Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Органические жидкости, действие

    Некоторые органические жидкости образуют с водой частично растворимые системы, характеризующиеся двумя критическими температурами растворения—верхней и нижней—и кривые растворения та- о ких систем представляют замкнутые, неправильной формы кольца (фиг. 5). Однако нали-чие двух критических темпе- ратур растворения не может оказать принципиального воз- I действия на характер проведе-ния процессов перегонки и конденсации в этих системах. [c.15]


    Коэффициент распределения зависит от химического строения растворенного вещества и обоих растворителей (первоначального и вторичного) и является результатом действия тех же межмолекулярных сил, которые влияют на растворимость. Растворимость в одной жидкости и распределение растворенного вещества между двумя несмешивающимися жидкостями могут совершенно различаться по своему характеру. В системах вода—органическая жидкость— растворенное вещество замечено влияние разных групп, содержащихся в молекуле растворенного вещества, на коэффициент распределения (отношение концентрации в органической фазе к концентрации в воде). Эти группы по своему характеру могут быть гидрофильные, облегчающие растворимость в воде, и гидрофобные, способствующие растворимости в органической жидкости. К числу первых относятся группы ОН, 1 Нд, СООН, ко вторым—группы со связью С—Н, продолжающие углеродную цепь. Эти явления качественно [c.24]

    Большое применение имеют цеолиты. Их используют в качестве селективных адсорбентов при глубокой осушке и очистке газов (в том числе природного газа) и различных органических жидкостей, для разделения газовых смесей (углеводороды и др.). Эффективность использования цеолитов обусловлена избирательностью их действия и легкостью регенерации (нагреванием). Цеолиты применяют и в качестве ионообменных веществ, в частности, в водоочистке. [c.378]

    Свойства фаолита. Фаолит — кислотостойкая пластическая масса. Он стоек к действию фосфорной, соляной, серной и даже плавиковой кислот, органических кислот, многих органических жидкостей (бензол, формалин, дихлорэтан), минеральных масел. Свойства фаолита в большой степени зависят от вида асбеста. Так, антофиллитовый асбест придает ему высокую кислотостойкость, низкую адсорбционную способность и малую механическую [c.64]

    Электролитическое действие выражается в разложении крови и других органических жидкостей. [c.150]

    Чтобы выяснить, какая из двух-жидкостей является дисперсной фазой эмульсии, чаще всего применяют кондуктометрический метод. Известно, что удельная электрическая проводимость воды и ее растворов значительно больше (в Ю раз) удельной электрической проводимости нерастворимых в ней органических жидкостей. Электрическая проводимость дисперсной системы по значению близка к электрической проводимости дисперсионной среды. Поэтому, если электрическая проводимость эмульсии достаточно высока, это означает, что присутствует эмульсия типа М/В, а в случае низкой электрической проводимости — В/М. Для установления типа эмульсий используют также метод флуоресценции. Эмульсии В/М под действием ультрафиолетового излучения приобретают видимую в темной камере окраску это отличает их от эмульсий М/В, которые обычно не флуоресцируют. [c.344]


    Полиэтилен при комнатной температуре устойчив к воздействию большинства минеральных кислот, оснований и растворов солей, а также ко многим органическим жидкостям, но набухает в углеводородах, а при 60—70°С растворяется в них. При 20°С полиэтилен нестоек к ацетону, бензину, керосину, сероуглероду, нефти, трихлорэтилену, концентрированному раствору йода, хлору. С повышением температуры среды химическая стойкость полиэтилена снижается. В большинстве случаев химическая стойкость полиэтилена является наивысшей для средних концентраций среды и меньшей для низких и высоких концентраций. Полиэтилен горит под воз-действием открытого пламени [c.202]

    Действие на ПЭВД органических жидкостей в значительной степени зависит от температуры. При комнатной температуре ПЭВД в течение длительного времени не растворяется в большом числе органических растворителей. Происходит диффузия и постепенное набухание. Имеется большой экспериментальный материал по этол вопросу. В приложении V приводятся данные по действию на ПЭВД как органических соединений, так и неорганических веществ при комнатной и при повышенной температуре. Эти данные позволяют судить как о характере, так и об интенсивности воздействия и влиянии на это воздействие повышенной температуры. Степень набухания ПЭВД в различных органических жидкостях различна и увеличивается с повышением температуры. При температуре приблизительно 60 °С ПЭВД растворим в ряде растворителей, в первую очередь в галогенуглеводородах, производных алифатических и ароматических углеводородов. Действие ПАВ на ПЭВД используется для испытания полимера на стойкость к растрескиванию под напряжением. На стойкость к растрескиванию влияют молекулярно-массовые характеристики полимера. Так, с увеличением молекулярной массы, а также с сужением ММР стойкость ПЭВД к растрескиванию падает. Присутствие низкомолекулярных фракций, наоборот, способствует росту этого показателя. [c.163]

