Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растворители стеклообразные

    Полимеризация фосфорорганических соединений, содержащих винильную группу, довольно подробно изучалась в последние годы. Было установлено, что, подобно аллиловым эфирам, виниловые эфиры кислот фосфора, имеющие две или три винильные группы, полимеризуются с образованием неплавких и нерастворимых в органических растворителях стеклообразных полимеров, а эфиры, имеющие одну винильную группу, полимеризуются с трудом или вообще не полимеризуются [1, 22]. Моновиниловые эфиры кислот фосфора можно сополимеризовать с различными мономерами. В монографии Гефтера приведено много примеров получения сополимеров виниловых эфиров кислот фосфора с различными мономерами. Большинство описанных сополимеров имеет небольшую теплостойкость, обычно ниже 100° С, и не отличается высокими механическими показателями. Основная ценность этих сополимеров состоит в том, что многие из них негорючи или мало горючи [1]. [c.149]


    Введение растворителя в полимер влияет на его свойства, в известном отношении, подобно повышению температуры. Полимер, находившийся первоначально в стеклообразном состоянии, переходит при введении растворителя постепенно в высокоэластичное состояние (набухший полимер), а затем в вязко-текучее состояние (раствор). [c.600]

    При конденсации этиленгликоля с фталевым ангидридом при 150° происходит постепенное образование сиропообразной массы, которая затем превращается в светлый стеклообразный продукт (т. пл. 60—80°), хорошо растворимый в органических растворителях. При реакции сперва образуется моноэфир гликоля [c.489]

    К термопластичным относятся полимеры, которые с повышением температуры становятся пластичными, а с ее понижением вновь переходят в стеклообразное состояние, причем такие изменения могут повторяться неоднократно. Это имеет место в линейных полимерах, так как В них связи между цепями не являются прочными. В таком случае усиление теплового движения при соответствующем повышении температуры оказывается достаточным, чтобы разорвать эти связи, делая цепи способными перемещаться одна относительно другой. Термопластичные смолы растворимы в соответствующих растворителях. Изделия из таких материалов могут формоваться методами пласти- [c.223]

    В отличие от органических, неорганические иониты могут быть не только аморфными, но и кристаллическими, а также стеклообразными. Способность сорбировать растворитель для [c.670]

    Свойства высокомолекулярных соединений изменяются в широких пределах и зависят от состава и строения элементарных звеньев, размеров и формы макромолекул, интенсивности межмолекулярных связей, условий получения, температуры испытания и от других факторов. В зависимости от назначения синтетические высокомолекулярные соединения можно получать с высокоэластическими свойствами или в твердом стеклообразном состоянии. Некоторые высокомолекулярные соединения растворимы в различных растворителях и дают ценнейшие для промышленности растворы в [c.437]

    КОСТИ различаются на один десятичный порядок. Для растворов полимеров, находящихся при температуре опыта в стеклообразном состоянии, наблюдаются значительно большие различия вязкости, достигающие при некоторых концентрациях трех десятичных порядков. Это было показано для растворов полистирола и ацетата целлюлозы в разных растворителях. При повышении телшературы кривые концентрационной зависи.мости вязкости сближаются и при температуре выше температуры стеклования или плавления самого полимера вязкости их растворов различаются практически только вязкостью самих растворителей. [c.423]


    Получается твердый бесцветный прозрачный стеклообразный продукт. Определяют его растворимость в ацетоне, спирто-бензольной смеси и других органических растворителях температуру каплепадения по Уббелоде (70—80° С). При нагревании до 220°С он быстро превращается сначала в резиноподобный, а затем в твердый неплавкий и нерастворимый Продукт. Определяют выход и используют для получения лакового покрытия на металле (см. работу 35). [c.94]

    На примере стеклообразного полистирола было показано что, начиная с молекулярных весов 10-10 —20-10 , происходит постепенное разрыхление структуры полистирола, о чем можно судить по изменению теплот растворения полимера в растворителе. Можно было ожидать, что более рыхло построенные (с более высоким молекулярным весом) застеклованные по-листиролы окажутся и более газопроницаемыми. Однако прямые измерения газопроницаемости полистиролов различной молекулярной массы не подтвердили этого предположения Такие довольно рыхло построенные полимеры, как гидрат целлюлозы 5 , имеющие жесткие цепные молекулы, тем не менее характеризуются исключительно малой проницаемостью. Следовательно, одна рыхлость упаковки еще не определяет собой величины газопроницаемости. [c.126]

