Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вязкость кремния

Рис. И. Зависимость температуры за- Рис. 12. Изменение вязкости кремний-стывания кремнийорганических жидко- органических соединений в зависи-стей от содержания фенильных групп. мости от температуры. Рис. И. <a href="/info/12832">Зависимость температуры</a> за- Рис. 12. <a href="/info/72446">Изменение вязкости</a> кремний-стывания <a href="/info/529260">кремнийорганических жидко</a>- <a href="/info/428">органических соединений</a> в зависи-стей от содержания <a href="/info/133183">фенильных групп</a>. мости от температуры.

    Выделение а-фазы сопровождается большими объемными изменениями в структуре стали и вызывает значительные внутренние напряжения. Это является причиной исключительно высокой хрупкости стали, содержащей большие количества а-фазы. Такая сталь имеет пониженные пластичность и ударную вязкость. Поэтому горячая обработка давлением стали с высоким содержанием кремния затруднительна. Следует отметить, что дополнительный перегрев стали типа 25—20 до температуры растворения а-фазы позволяет устранить хрупкость металла. При высоких температурах жаропрочность стали 25—20 с кремнием такая же, как и стали аналогичного состава без кремния. [c.30]

    Установлено, что суспензия окиси кремния в КМЦ и мела в ГЭЦ характеризуется постоянными величинами обоих упомянутых параметров во времени и почти одинаковыми значениями вязкости чистого раствора полимера и фильтрата. Найдено, что суспензия мела в КМЦ и окиси алюминия в КМЦ отличаются изменяющимися во времени свойствами осадка, причем вязкости чистого раствора полимера и фильтрата различаются на 25—40%. [c.56]

    Определение содержания нерастворимых осадков по ГОСТ 20684 - 75 и воды Определение продуктов износа и кремния в масле для выявления технического состояния узлов строительных машин Измерение вязкости по ГОСТ 33 — 82, температуры вспышки ТСМ по ГОСТ 4333 - 87 и содержания воды по ГОСТ 2477 - 65 Поддержание постоянной температуры при определении вязкости масла [c.180]

    Как известно, термическая деструкция полисилоксанов начинается при 250—300°С и интенсивно протекает при 350°С. При термической деструкции полисилоксанов происходит в основном разрыв связей 81—О с образованием низкомолекулярных циклических продуктов [ 192], вызывающих снижение вязкости и увеличение летучести полисилоксанов. Этому способствует спиралевидное строение полисилоксанов (3—б атомов кремния в витке спирали), создающее благоприятные условия для образования циклов. [c.160]

    Необходимо указать, что, как и в ферритных сталях, наличие таких элементов, как углерод, азот, кислород, кремний, и включений фосфора и серы отрицательно сказывается на ударной вязкости аустенитных сталей [139]. Стали с наименьшим содержанием углерода обладают наибольшей вязкостью при низких температурах. [c.137]

    Рассчитайте размер частиц диоксида кремния, если известно, что время нх оседания на расстояние 1 см составляет а) 30 с б) 60 мин в) 100 ч. Плотность дисперсной фазы и дисперсионной среды составляет соответственно 2,7 и 1,1 г/см , вязкость дисперсионной среды 1,5-10-" Па-с. [c.107]


    Рассчитайте массовую концентрацию гидрозоля диоксида кремния, если известно, что его вязкость на 10 % больше вязкости дисперсионной среды. Частицы 5102 имеют сферическую форму, плотность их равна 2,7 г/см , плотность дисперсионной среды 1 г/см . [c.207]

    Рассчитайте толщину гидратных оболочек частиц золя диоксида кремния, если экспериментальными методами установлено, что вязкость 15 /о-ного (масс.) золя составляет 1,3-10 Па-с, а диаметр частиц равен 16 ЕЕМ. Плотности частиц дисперсной фазы золя и дисперсионной среды соответственно 2,7 и 1 г/см . Вязкость дисперсионной среды [c.207]

    Сопоставьте графически теоретические значения вязкости гидрозолей диоксида кремния, рассчитанные по уравнению Эйнштейна, с экспериментально найденными значениями  [c.207]

    При небольшой степени конденсации (если молекулы содержат около десяти атомов кремния) получаются жидкости, применяемые в качестве смазочных масел. К их ценным свойствам относится незначительное изменение вязкости в широком интервале температур и химическая стойкость. По сравнению с обычными смазочными материалами, представляющими собой смеси предельных углеводородов, они значительно более стойки к действию высоких температур. [c.611]

    Высокомолекулярные соединения, в которых перемещение макромолекул крайне затруднено, характеризуются значениями вязкости в 100 Па-с и выше. Такие вещества практически теряют текучесть и воспринимаются как твердые тела по агрегатному состоянию. Иногда их называют аморфными твердыми тела-м и, подчеркивая этим их отличие от истинно твердых тел — кристаллических. Однако не следует забывать, что по фазовому состоянию они являются жидкими и потому, хотя и неощутимо, могут течь. Так, например, старинные оконные стекла, являющиеся неорганическим полимером диоксида кремния, за много лет становятся несколько толще внизу. Подобное состояние высокомолекулярных соединений в химии полимеров называется стеклообразным или застеклованным. Макромолекулы полимера в застеклованном состоянии связаны друг с другом густой сеткой поперечных межмолекулярных связей, что препятствует их правильной упаковке с образованием кристаллической структуры. [c.87]

    Силоксаны относят к классу кремний органических соединений основу молекул которых составляет цепь чередующихся атомов крем ния и кислорода. Они обладают слабой зависимостью вязкости от тем пературы, высокой термостойкостью, низкой температурой замерзания высокими диэлектрическими и гидрофобными свойствами. Эти жидкоС  [c.213]

