в виде графита) смеси твердого раствора углерода в a-Fe и карбида железа Fej . [c.209]

    Еще одно важное свойство нитрида бора определяет его техническую ценность с его помощью можно обрабатывать стальные изделия при гораздо более тяжелых режимах, чем это допускает алмазный инструмент. Дело в том, что выше определенной температуры алмаз как чистый углерод начинает реагировать с железом, образуя карбид РезС. Нитрид бора стоек к взаимодействию с железом, и в этом его незаменимое качество как инструмента для обработки черных металлов. Однако имеются и значитеьные трудности в использовании этого замечательного материала. [c.148]

    По теории космического происхождения нефти углеводороды, составляющие нефть, образовались непосредственно из углерода и водорода в начальной стадии существования земного шара. Эта теория объясняет наличие значительных количеств метана в атмосферах больших планет. По мнению Д. И. Менделеева, нефть образовалась в результате действия воды на карбиды металлов (в частности, на углеродистое железо), из которых состоит ядро земного и ара. Действительно, карбиды металлов, реагируя с водой или разбавленными кислотами, образуют углеводороды, главным образом метан и ацетилен. Карбид железа и марганцовистый чугун при взаимодействии с водой дают нефтеподобную смесь жидких углеводородов. Несмотря на то, что эти факты как будто подтверждают теорию Менделеева, она в настоящее время 1ЮЧТИ совершенно оставлена. Против нее говорит содержание в нефти азотистых соединений и ее оптическая активность (стр. 154), что определенным образом указывает на органическое происхождение нефти. [c.66]

    Механизм роста углеродных волокон через образование промежуточных карбидов можно представить в следующем виде. Реагирующее углеводородное сырье при контакте с поверхностью катализатора разлагается на углерод и водород с последующим образованием небольших кристаллов карбида железа РегСз, которые образуются при эпитаксиальной кристаллизации углерода. Полученные небольшие кристаллы Ре Сз равномерно распределены по каталитически активной поверхности металла. На определенной стадии развития небольшие кристаллы РегСз уносятся углеродом с металлической подложки. Причем этот углерод образуется при каталитическом разложении углеводородного сырья и на поверхности небольших кристаллов карбида железа Ре Сз. [c.57]

    ЛЕГИРОВАНИЕ (нем. legieren — сплавлять, от лат. ligo — связываю, соединяю) — введение в металлы и сплавы легирующих материалов для получения сплавов заданного хим. состава и структуры с требуемыми физ., хим. и мех. св-вами. Применялось еще в глубокой древности, в России — с 30-х гг. 19 в. Л. осуществляют введением легирующих материалов (в виде металлов и металлоидов в свободном состоянии, в виде различных сплавов, напр, ферросплавов, или в газообразном состоянии) в шихту или в жидкий (при выплавке) сплав. Иногда добавки легирующих материалов вводят в ковш. В закристаллизовавшемся сплаве легирующие материалы распределяются в твердом растворе и др. фазах структуры, изменяя его прочность, вязкость и пластичность, повышая износостойкость, увеличивая глубину прокаливаемости и др. технологические св-ва. Л. существенно влияет па положение критических точек стали. Никель, марганец, медь и азот расширяют по температурной шкале область существования аустенита, причем при известных соотношениях содержания углерода и этих элементов аустенит существует в области т-р от комнатной и ниже до т-ры плавления. Хром, кремний, вольфра.м и др. элементы сужают эту область и при определенных концентрациях углерода и легирующего элемента расширяют область с>тцествоваиия альфа-железа (см. Железо) до т-р плавления. При некоторых концентрациях углерода и легирующего материала сталь даже после медленного охлаждения имеет структуру закалки. Легирующие материалы, не образующие карбидов (напр., никель, кремний и медь), находятся в твердых растворах, карбидообразующие материалы (хром, марганец, молибден, вольфрам и др.) частично растворяются в железе, однако в основном входят в состав карбидной фазы и при больших концентрациях сами образуют карбиды (напр.. [c.681]