    Изделия из такого поликарбоната, полученные охлаждением расплава или быстрым испарением растворителя из раствора, не являются полностью аморфными. Поликарбонат при этом находится в стеклообразном состоянии, в котором наряду с ближним порядком появляются упорядоченные области дальнего порядка. [c.103]

    Для получения спектров фосфоресценции применяют органические растворители, кристаллизующиеся при низких температурах. Эти растворители должны отвечать следующим требованиям быть химически инертными не поглощать возбуждающий свет и свет фосфоресценции быть хорошими растворителями для проб быть устойчивыми к воздействию мощных световых потоков. Чаще всего в качестве растворителей используют смеси этиловый спирт - диметилформамид в соотношениях от 2 1 до 4 1 этиловый спирт - изопентан - диэтиловый эфир в соотношении 1 2 2 или 2 5 5. Указанные растворители кристаллизуются в стеклообразную массу при температуре кипения жидкого азота 77 К. Перед применением из растворителей удаляют водяные пары и воздух. Это позволяет юба-виться от кислорода, являющегося сильным тушителем фосфоресценции. Кроме того, в результате указанной процедуры растворители кристаллизуются в однородную массу, лишенную трещин и не обладающую заметным светорассеянием. [c.516]

    Необходимо учесть следующее обстоятельство. Образование клеевого слоя из растворов полимеров представляет собой процесс однофазного преобразования си стемы полимер — растворитель, при котором изменяется только физическое состояние системы, т. е. происходит переход из вязкотекучего состояния в высокоэластическое, а затем в стеклообразное. [c.341]

    НИЮ без кристаллизации (например, глицерин). Область высокоэластического состояния у низкомолекулярных веществ обычно мала, часто практически незаметна. У чистых аморфных.полимеров все три состояния — вязкотекучее (выше точки Г/), высокоэластическое (между точками Tf и Tg) и стеклообразное (ниже точки Tg) — обычно легко реализуются и имеют хотя и несколько размытые, но вполне отчетливые границы. Гомогенные смеси (истинные растворы) полимера с растворителем также могут находиться во всех трех состояниях. Обычно как температура текучести Tf, так и температура стеклования Tg представляют собой непрерывные функции состава гомогенной системы полимер—растворитель. На диаграмме состав—температура можно различить три области а — вязко-текучие растворы (выше Tf), Ь — высокоэластичные растворы (между Tf и Tg), с — стекло- [c.29]

    Тогда на диаграмме (рис. 10) можно отметить область 1 существования термодинамически устойчивых, истинных растворов полимера в растворителе (жидких — 1а), высокоэластичных Ь), стеклообразных (7с) область 2 метастабильных гомогенных растворов (жидких — 2а), высокоэластичных (2Ь), стеклообразных (2с). Область 3 также областью метастабильных растворов За — жидких ЗЬ коэластичных Зс — стеклообразных), но если в области 2 система разделяется на аморфные фазы — разбавленный и концентрированный растворы полимера, то в области <5 она должна разделяться на кристаллический растворитель и стеклообразный полимер. Наконец, в метастабильной области 4 растворы могут либо сразу переходить в стабильную систему кристаллический растворитель + стеклообразный полимер, как в области 3, либо вначале разделяться на аморфные растворы полимера (разбавленный и концентрированный), как в области 2. [c.29]

    Наши измерения показали также, что отношение и гекс/ Нг при одной и той же температуре, концентрации бензола и в одном и том же растворителе зависит от структуры растворителя (стеклообразная или мелкокристаллическая). Наличие кристаллической структуры растворителя приводит к уменьшению гекс, а в растворе СвНв в циклогексане гекс при всех температурах вообще оказалась равной нулю. Эти явления, возможно, связаны с тем, что для протекания реакции с образованием гексатриена требуется некоторое определенное взаимное расположение молекул СбНе и НН. В стекло- [c.250]


    Соотношение атомов титана и кремния может быть изменено в широких пределах в зависимости от соотношения исходных реагентов. Полиорганотитаносилоксаны стеклообразны, растворимы в спирте и ацетоне, образуют твердые пленки после удаления растворителя. Стекловидные аморфные растворимые полимеры образуются и при совместной поликонденсации силандиолов с диалкилгидроксиолсвом  [c.493]

