Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кислоты, действие на материалы

    Капрон — ценный материал для изготовления машино- и приборостроительных деталей, а также для производства высокопрочного волокна. Капрон химически инертен и только сильные кислоты действуют на него. Масла и бензин его не растворяют, и поэтому он удобен в машиностроении для создания бесшумных зубчатых передач. Наряду с этим он обладает хорошими диэлектрическими свойствами. [c.488]


    Роль мышьяковой кислоты заключается в связывании сульфита, образующегося при реакции аминирования. Сульфит восстанавливает и разлагает серебряную соль, снижая выход 2-аминоантрахинона. Для приготовления мышьяковой кислоты лучше всего в качестве исходного материала брать мышьяк, окисляя его хлоратом натрия (или калия) в присутствии небольшого количества соляной кислоты, действующей как катализатор . [c.449]

    Почти во всех учебниках рассмотрение каждого класса органических соединений начинается с перечисления методов их синтеза. Это нарушает логику изложения, поскольку включает материал, с которым учащийся еще не знаком. Так, например, при обсуждении алканов в самом начале обычно приводятся такие методы их получения, как действие воды на магний- органические соединения, электролиз солей карбоновых кислот, действие металлического натрия на алкилгалогениды. Вместе с тем соответствующий материал подробно обсуждается позднее при рассмотрении свойств магнийорганических соединений, солей карбоновых кислот и галогенпроизводных. Следовательно, в этом случае читателя ориентируют не на понимание, а на, запоминание. Если же рассмотрение какого-то класса соединений производится в середине или в конце курса, то выделение методов синтеза в специальный раздел снова будет нецелесообразным. Это объясняется тем, что с большей частью материала учащийся оказывается уже ознакомленным при описании свойств тех классов соединений, которые рассматривались ранее. Так, например, когда он приступает к изучению аминов, ему уже знакомы такие методы их получения, как алкилирование аммиака алкилгалогенидами, спиртами и эпоксидами, восстано- [c.11]

    Технический галлий (99,6%) очень медленно растворяется при комнатной температуре в соляной, серной и азотной кислотах с образованием иона Оа + и в щелочах с образованием галлата. В горячих растворах щелочей он растворяется несколько быстрее, а в горячих кислотах — значительно быстрее, чем на холоду. Металл хорошо растворяется в горячей фтористоводородной, а также хлорной кислотах [1306]. По охлаждении из раствора последней осаждается перхлорат галлия, который часто используют в качестве исходного материала для получения различных соединений галлия. Разбавленные кислоты действуют на галлий значительно слабее, чем концентрированные. Это связано с образованием газовой пленки на поверхности металла если ее удалить, растворение галлия продолжается. Металлический галлий легко растворяется при нагревании со смесью 2 ч. концентрированной серной кислоты и 1 ч. 72%-ной хлорной кислоты [805] Один из лучших растворителей галлия царская водка. [c.17]


    Наиболее важными характеристиками, определяющими химические свойства материалов, используемых для изготовления канализационных труб, являются стойкость к коррозионным воздействиям и разложению при контакте с водой. Как внутренняя, так и внешняя поверхности труб должны хорошо противостоять электрохимическим и химическим воздействиям со стороны окружающего грунта и транспортируемых по ним сточных вод. На рис. 10.12 показан процесс коррозии в трубах бытовой канализации. Коррозия протекает на участке, примыкающем к верхней части трубы. Деятельность бактерий в анаэробных сточных водах приводит к выделению сероводорода это явление чаще наблюдается в районах с теплым климатом, а также когда канализационные трубопроводы проложены с малыми уклонами. Конденсирующаяся на внутренней поверхности труб влага абсорбирует сероводород, который под действием аэробных бактерий превращается в серную кислоту. Если материал трубы не отличается стойкостью к химическим воздействиям, то серная кислота в конечном итоге разрушает ее. Наиболее эффективной мерой для предотвращения коррозии является выбор труб, изготовленных из материала, хорошо сопротивляющегося коррозионным воздействиям, например, керамики или пластмассы. Трубы более крупных размеров изготовляются из железобетона в этих случаях на внутренние поверхности труб наносят защитные покрытия из каменноугольных, виниловых или эпоксидных смол. Образование сероводорода в канализационном трубопроводе можно в известной степени предотвратить посредством его укладки с максимально допустимым уклоном, а также путем вентилирования коллектора. Коррозия нижней части трубы обычно обусловлена кислотосодержащими производственными сточными водами. Наилучшим решением проблемы защиты труб в этом случае является ограничение спуска кислотосодержащих стоков в городскую канализацию. Для защиты от коррозии бетонных труб могут использоваться коррозионно-стойкие облицовочные материалы, например керамические плитки, укладываемые в нижней части труб. [c.264]