    Дисперсии металлов получают путем распыления под водой или в органической жидкости в вольтовой дуге (Бредиг), или в высокочастотном разряде (Сведберг), хотя в этом случае большое значение имеет конденсация паров металлов. Эмульсии получают путем диспергирования действием ультразвука. При этом всегда образуются различные окисленные продукты, стабилизирующие суспензии. [c.20]

    В связи с этим определяли селективность действия некоторых органических жидкостей, которые могли быть использованы в качестве жидкой фазы ири разделении углеводородов различных классов. [c.19]

    Удаление соли из водного золя при низких значениях pH можно осуществить разбавлением золя способной смешиваться с водой органической жидкостью, например диметилформами-дом или этиленкарбонатом, которая осаждает соль. Затем смесь дистиллируется под вакуумом для получения безводного органозоля. В случае сложных карбонатных эфиров необходимые для этерификации гидроксильные группы получаются, вероятно, в результате гидролиза [455]. Для достижения стабилизации системы не требуется полная этерификация поверхности частиц, если дисперсионной средой является вещество, образующее прочные водородные связи. Золи, у которых под действием способного смешиваться с водой спирта этерифици-ровано немного менее половины поверхности частиц, оказываются устойчивыми в избытке спирта [456]. [c.570]

    Термометры расширения. Принцип действия этих приборов основан на изменении объема жидкости или линейных размеров твердых тел при изменении температуры. Эти термометры применяют для местных измерений температур в пределах от —30 до +500 °С, если они заполнены ртутью. В случае заполнения термометров органическими жидкостями (спирт, толуол) они могут быть использованы для измерения низких температур до — 100 С. [c.313]

    Найдено, что при одинаковой пористости проницаемость каолинита по отношению к воде и органическим жидкостям значительно меньше его проницаемости по отношению к азоту. Кроме того, установлено, что при одинаковой пористости проницаемость каолинита заметно понижается с увеличением полярности фильтруемой жидкости. Это объясняется большей степенью диспергирования частиц каолинита в суспензиях под действием жидкостей с большой полярностью. Отмечено, что непосредственное влияние поверхностных явлений, обусловливающих возникновение электро-кинетического потенциала, на проницаемость каолинита по отношению к органическим жидкостям и азоту оказалось незначительным. Однако обнаружено, что величина электрокинетического потенциала оказывает небольшое влияние на проницаемость каолинита по отношению к воде и водным растворам электролитов. Указывается, что проницаемость уже полученного слоя каолинита может быть уменьшена при фильтровании через него жидкости с повышенной диспергирующей способностью, что приводит к пептизации частиц каолинита. [c.171]


    Попытки ослабить вредное действие кислорода воздуха с помощью защиты зеркала припоя слоем флюсующей органической жидкости влекут за собой больше -е—— J отрицательных, чем положитель- [c.42]

    Многие реакции в органической химии проводятся при отсутствии влаги, в таких случаях следует высушивать исходные вещества, применять абсолютированные растворители и предохранять реакционную среду от попадания влаги из воздуха. Осушитель должен быстро действовать, не растворяться в органических жидкостях, не взаимодействовать с высушиваемым веществом. [c.42]

    Характерно, что при выдерживании геля в контакте с органической жидкостью воспроизводится пористая структура силикагеля, полученного обработкой свежего исходного гидрогеля I (отмытого от солей) 0,01-н. раствором кислоты. Аналогичным образом действуют органические растворители при старении в них геля, не отмытого от солей (гидрогель II). В табл. это проиллюстрировано на примере ацетона и диоксана. Старение гидрогеля II в данных средах приводит к образованию однородно тонкопористых силикагелей (рис. 18). Заметим, что образцы такой структуры обычно получаются при воздействии минеральной кислоты на свежеосажденный гель в нейтральной или близкой к нейтральной среде [46, 135, 137). [c.59]

    Гере (475) исследовал более 100 органических жидкостей, стре- мясь найти такую, которая хорошо растворяла бы ароматические углеводороды и не растворяла бы вовсе жирные. Хуже всего жирные углеводороды растворяются в пировиноградной кислоте. Этиловый эфир винной кислоты действует вроде диметилсульфата, ацетоуксус-ный эфир но свойствам близок к анилину, а этиловый эфир ш,аве-левой кислоты напоминает в отношении избирательной растворимости уксусный ангидрид. Наиболее удобными растворителями оказались левулиновая кислота, фенилгидразин, неполный уксусный эфир этиленгликоля и фурфурол. Левулиновая кислота берется в кол1гчестве 3—4 объемов по отношению к бензину и удобна тем, что легко растворяется в воде, что делает возможным с одной стороны выделение извлеченных углеводородов, с другой — регенерацию ее. [c.170]