    КАНИФОЛЬ — твердая, хрупкая, стеклообразная прозрачная смола свет-ло-желтого (иногда темно-красного) цвета, составная часть смолообразных веществ хвойных растений, остающаяся после отгонки из них скипидара. К. нерастворима в воде, растворяется в органических растворителях, состоит из смоляных кислот и группы не омыляющихся веществ. К- применяют для проклеива-ния бумаги, для изготовления мыла, лаков, сургуча, линолеума, мазей, замазок, пластырей, масел, пластмасс, фунгицидов, изоляционных материалов, при пайке и лужении металлов и др. Широко применяются соли смоляных кислот, изготовляемых из К. (абиетиновая, лево-пимаровая и др.) канифольное мыло (натриевая или калиевая соль) применяют в мыловаренной промышленности, для изготовления клеев, в производстве каучуков, для проклеивания бумаги и др. [c.118]

    Хотя первые наблюдения фосфоресценции ограничивались стеклообразными матрицами, вскоре было доказано, что фосфоресценция может наблюдаться и в других фазах. Излучение паров диацетила — хорошо известный пример газофазной фосфоресценции. Жидкие растворы частиц, являющихся фосфоре-сцентными в низкотемпературных стеклах, также хорошо излучают при повышении температуры, пока безызлучательные переходы с 7[ на So не начинают преобладать. Существенно, конечно, чтобы растворитель не приводил к дезактивации триплетов, поэтому все тушащие примеси должны быть обязательно исключены. Остаточные примеси могут как ослаблять интенсивность излучения, так и уменьшать время жизни люминесценции. Для изучения фосфоресценции при комнатных температурах удобными растворителями являются перфтор-алканы. [c.99]

    Скорость запрещенных по спину переходов может быть существенно изменена под влиянием внешнего окружения. Такое воздействие можно наблюдать при добавлении парамагнитных молекул в растворитель. Хотя О2 и N0 уменьшают выход фосфоресценции вследствие своего участия в эффективном бимолекулярном тушении, они вызывают одновременно рост скоростей оптического перехода и IS . Поглощение при переходе T l- -So также возрастает по интенсивности в тех случаях, когда присутствуют парамагнитные соединения. Например, поглощение при переходе Ti- -So в бензоле ( 310—350 нм) практически исчезает, когда удаляются последние следы кислорода. Наиболее драматическую картину поглощения 7- -S представляют растворы пирена, которые в обычном состоянии бесцветны, но приобретают насыщенный красный цвет в присутствии кислорода при высоком давлении. Тяжелые атомы в своем окружении способствуют также росту вероятности излучательных и безызлучательных переходов путем индуцирования заметного спин-орбитального взаимодействия в растворе. Так, растворы антрацена и некоторых его производных начинают слабее флуоресцировать при добавлении бромбензола, тогда как интенсивность триплет-триплетного поглощения возрастает в результате усиления IS Si T i. Как мы отмечали ранее, эти процессы наиболее значительны для переходов, включающих возбужденные состояния (л, л ). Спин-орбитальное взаимодействие всегда пренебрежимо мало в симметричных ароматических соединениях, и именно здесь изменение скоростей переходов под воздействием окружения наиболее заметно. В то же время сильное спин-орбитальное взаимодействие всегда существует в состояниях (п, л ), и в этом случае воздействие внешнего возмущения более слабое. Эти эффекты наблюдаются как в твердых, так и в жидких растворах. Например, фосфоресцент-ное время жизни в бензоле, растворенном в стеклообразной матрице при 4,2 К, уменьшается от 16 с в СН4 или Дг до 1 с в Кг и до 0,07 с в Хе отношение <рр/ф1 возрастает, и все процессы IS Si T i, T,- So+hv и Ti So протекают быстрее в растворителе с большей атомной массой. [c.107]

    Активный силикагель представляет собой твердую зернистую стеклообразную массу, пл. 2,0—2,5 г/см . Силикагель, полученный из чистых про- дуктов, бесцветный и прозрачный. При продолжительном хранеиви переходит в кристаллическую форму и в значительной мере теряет адсорбционную способность. Силикагель является хорошим адсорбентом для летучих органических растворителей и водяных паров. Влажный воздух, пропущенный через трубку с силикагелем, содержит только 0,03 мг/л Н О силикагель более энергичный осушитель, чем например, NaOH или a l2. [c.173]