    Азотная кислота является сильным окислителем органические вещества при взаимодействии с концентрированной кислотой часто воспламеняются, сероводород, спирт и скипидар — взрываются. Будет непростительной небрежностью вытирать тряпками или ветошью разлитую азотную кислоту на полу или на столе. Надо иметь в виду, что пропитанный азотной кислотой хлопчатобумажный материал может воспламеняться. Пары азотной кислоты (точнее, окислы азота) раздражающе действуют на дыхательные пути, на коже вызывают тяжелые ожоги. Двуокись азота в опасных концентрациях обычно появляется при проведении работ, связан- [c.190]

    Стойкость некоторых пластмасс к действию серной кислоты (С —материал стоек, О — относительно стоек, Н—нестоек) [c.30]

    Из различных жидкостей на железо разрушительнее всего действуют кислоты (соляная, азотная, серная, уксусная, муравьиная, щавелевая и т. п.), вследствие чего с ними нельзя-работать в железных аппаратах, не покрытых защитным слоем стойкого к действию кислот материала. Исключение представляет крепкая серная кислота и олеум (дымящаяся серная кислота), действие которых железо выносит сравнительно хорошо. К щелочам железо устойчиво. Из растворов солей наиболее вредны для железа соли соляной кислоты (поваренная соль, хлористый кальций и т. п.). Они, хотя и медленно, но все же разъедают железо. К большинству органических жидкостей (например к спирту, эфиру, бензолу, анилину и др.) железо достаточно стойко. [c.74]

    Для учета содержания нуклеиновых кислот растительный материал фиксировался 96%-ным этиловым спиртом из расчета 5 г сырой ткани на 100 мл спирта. Пробы отбирались через 24, 48 и 72 ч после обработки. Для фиксации брались 10 растений каждого варианта по одному из каждого сосуда, развитые жизнеспособные листья, начиная со второй пары настоящих листьев, и верхняя часть стебля, начиная от третьего междоузлия. Как раз в этой части стебля были обычно наиболее сильно выражены формативные изменения под действием 2,4-Д. [c.10]

    Этот материал стоек во всех минеральных кислотах, разных концентраций при высоких температурах, за исключением плавиковой кислоты фосфорная кислота действует на него сравнительно слабо. Он стоек к органическим соединениям, в том числе к кислотам муравьиной, молочной и уксусной, к растворам солей и газам, но нестоек к горячим щелочам. [c.216]

    Лимонная кислота маскирует мешающее действие кремневой-кислоты из материала сосуда. Надо добавлять точно указанное количество лимонной кислоты. При работе с новыми колбами для сжигания в раствор переходит много кремневой кислоты в таком случае, прежде чем приступить к анализу, надо провести несколько холостых опытов. [c.193]

    Различение и разделение углеводородов нормального строения от разветвленных (углеводородов изостроения) представляет, как это еще пеодпократно будет показано в дальнейшем, значительный практический интерес. Шенард и Хенно для удаления углеводородов изос гроения предложили обрабатывать бензиновые фракции хлорсуль-фоновой кислотой при непрерывном размешивании и в течение длительного срока (несколько недель). При такой обработке им удалось выделить, нанример, и-додекан, правда, с значительной потерей исходного материала, так как хлорсульфоновая кислота действует, хотя и медленно, также и на нормальные углеводороды, и кроме того и после [c.110]


    Необычайно высокую химическую устойчивость в широком интервале температур имеет тефлон флуон) 1208—211] — политетрафторэтилен. Продукт, имеющий вид воска, поступает в продажу в форме трубок, пластинок, пленок и применим практически до 250°. Заметное изменение прочности этого материала наблюдается при 327° в вакууме при температуре выше 390° отщепляются незначительные количества фторсодержащих газов полная деполимеризация начинается, однако, только при 400—450°. При обработке тефлона раствором натрия в жидком аммиаке можно так изменить его поверхность, что она легко склеивается. Плавиковая кислота, царская водка или дымящая азотная кислота даже при кипячении не действуют на тефлон он устойчив к большинству органических реактивов. Концентрированная серная кислота действует, начиная с 300°, что сопровождается легким набуханием и увеличением веса. Расплавленный КгЗгО,, так же как и расплавленная смесь NaOH — КОН, еще при 350° не оказывает заметного влияния на прочность материала, и только нагревание с щелочным металлом или Na Oz ведет к быстрому разрушению. Фтор оказывает заметное действие уже при 150° под высоким давлением незначительное взаимодействие протекает даже при комнатной температуре. [c.49]