    Оба эти металла применяются в атомных реакторах. Цирконий отличается высоким сопротивлением коррозии и действию нейтронов и не подвергается изменениям во время облучения. Поэтому цирконий применяется для защиты топлива в атомных реакторах и накладывается в виде рубашки на пруты металлического урана, которые вводятся внутрь реактора. Совершенно противоположные свойства у гафния, который хороига абсорбирует нейтроны и поэтому является хорошим замедлителем. Так как оба металла, как правило, в природе встречаются вместе, то их приходится разделять. При этом возникают затруднения, связанные с большим сходством этих металлов по свойствам. Разделение их обычными химическими методами практически невозможно. Промышленное решение этого вопроса основывается на физических процессах, главным образом на экстракции органическими жидкостями из водных солянокислых или азотнокислых растворов [468, 471, 485]. [c.445]

    Ре, Со, N1 и их соединения широко используют в качестве катализаторов. Губчатое железо с добавками—катализатор синтеза аммиака. Высокодисперсный никель (никель Ренея)—очень активный катализатор гидрирования органических соединений, в частности жиров. Никель Ренея готовят, действуя раствором щелочи на интерметаллид Ы1А1, при этом алюминий образует растворимый алюминат, а никель остается в виде мельчайших частиц. Этот катализатор хранят под слоем органической жидкости, в сухом состоянии он мгновенно окисляется кислородом воздуха. Со и Мп входят в состав катализатора, добавляемого к масляным краскам для ускорения их высыхания . [c.569]

    Таким образом, можно сделать вывод о том, что наилучшим аппаратом для очистки газа от механических примесей и жидкости является сепаратор с фильтровальным и коагулируюЕДИми элементами. К фильтровальным элементам предъявляются следующие требования самоочищаемость доступность при замене и чистке УСТОЙЧИВОСТЬ к действию органических жидкостей и воды (особенно к на буханию и разрушению) конструктивная прочность и оснастка, позволяющие сохранять форму при длительной эксплуатации сравнительно малое гидравлическое сопротивление слабая смачиваемость поверхности компоновка, позволяющая крупным примесям (песок, буровой раствор, большие объемы жидкости), поступающим в сепаратор, отделиться от газа раньше, чем газ достигнет фильтра. [c.95]

    Представления, подобные рассмотренным, распространяются и на лгтексные системы при этом следует отметить ограниченность конкретных данных о сольватации латексных частиц. Обнаружив резкое падение вязкости дивинилстирольных латексов при введении электролита и основываясь на представлениях о желатинировании лиофильных дисперсных систем в результате соприкосновения и перекрытия поверхностных слоев, Фрайлинг прищел к выводу о существовании на латексных частицах полимолекулярных гидратных оболочек, обладающих повышенной вязкостью и уменьшающих свою толщину под действием электролита. Значения / о, вычисленные из данных по размерам частиц и объемной доли полимера, колеблются в пределах 7,5—26,5 нм. Аналогичные расчеты для частиц суспензий политрифторхлорэтилсна в различных органических жидкостях показали, что в этих случаях превышает 15,0 нм. [c.11]

Рис. 7. Силы, действующие на границе раздела фаз металл (J)—водный (la TBop электролита (2)—органическая жидкость (/). Рис. 7. Силы, действующие на <a href="/info/68165">границе раздела</a> фаз металл (J)—водный (la TBop электролита (2)—органическая жидкость (/).
    В практике раЬоты коксохимических заводов увеличение плотности угольной загрузки, подготовленной обычными способами (без применения механических способов уплотнения), достигается за счет добавления микродобавок поверхностноактивных органических жидкостей керосина, солярового масла, антраценового масла и т.д. В этих случаях снижение поверхностного натяжения водных прослоек между зернами угля способствует их сближению. Применение добавок керосина в количестве 0,1-0,3% к шихте (весовых) может повышать плотность шихты на 3—7%, причем < фективность действия микродобавок повышается по мере >неличения полидисперсности шихты, увеличения по каким-либо причинам содержания классов крупности 0,5—0 мм. [c.77]