    Экзотермическое растворение стеклообразного полимера в соб-ственном гидрированном мономере с одновременным резким уменьшением энтропии растворителя в области высоких значений 012 свидегсльсгвует о неплотной упаковке пепей. Эндотермическое рас- [c.374]

    Для типичных реакций, лимитируемых диффузиен, в обычных органических растворителях ири 25" С величины к, как правило, равны 10 —10 °, а энергии активации составляют от 2 до 3 ккал/моль. Скорости реакций, протекающих с энергией активации выше 10 ккал/моль, обычно не зависят от вязкости до тех пор, иока система не достигнет стеклообразного состояния. В табл. 67 приведены константы с1соростей типичных реакций (определены в предположении равенства с1[ и 1о). Более детально см. [41] (данные табл. 67 взяты из этой монографии) и [42]. [c.160]

    Камфара — бесцветное кристаллическое вещество с характерным запахом, нерастворима в воде, не растворяется в органических растворителях. Получают из растений — камфарного лавра, камфарного базилика и некоторых видов полыни. Синтетически получают из скипидара. К. применяют как лекарственное вещество. Канифоль — твердая хрупкая стеклообразная прозрачная смола светло-желтого цвета, составная часть смолистых веществ хвойных деревьев остается после отгонки из смолистых веществ скипидара. Нерастворима в воде, растворяется в органических растворителях. Применяют для проклейки бумаги, при приготовлении мыла, лаков, сургуча, линолеума, замазок, мазей, пластырей, смазочных масел, пластмасс, фу 1Гицидов, при паянии. [c.62]

    Активный силикагель — твердая, бесцветная, прозрачная, зернистая стеклообразная масса. Является хорошим адсорбентом для летучих растворителей и водяных паров. Более энергичный сущитель, чем СаСЬ и NaOH. При длительном хранении переходит в кристаллическую форму и в значительной мере теряет свою адсорбционную способность. Применяют в эксикаторах, в хлоркальциевых трубках и газохроматографических колонках. [c.94]

    Т при температуре стеклования наблюдается излом, разделяющий прямую на две характерные части, имеющие разный наклон для высокоэластической и стеклообразной областей полимера. На рис. 26 приведена температурная зависимость коэффициентов диффузии в полистироле паров некоторых органических жидкостей Температуры, соответствующие точкам пересечения прямых на рис. 2, отвечают температуре стеклования полистирола, определенной по изменению механических свойств и дилатометрическим методом. Аналогичная закономерность была подтверждена большим количеством данных, полученных при исследовании систем полимер — растворитель. Однако в более позднем исследовании газопроницаемости пленок непластифици-рованного поливинилхлорида было отмечено 2, что излом зависимости Ig О—1/7 наблюдается только в случае достаточно больших молекул, например молекул Аг и Кг для газов с малыми молекулами (Не, Ne, N2, Н2, О2) авторы не обнарул<или дакаких аномалий при переходе через Тс- В ряде случаев зависимости Ig О—1/Г в области температур, близких к Тс, имеют несколько линейных участков с отдельными точками [c.118]

    Расчеты, проведенные Рыскинымдля большого числа систем полимер — растворитель, показали, что истинная энергия активации значительно меньше, чем экспериментально определенная Еже, и близка к теплоте растворения органических соединений (6— 12 ккал/моль). Величина а зависит в основном от природы полимера, причем значение а резко увеличивается при переходе полимера из стеклообразного состояния в высокоэластическое. Рассматривая а как коэффициент температурной зависимости энергии активации, т. е. [c.121]

    Заметим еще, что в то время как для гибкоцепных полимеров переход клубок — глобула наблюдался несколько раз, для полужестких макромолекул его не наблюдали даже в идеальных условиях приготовления сухих глобул для наблюдения в электронном микроскопе [21]. В этом случае полимер растворяют в смеси растворителя с более высококипящим осадите-лем и потом распыляют на подложку, с которой затем снимают реплику. По мере улетучивания растворителя клубки переходят в сухое компактное состояние, т, е. истинные глобулы, по размерам которых, зная сухую плотность, легко определить не только М, но и ММР. Причем в тех случаях, когда глобулы на самом деле получались, другие методы давали те же значения М и тот же характер ММР. Этим методом пользовались на протяжении последних десятилетий, но он не стал стандартным из-за ряда неудобств громоздкости, длительности экспериментов, необходимости счета частиц на микрографиях (для определения ММР), наконец, именно из-за того, что существует реальный предел жесткости, выше которого метод перестает работать — а подчеркнем, что условием корректности метода является полная глобулизация, т. е. совпадение плотности глобул и сухого стеклообразного полимера. [c.125]