    При применении высокой температуры в газовой хроматографии особое значение имеет разложение исследуемого вещества оно во всех случаях должно быть исключено. Известно однако, что разложение вещества зависит не только от температуры, но и от времени пребывания его в аппаратуре и от каталитического действия материала, из которого изготовлен аппарат. Три этих фактора необходимо учитывать при конструировании аппарата. В то время, как в детекторе по теп.1гопроводности поддерживается температура, равная (и.пи несколько выше) температуре колонны, температура зоны испарения и выхода поддерживается более высокой. При исследовании соединений жирного ряда при температуре колонны и детектора (но теплопроводности) 300° С зона испарения (устройство для ввода пробы) нагревается до 400° С для триглицеридов эти температурные границы достигают 350° С и 520° С соответственно [1]. В работе [2] указывается, что при температуре зоны ввода пробы 580° С (2-диэтилгексил)-фталат был цел, в то время как (2-ди-этилгексил)-изофталат при 580° С почти бесследно разлагался, при 440° С разлагался частично, а при 330° С разложение было незаметно. При этом необходимо также принимать во внимание возможность других структурных изменений, таких, как полимеризация, изомеризация или дегидрирование, которые могут произойти с ненасыщенными жирами и жирными кислотами нри высокой температуре. [c.156]

    Первым, созданным в США заменителем натурального каучука, обладающим довольно хорошими свойствами, оказался полимер, полученный в 1931 г. группой исследователей фирмы Ои Роп1 под руководством Каротерса. Новый материал был назван неопреном и представлял собой полимер хлоропрена, или хлорированного бутадиена. Наличие атомов хлора придает полимеру большую устойчивость по отношению к маслам, кислотам, действию солнечного света и окислению, чем у натурального каучука. В результате этого для многих малотоннажных производств, например для изготовления спасательных плотов и самозаклеивающихся резервуаров для топлива, вместо натурального каучука обычно использовали неопрен. Однако для крупнотоннажного производства покрышек он был слишком дорог. [c.86]

    Травление железа [2] имеет место при производстве проката тонкого и толстого листового железа, цинковании, лужении, ковке, штамповке, эмалировании и т. д. Для удаления окисленного слоя (смесь FeO и РегО , или даже FejOi), который в зависимости от характера обработки материала называется окалиной обжига, прокатки, ковки и т. п., обычно применяются ванны с разбавленными кислотами, как например, серной, соляной, азотной, их смесями, а в отдельных случаях — с плавиковой кислотой или кислыми солями. Эти вещества оказывают, во-первых, чисто химическое действие на окалину, с образованием соответствующих солей железа и их растворением, а во-вторых, сам металл, реагируя с кислотами, выделяет водород. Этот процесс облегчает механическое отделение и отслаивание окалины, на растворение которой и расходуется нри травлении основное количество кислоты. Концентрация свежего травильного раствора бывает различной, в зависимости от вида применяемой кислоты и материала, подлежащего травлению. Чаще всего оно составляет от 5 до 20 вес. %. Количество свободной, непрореагировавшей кислоты составляет 2—7 вес. %, Травление соляной кислотой производится при более низкой температуре (максимум 30—40°), серной кислотой — при более высокой (не выше 80°). Предпочтение какой-либо кислоте делается в каждом случае отдельно, с учетом стоимости транспортных расходов, характера дальней-ншй обработки металла, состава сточных вод и их сброса, т. е. факторов, с которыми должно считаться каждое предприятие.. Для сокращения расхода кислот и предупреждения разъедания, металла издавна пользуются различными, чаще всего органическими, добавками, так называемыми присадками, из которых наиболее известна травильная присадка Фогеля (СЬеш. Fabrik Ноеск). [c.151]

    Эмаль устойчива в большинстве органических и минеральных кислот, за исключением НР, Н251Ре и Н3РО4, в слабых растворах щелочей, а также практически во всех органических средах. Одновременно она превосходно защищает среды от вредного действия материала аппаратов. Применение эмали возможно до 300—400° С, но при этом эмалируемый металл должен иметь определенный состав и обладать определенным коэффициентом расширения, в противном случае возможно растрескивание эмали. [c.32]