    Суживая область у Железа, вольфрам уменьшает область чистого аустенита при определенных содержаниях вольфрама и углерода область аустенита вообще исчезает, и при закалке эти стали содержат овободные карбиды, а стали, содержащие вольфрам и углерод ниже пределов,. необходимых для исчезпо-ве№ия -у-фазы, после закалки принимают мартеноитную структуру с характерной для нее однородностью и высокой твердостью. [c.100]

    Выбор метода определения водорода связан с его состоянием в данном металле. В недавно проведенной нами работе [11] было установлено влияние легирующих элементов и структуры сплава на условия выделения водорода при нагреве в вакууме. Так, сплавы железа с высоким содержанием углерода, легированные гидридобразующими элементами, обладают значительным сродством к водороду, и в условиях вакуум-нагрева частично в той или иной форме удерживают водород даже при 850—900°. Это дало возможность предположить наличие в сплаве особых хилшческих соединений — гидрокарбидов. Определенное подтверждение существования гидрокарбидов можно найти в отличии свойств карбидов, выделенных из металла методом анодного растворения, и карбидов, полученных синтетическим путем. [c.8]

    В экстракционно-спектрофотометрическом анализе возможно одновременно определять в экстракте несколько элементов, если спектры поглощения комплексов не перекрываются. При накладывании полос поглощения используют аддитивность оптической плотности и определение проводят расчетным методом по значениям оптических плотностей, измеренных при различных длинах волн. При одновременном наложении трех и более полос поглощения расчеты усложняются. Мотодзима и Хасита-ни экстрагировали оксихинолинаты железа и алюминия хлороформом при pH 5,2—5,5 и фотометрировали экстракт при 470 и 390 нм, определяя соответственно железо и алюминий. Чувствительность определения в пересчете на водный раствор составила около 10" %. Аналогичный метод применен при определении алюминия и железа в карбиде кремния . Зелада экстрагировал дитизонаты меди и цинка четыреххлористым углеродом и измерял светоноглощение при 520 и 650 нм. Амано , определяя молибден и ванадий в сталях, экстрагировал эти микропримеси в виде ксантогенатов хлороформом при pH 5,4 и фотометрировал затем экстракт при 510 нм (Мо) и 375 нм [c.199]

    Из множества предложенных реагентов следует отметить лишь некоторые PbgOi используют для разложения карбида кремния 5.1942] и при определении азота в сталях и других материалах [5.1943], РЬОо—для окисления сплавов железа 5.1944], углерода и карбидов в шлаках, содержащих карбид кремния, а также углерода в карбидах 5.1945] VgOg используют при определении серы в металлах 5.1946, 5.1947], горных породах 5.1948] и иОз 5.1949]. Нитриды кремния, алюминия и других элементов, которые полностью не разлагаются по методу Кьельдаля, могут быть переведены в оксиды и элементный азот нагреванием со смесью РЬО + РЬОо + РЬСг04 (1 1 1) при 1100 "С 5.1950]. При добавлении 13% В.,Оз температура плавления смеси умень- [c.273]

    Можно предположить, что зоны образуются следующим образом. Потенциал кислорода газовой фазы сырья недостаточен для того, чтобы окислить внутреннюю поверхность печной трубы, вследствие чего окисляются хром и до некоторой степени железо, а частицы никеля лишь обогащают сталь. Так, на внуг-ренней поверхности трубы появляется губчатая окалина с металлическими частичками. Данный слой не в состоянии оказывать защитного действия стали, поэтому диффузионный процесс между газообразной и твердой фазами активно продолжается. Атомы металла диффундируют по направлению к поверхности трубы, а углерод газовой фазы проникает в металл, особенно по границам зерен, тем глубже, чем больше разрыхлена сталь, причем образуются карбиды хрома различного состава. Поскольку в таких местах содержание кислорода возрастает, карбиды избирательно окисляются и далее распадаются это также благоприятствует диффузии углерода в глубь етали, где в достаточных количествах имеются хром и железо. Итак, в определенной последовательности происходят процессы науглероживания, обезуглероживания и окалинообразования, соответствующие трем зонам, наблюдаемым по толщине металла. В стали для труб этиленовых печей промежуточная обезуглероженная зона либо отсутствует, лиОо тонким слоем располагается под коксом. [c.120]