    При рассмотрении этого выражения следует иметь в виду, что Р может принимать большие отрицательные значения пз-за усадки полимера, что сильно облегчает рост зародышей пор. Для этого чтобы субмикросконический зародыш мог вырасти до макроскопических размеров, давление газа в поре или (PR — Р) должно быть не менее 5/2(3 [28, 35]. Из приведенного выражения следует, что критическое давление роста пор в высокоэластическом и особенно в стеклообразном состоянии весьма велико. Однако в некоторых случаях возможно образованпе пор и вспенивание компаундов по этому механизму, например, когда компаунд холодного отверждения содержит заметное количество растворителя или же в компаундах любых типов увеличивается концентрация низкокипящих продуктов (например, при радиолизе или в результате сорбции). При быстром нагревании таких материалов до 7 > Тс, когда модуль сдвига сильно уменьшается, а равновесное давление Р сильно возрастает, возможно интенсивное порообразование. При этом происходит быстрое распухание материала. Кроме того, повышение давления в порах приводит к снижению механической прочности компаунда и нарушению адгезии к залитым конструкциям. [c.170]

    Адсорбция полимеров на границе раздела фаз с твердым телом играет важную роль в усиливающем действии наполнителей, адгезии, склеивании и т. п. Адсорбционное взаимодействие является одним из важнейших факторов, определяющих свойства наполненных и армированных полимеров, свойства клеевых прослоек, адгезию полимеров и др. Рассмотренные в предыдущих главах основные закономерности адсорбционных процессов показывают, что при адсорбции полимера на твердой поверхности происходят изменения конформации макромолекул, которые определяют структуру адсорбционных слоев и ее отличия от структуры полимера в растворе или в массе. Совершенно очевидно, что многие особенности структуры адсорбционных слоев, получаемых при адсорбции полимеров на твердой поверхности из жидкой фазы, должны сохраняться и в таких системах, в которых адсорбционное взаимодействие полимера с твердой поверхностью реализуется в отсутствие растворителя, т. е. во всех практически важных системах (армированных и наполненных пластиках, покрытиях, клеях и т. п.). Для понимания свойств систем и нахождения путей их регулирования крайне важно знать структуру адсорбционных слоев в таких гетерогенных полимерных материалах. Между тем адсорбционные методы, позволяя выявить ряд существенных черт взаимодействия полимеров с твердыми поверхностями и поведения полимеров на границе раздела, не могут дать полных сведений о структуре граничных слоев в полимерных материалах. Это связано с тем, что адсорбционные взаимодействия в растворе не идентичны таковым в отсутствие растворителя. Последнее обстоятельство обусловлено отличием конформаций макромолекулярных цепей в растворе от конформаций в высокоэластическом, стеклообразном или кристаллпческо.м и вязкотекучем состояниях. [c.153]

    Чистый низкомолекулярный растворитель выше температуры Ту. представляет собой вязкую жидкость, ниже — устойчивую твердую кристаллическую фазу. Но нужно учесть, что многие органические жидкости способны к значительному переохлаждению. Если отсутствуют фазовые превращения, то при охлаждении ниже температуры текучести такие жидкости могут перейти в высокоэластическое, а при охлаждении ниже точки стеклования — в стеклообразное состояние. У низкомолекулярных жидкостей точки Tf и Tg обычно лежат значительно ниже точки кристаллизации поэтому высокоэластическое и стеклообразное состояния могут быть реализованы лишь у веществ, с трудом кристаллизующихся и способных к значительному переохлажде- [c.28]


Смотреть страницы где упоминается термин Растворители стеклообразные: [c.66]    [c.445]    [c.360]    [c.375]    [c.418]    [c.445]    [c.293]    [c.32]    [c.164]    [c.42]    [c.375]    [c.375]    [c.418]    [c.164]    [c.149]    [c.15]   
Фото-люминесценция растворов (1972) -- [ c.54 , c.274 , c.370 , c.440 ]




ПОИСК







© 2025 chem21.info Реклама на сайте