    Для получения [i - н а ф т и л а м и н а и некоторых его сульфокислот применяется исключительно этот метод (см. схему 12 на стр. 451). Взаимодействие -нафтола с сульфитом аммония и аммиаком проводится в автоклавах прп давлении около 15 аг и температуре выше 150°. -Нафтиламин используется главным образом в качестве исходного материала для производства 2,8-аминонафтол-6-сульфокислоты (г-кислоты) и 2,5-аминонафтол-7-сульфокислоты (И-кислоты). Так как работа с -нафтиламииом опасна вследствие его канцерогенности, сейчас разработаны методы синтеза этих важных аминонафтолсульфокислот, минуя -нафтиламин, с проведением аминирования после сульфирования -нафтола. 2-Нафтиламин-6,8-дисульфокислота, нужная для производства г-кислоты, может быть получена из 2-нафтол-6,8-дисульфокислоты (Г-кислоты) действием на нее водного аммиака и сульфита аммония при 185°. Исходный материал для И-кислоты — 2-нафтиламин-5,7-дисульфокислота — получается из 2-нафтиламин-1-сульфокислоты сульфированием ее на трисульфокислоту и гидролизом. 2-Нафтиламин-1-сульфокислота [c.446]

    Температура воды в межтрубном пространстве конденсатора I принята равной 100° С с целью снижения коррозионного действия серной кислоты на материал труб. Если материал достаточно стоек, то с целью исключить возможность переохлаждения газа и образования тумана целесообразно вести процесс в конденсаторе I при более высокой температуре. При этом несколько увеличится поверхность конденсатора, но основные показатели про-оесса не изменятся. [c.292]

    Заслуживает внимания применение кислот и оснований типа Льюиса [65]. К таким соединениям относятся пентахлорпд фосфора, трибромид фосфора, хлорид аммония, бромид аммония, фосфорный ангидрид, трихлорид фосфата, оксихлорид серы, соляная кислота. Гидратцеллюлозный материал в присутствии перечисленных соединений обрабатывается до температуры 400 °С с последующими карбонизацией и графитацией в инертной среде. Соединения можно вводить в зону пиролиза с газом-носителем или непосредственно путем испарения раствора или продуктов распада из твердого вещества. В присутствии катализаторов значительно повы-щается выход углерода, приближаясь к теоретическому (табл. 2.15). Специфическое действие кислот и оснований Льюиса состоит в том, что под их воздействием интенсивно протекает дегидратация целлюлозы и тем самым подавляются другие реакции, приводящие к уменьшению выхода углерода (см. выше). Помимо этого, они образуют защитную газовую среду, препятствующую воспламене- [c.108]

    Для изготовления кабельных защитных оболочек применяется в первую очередь свинец. В природе свинец встречается в виде сложных сернистых и окисленных руд, содержащих наряду с ним ряд других металлов цинк, серебро, мышьяк, олово, медь, сурьму и висмут. В сухом воздухе и в воде, не содержащей воздуха, свинец хорошо сохраняется. Разбавленная серная и соляная кислоты действуют на свинец весьма слабо, так как образуемые из РЬ304 и РЬС1г пленки предохраняют металл от дальнейшего растворения. Свинец, легированный медью (0,2—0,5%) или теллуром (0,07—0,1%), более стоек к воздействию кислот, чем чистый металл. Свинец устойчив к действию аммиака и аммиачных солей, хлорсодержащих растворов, нагретых масел и спиртов. В отличие от других металлов, он не реагирует химически ни в жидком, ни в твердом состоянии с водородом, не растворяет такие газы, как кислород, азот, углекислый газ. Все это делает возможным использование свинца в качестве защитных покрытий. Но он обладает двумя недостатками ползучестью и плохой вибростойкостью. У свинца и частично у его сплавов это выражается в медленной и непрерывной пластической деформации при постоянной нагрузке (особенно при повышенной температуре) при напряжениях ниже предела упругости для данного материала. Эго явление называется ползучестью. Чистый свинец не вибростюек. Повышение вибростойкости свинцовых оболочек кабелей достигается путем легирования свинца другими металлами, а это очень удорожает его стоимость. В качестве легирующих материалов применяются олово, сурьма, кадмий, теллур и др. [c.62]