    При определении влияния на склонность к межкристаллитной коррозии более высокого содержания хрома и никеля, с которым приходится встречаться у высоколегированных сталей, необходимо принимать во внимание общий состав стали и режим термообработки. Соотношение отдельных элементов сплава, влияние хрома и повышение содержания никеля можно оценить по данным, приведенным в гл. 4.1. Вообще никель повышает склонность к межкристаллитной коррозии. Уже относительно небольшое повышение содержания никеля в высоколегированных сталях (например, с 28 до 35% [70]) существенно ускоряет, при критических температурах, выпадение карбидов хрома типа МеззСв по границам зерен, а при температурах вплоть до 980° С — также и карбидов МввС, содержащих молибден, ниобий, железо и хром. Повышенное содержание никеля также усиливает растворение карбидов стабилизирующих элементов, которое происходит уже при обычных температурах растворяющего отжига (1040—1100° С). Оптимальная термообработка для устранения склонности к межкристаллитной коррозии сталей, высоколегированных никелем, должна проводиться выше самых высоких температур образования карбидов МевС, но как можно ниже области температур обыкновенного растворяющего отжига, т. е. между 980 и 1020° С. Стабилизация этих сталей для устранения склонности к межкристаллитной коррозии требует не только повышения степени стабилизации (см. гл. 6.2.1), но одновременно и существенного снижения содержания углерода — ниже 0,04%, а в некоторых случаях ниже 0,015% (см. гл. 4.1). [c.157]

    Из многих других примеров применения метода облучения можно упомянуть определение иридия в платине облучением нейтронами, предложенное А. А. Гринбергом и Ф. И. Флинновым [162], а также определение небольших количеств углерода в железе и стали по Ардене и Бернарду [107] путем облучения дейтеронами или, лучше, протонами из небольшого электростатического генератора в 0,8 MeV. В обоих случаях углерод превращается по реакциям A d, n)N или y)N в радиоактивный азот, излучающий позитроны с полупериодом 10 мин. Эталоном служит карбид кремния с содержанием 30% углерода. Одинаковые условия облучения пробы и эталона обеспечиваются прикреплением обоих к вращающемуся диску, на котором они экспонируются поочередно. Этим путем можно быстро определять от 0,03 до 1% углерода с точностью до сотых долей процента. [c.298]

    Известно всего несколько работ по исследованию скорости образования м гидрирования карбидов железа. Большинство этих работ обсуждено выше. Значения энергии активации при образовании карбида Хэгга в результате взаимодействия железа с окисью углерода, определенные Подгур-ским, Куммером, Де-Виттом и Эмметтом [22], изменялись от30 до35кясал моль. Гидрирование карбидов железа обычно идет значительно медленнее, чем их образование. [c.425]

    Приведенные методы определения удельных скоростей реакции применялись при описании кинетики топохимических реакций окисления железа водой [1, 2], карбидирования железа окисью углерода [5], гидрирования карбида железа [6], восстановления пятиокиси ванадия [7], разложения перхлората аммония [8], дегидратации MgSOi-YHaO [8]. Заметим, что в работе [8] экспериментально подтверждена правильность значений удельных скоростей реакции, полученных расчетным путем. [c.193]


Смотреть страницы где упоминается термин Углерод карбида, определение в железе: [c.122]    [c.487]    [c.144]    [c.65]    [c.9]    [c.40]    [c.436]    [c.436]    [c.438]    [c.317]    [c.159]    [c.161]    [c.111]    [c.93]    [c.381]   
Химико-технические методы исследования (0) -- [ c.122 ]




ПОИСК





Смотрите так же термины и статьи:

Карбиды железа

Углерод в карбиде



© 2025 chem21.info Реклама на сайте