    При действии на карбонилы Эг (СО) ю галоидов образуются к а р б о н и л г а л и д ы ГЭ(СО)б (где Г — С1, Вг, I). Они представляют собой довольно устойчивые бесцветные или желтоватые кристаллические вещества, нерастворимые в воде. Их летучесть и растворимость в органических жидкостях возрастают по ряду С1 —Вг —1. Для ВгМп(СО)б и 1Мп(СО)5 были найдены большие значения дипольных моментов — 3,19 и 3,25 (в бензоле). При нагревании галогениды ГЭ(СО)5 отщепляют часть СО и переходят в димерные галокарбонилы (ГЭ(С0)4]г. структура которых отвечает, по-видимому, двум октаэдрам с общим ребром из атомов галоида. В ряду С1—Вг — I такой переход облегчается. Образующиеся бесцветные или желтые вещества плохо растворимы в органических жидкостях. [c.516]

    Подобно карбонилам Сг, Мо и W, твердый при обычных условиях зеленый У(СО)б имеет структуру правильного октаэдра с атомом ванадия в центре. Для энергии связи V—СО дается значение 28 ккал/моль. Вещество это на воздухе самовоспламеняется, в вакууме около 50 °С возгоняется, а в атмосфере N2 при 70 °С разлагается. Очень сильное охлаждение вызывает, по-видимому, его димеризацию с образованием V2( O)i2. Растворы У(СО)б в органических жидкостях имеют желто-оранжевый цвет и очень неустойчивы. При действии на них иода количественно протекает реакция по схеме 2V( 0)e-f ЗЬ = 2VI3 + 12С0. С другой стороны, V( O)e легко восстанавливается до аниона [У(СО)б], для которого известны, в частности, желтые соли типа М[У(СО)б], где М = Na, К, NH4. Подкислением их может быть, по-видимому, получен нестойкий гидрокарбонил НУ(СО)б. Установлено, что он обладает отчетливо выраженными кислотными свойствами. [c.517]

    Для покрытия частиц минеральных удобрений защитными гидрофобными пленками применяют жидкие парафины, масла, нефть и многие другие органические жидкости. Гранулы удобрений покрывают также тонкими пленками синтетических смол, например карба-мидоформальдегидной смолой, которая является медленно действующим удобрением. Все эти покрытия предохраняют гранулы от увлажнения или высыхания и препятствуют контакту кристаллов, приводящему к их сцеплению. [c.283]

    Пены и пенообразованне имеют важное практическое значение. Действие мыла и других моющих средств при удалении загрязнений с любой поверхности связано с пенообразованием. Очень важная область использования пен — тушение пожаров. Противопожарная пена обычно содержит в виде дисперсной фазы диоксид углерода, такая пена имеет невысокую плотность, что позволяет применять ее для тушения горящих органических жидкостей. При тушении она покрывает поверхность и препятствует доступ к ней воздуха, [c.229]

    КР высокопрочных алюминиевых сплавов в нефти известно до некоторой степени, однако только недавно скорость роста коррозионной трещины была изучена количественно как функция К в вершине трещины при испытаниях в органических жидкостях [44, 83, 93]. Одним из первых были опубликованы результаты, показанные на рис. 71, где скорость роста трещины сплава 7075-Т651 з этаноле нанесена как функция коэффициента интенсивности напряжений в вершине трещины при плоской деформации. Линейная связь между скоростью трещины и К была показана для сплава 7075-Т651 в этаноле и четыреххлористом углероде. По пересечению кривой с осью абсцисс был установлен уровень Д 1кр, равный 7,7—9,9 МПа-м " для этанола и 11 —13,2 МПа-м / для четыреххлористого углерода [83]. Предполагается, что в этом случае распространение трещины происходит не в результате действия следов воды в органических растворителях [83, 93]. Следует отметить, что эти данные были получены на трещинах ориентации ДГ) и что пути распространения трещины имели смешанный характер — транс- и межкристаллитный [83]. [c.217]

    Нитрование — введение нитрогруппы — NO2 в молекулы органических соединений действием азотной кислоты, оксида азота (IV) и других нитрующих агентов. Нитроглицерин (глицеринтринитрат) — сложный эфир глицерина и азотной кислоты, Тяжелая маслянистая жидкость, нерастворимая в воде, ядовитая, взрывается при нагревании и сотрясении. Применяют в производстве взрывчатых веществ (динамита). В медицине 1-процентный спиртовой раствор применяют как сосудо- [c.90]