    Нафтиламин-6,8-дисульфокислота, нужная для производства -кислоты, получается из 2-нафтол-6,8-дисульфокислоты (Г-кислоты) действием на нее водного аммиака и сульфита аммония при 185°. Исходный материал для И-кислоты—2-нафтиламин-5,7-дисульфокислота—получается из 2-нафтиламин-1-сульфокислоты сульфированием ее на трисульфокислоту и гидролизом. 2-Нафтиламин-1-сульфокислота (кислота Тобиаса), находящая также значительное применение в производстве лаковых азокрасителей, получается из 2-нафтол-1-сульфокислоты действием раствора аммиака и сульфита аммония при 150°- . [c.407]

    В табл. 67 приведены некоторые результаты, лолученные в опытах с перекисью бензоила в качестве источника свободных радикалов. В автоклаве с мешалкой (изготовленном из соответствующего материала) к 100 г 18,5%-ной соляной кислоты добавляют 0,5 г перекиси бензоила и действуют этиленом при начальном давлении 200 ат. После нагрева до 100° давление этилена поддерживают на уровне около 500 ат. Спустя примерно 11 час. образовавшиеся хлористые алкилы обрабатывают эфиром. При этом остается нерастворенной часть продуктов реакции, состоящая из хлоридов высокомолекулярных алкилов, содержащих 40—50 углеродных атомов в молекуле. [c.196]

    Этот пластик производится в больших количествах и поступает в продажу под названием ТРХ. Плотность его 0,83 г/см , ниже чем у всех известных термопластов, температура плавления 240 °С. Изготовленные из этого материала прессованные детали сохраняют стабильность формы прп температуре до 200 °С. Кроме того, пластик ТРХ прозрачен. Светопроницаемость достигает 90%, т. е. несколько меньше, чем у плексигласа (у полиметилметакрилата 92%). Недостатком является деструкция под действием света. Поэтому нестаби-лизировапный ТРХ пригоден только для применения в закрытых помещениях. Этот материал стоек ко многим химическим средам, сильные кислоты и щелочи не разрушают его, однако он растворяется в некоторых органических растворителях, например в бензоле, четыреххлористом углероде и петролейном эфире. Ударная прочность нового термопласта такая же, как у высокоударопрочного полистирола. Диэлектрические свойства тоже хорошие (диэлектрическая ироницаемость 2,12). [c.236]

    Н пкель. Он обладает хорошими литейными свойствами, легко куется и штампуется. Его сваривают никелевыми электродами в атмос(1)ере инертного газа. Аппаратуру из никеля применяют для процессов щелочного плавления, при переработке органических кислот, а также в тех случаях, когда требуется высокая чистота продукта или недопустимо применение кислотостойких сталей пследствпе нх действия как катализатора, ускоряющего ход нежелательных реакций. Никель — очень дефицитный металл, и для химической аппаратуры как самостоятельный конструкционный материал он применяется редко. [c.21]

    Тантал издавна применяется при производстве электрических лампочек кроме того, в настоящее время его начали применять при изготовлении химической аппаратуры в качестве материала, весьма устойчивого в отношении коррозии. Это—единственный металл, устойчивый к действию соляной кислоты. Тантал обычно встречается вместе с ниобием, который получил применение в атомных реакторах. Благодаря растущей потребности интерес к обоим металлам непрерывно увеличивается. В последние годы разработаны промышленные методы разделения, основанные на фракционированной экстракции по ним получают оба металла высокой степени чистоты. Эти методы гораздо производительнее, чем классический кристаллизационный метод Мариньяка [494] или другой промышленный метод [493] осаждения фторотанталата калия и фторониоби-ата калия из разбавленной фтористоводородной кислоты. По экстракционным методам оба металла переводятся в окисные или хлористые соединения, растворяются во фтористоводородной, соляной или серной кислоте и экстрагируются одним органическим растворителем или смесью из нескольких. [c.449]


Смотреть страницы где упоминается термин Кислоты, действие на материалы: [c.89]    [c.525]    [c.164]    [c.446]    [c.221]    [c.328]    [c.328]    [c.114]    [c.139]    [c.458]    [c.486]    [c.517]    [c.345]   
Ректификация в органической химической промышленности (1938) -- [ c.8 , c.89 , c.96 ]




ПОИСК





Смотрите так же термины и статьи:

Кислоты действие



© 2024 chem21.info Реклама на сайте