    Процесс экстракции растворителями основан на селективной или избирательной растворяющей способности некоторых органических жидкостей по отношению к различным типам углеводородов, содержащихся в масляном сырье. Эти растворители предпочтительно извлекают углеводороды ароматического тииа, в меньшей стеиени нафтеновые углеводороды и не растворяют пли мало растворяют парафиновые углеводороды. Таким образом, экстракция растворителями позволяет фракционировать сырые смазоч-1Гыо масла по типу или структуре. Эффективность действия избирательных растворителей зависит от характера используемого 1>астворителя, соотношения его и масла, температуры экстракции и конструкции оборудования, а также от состава исходного масла, т. е. от соотношения в нем ароматических, нафтеновых и парафиновых углеводородов и среднего размера молекул. В целом дистилляты высокоароматического или асфальтового типа, а также имеющие высокую вязкость остаточные фракции, могут подвергаться селективной очистке при высоком соотношении растворителя к маслу и относительно высоких температурах..  [c.130]

    Кремнийорганические жидкости, как правило, не растворимы в воде и в низкомолекулярных алифатических спиртах, но хорошо растворяются во многих ароматических и хлорированных углеводородах. Эти жидкости не подвержены действию разбавленных кислот и ш елочей и вступают во взаимодействие лишь с концентрированными ш елочами и кислотами. Они горят значительно менее энергично, чем углеводородные масла и большинство органических жидкостей продуктами их полного сгорания являются двуокись углерода, водяные пары и двуокись кремния (в виде очень тонкого порошка). [c.353]

    Весьма перспективно для химической технологии теплообмен ное устройство, называемое теплопроводом. Оно пред ставляет собой полностью закрытую металлическую трубу с лю быми профилями сечения, футерованную каким-либо пористо капиллярным материалом (фитилем), например, шерстяной тканью, стекловолокном, сетками, пористыми металлами, полимерами, керамикой и т. п. В полость трубы подается теплоноситель в количестве, достаточном для полной пропитки фитиля. Температура кипения теплоносителя должна обеспечивать отвод тепла (путем испарения) из охлаждаемого рабочего пространства химического реактора или другого аппарата интервал зон температуры — от какой угодно низкой до 2000 °С. В качестве теплоносителя используют металлы (Сз, К, На, Ы, РЬ, А и др.), высоко кипящие органические жидкости, расплавы солей, воду, аммиак, жидкий азот и др.). Предпочтительны жидкости с высокой скрытой теплотой испарения, большим поверхностным натяжением, низкими плотностью и вязкостью. Трубка одной своей частью располагается в зоне отвода тепла, а остальной частью — в зоне конденсации паров. Пары теплоносителя, образовавшиеся в первой зоне, конденсируются во второй зоне, а конденсат возвращается в первую зону под действием капиллярных сил фитиля. Благодаря большому количеству центров парообразования резко падает перегрев жидкости при ее кипении и значительно возрастает коэффициент теплоотдачи при испарении (в 5—10 раз). Особенностью теплопровода является очень высокая эффективная теплопроводность вдоль потока пара (на 3—4 порядка больше, чем у серебра, меди и алю.миния), что обусловлено низким температурным градиентом вдоль трубы. Мощность теплопровода определяется капиллярным давлением, компенсирующим потери напора парового и жидкостного потоков. [c.336]

    К. с. б.— стабильное нейтральное инертное вещество, нерастворимое в органических жидкостях. При добавлении его к 95%-ному спирту происходит заметное повышение температуры. Как осушитель воздуха драйерит занимает промежуточное положение между пятнокнсью фосфора и конц. серной кислотой и уступает только первой. Сравнение с другими осушителями жидкостей показывает, что сульфаты магния и натрия действуют медленно и меиее эффективны, чем К. с. б. [c.114]

    Подготовка растворов. Водные растворы (гальванические ванны, электролиты, физиологические растворы и т. д.), а также органические жидкости (например, нефть) анализируют непосредственно, помещая их в кюветы. Таким же способом могут анализироваться и другие виды материалов после их растворения в кислотах или после сплавления и последующего растворения. Применяемые кюветы изготавливают из коррозионо-стойкой стали или подходящей пластмассы. Если предусматривается облучение образца снизу, то дно кюветы изготавливают из тонкой органической пленки (майлар, милинекс, поликарбонат и др.) Под действием рентгеновского излучения пленки разрушаются, и их нужно систематически менять. [c.37]


Смотреть страницы где упоминается термин Органические жидкости, действие: [c.95]    [c.116]    [c.69]    [c.387]    [c.433]    [c.384]    [c.541]    [c.427]    [c.236]    [c.218]    [c.380]    [c.190]    [c.449]    [c.257]    [c.114]   
Ректификация в органической химической промышленности (1938) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Жидкости органические



© 2025 chem21.info Реклама на сайте