    Стекло представляет собой типичный пример так называемого аморфного состояния вещества, которое в отличие от кристаллического характеризуется двумя признаками изотропностью свойств и отсутствием температуры плавления. Аморфные тела встречаются обычно в виде двух форм компактной и дисперсной. Представителем компактной формы является стеклообразное состояние, в дисперсной форме находятся сажа, аморфный бор, аморфный кремний и т. п. Для аморфного состояния характерно наличие только ближнего порядка в расположении структурных единиц. Дальний порядок, свойственный кристаллам, отсутствует. Компактное аморфное состояние представляет собой сильно переохлажденную жидкость и отличается от последней только отсутствием лабильного обмена местами между отдельными структурными ассоциатами, что обусловлено высокой вязкостью. В дисперсном аморфном состоянии, представляющем собой тонкий порошок, состоящий из агрегатов, не имеющих упорядоченного строения, химическое взаимодействие между отдельными частицами полностью [c.306]

    С летучим четырехфтористым кремнием теряется фтор, а получающийся NaF изменяет состав расплава в неблагоприятную сторону. При большом количестве ЗЮг возможно образование алюмосиликата натрия, увеличивающего вязкость электролита, вызывая расстройство работы ванн. Сходно с кремнеземом ведет себя двуокись титана, частично тоже восстанавливаясь до титана и частично образуя фторид, также летучий. [c.273]

    Вязкость жидкой стали зависит от содержащихся в ней добавок. Хром, молибден, ванадий, алюминий повышают вязкость стали, а углерод, кремний, марганец, фосфор снижают ее. [c.56]

    Полисилоксаны, в зависимости от характера и числа радикалов, связанных с атомом кремния, а также от соотношения в полимере углеродных атомов и атомов кремния, могут иметь различные физические свойства. Полисилоксаны с высоким содержанием углерода представляют собой вязкие жидкости или высокоэластичные материалы. С уменьшением количества углерода повышается вязкость, снижается растворимость полимера и он становится хрупким и стекловидным. [c.406]

    Некоторые алюминиевые сплавы находят очень широкое применение. Одним из таких сплавов, обладающих большей прочностью и вязкостью, чем чистый алюминий, является дюралюминий, или дюраль,— сплав, содержащий около 94,3% алюминия, 4% меди, 0,5% марганца, 0,5% магния и 0,7% кремния. Он, однако, менее коррозионноустойчив, и его часто защищают покрытием из чистого алюминия. Листы, прокатанные из дюраля и с обеих сторон плакированные чистым алюминием, носят название альклад. [c.527]


    Аустенитные стали имеют, как правило, однофазную микроструктуру. Основными исключениями являются присутствие б-феррита (при наличии в достаточном количестве стабилизирующих его элементов, таких как хром, кремний или титан) и образование (в некоторых сталях) индуцированного деформацией мартенсита. Мартенсит может быть представлен или о, ц. к. а -фазой, или г. п. у. 8-фазой, или обеими фазами вместе в зависимости от стали. Согласно некоторым данным присутствие б-фазы повышает стойкость против КР [66, 91, 96], хотя этот вывод мог быть более однозначным, если бы одновременно были исследованы и стали без феррита [66, 91]. При испытаниях в водороде, где основным эффектом является уменьшение параметра относительного сужения, наличие 6-феррита влияет на морфологию разрушения растрескивание происходит по границам аустенита и б-фазы [97]. В сталях 3041 и 3095 такое изменение морфологии разрушения не сопровождалось дополнительным уменьшением относительного сужения по сравнению со сплавом без феррита [72, 97, 98]. Можно предположить, что б-феррит способен оказывать влияние на распространение трещины либо как менее растрескивающаяся фаза, либо как фаза, в которой затруднен процесс электрохимического заострения вершины трещины (этот процесс будет более подробно рассмотрен в дальнейшем) [60, 64]. Поскольку при испытаниях в водороде этот процесс не происходит, в этих условиях (потери вязкости) роль б-феррита должна быть другой. [c.75]

    Очень важное значение имеет исследование вязкости кремний- органических соедййеиий. Наибольшее внимание было уделено ис- следованию вязкости полисилоксанов. Было установлено [233], что вязкость зависит не только от величины молекулярного веса полимера, но также и от чистоты исходных мономеров и методов гидролиза. При пропускании воздуха через полимер при температуре 200—300° наблюдается увеличение его вязкости. При окислении алкил Полисилоксанов образуются продукты окисления алкильных групп. Так, при окислении этилполисилоксанов наблюдается выде-, ление ацетальдегида [278]. Вязкость при этом увеличивается. [c.141]

    Исследования вязкости были проведены в интервале от соответствующих температур плавления до 1580° С. Полученные результаты представлены в табл. 4 и на рис. 28 в сопоставлении с данными работы [88]. Как видно из рис. 27, политерма вязкости кремния отличается от полученной в работе [88]. Добавка 10% 2г слабо влияет на вязкость кремния во всем интервале температур, сплав с 25% 2г имеет заметно большую вязкость, чем чистый кремний. [c.56]

    Добавки тантала и ниобия, видимо, увеличивают вязкость кремния вследствие появления комплексов МвхЪ Ху и карбидов тантала и ниобия, что в конечном итоге увеличивает и энергию активации вязкого течения. Полученные величины энергии активации близки к энергии активации вязкого течения указанных расплавов. Это позволяет считать, что процесс пропитки лимитируется вязким течением жидкости в порах графита.  [c.119]

    Присутствие в сплаве примесей патрия — вызывает горячелом-кость калия — понижает механическую прочность алюминий увеличивает твердость марганец — механические свойства и коррозионную стойкость кадмий — вязкость кремний — устойчивость при повышенных температурах. [c.202]

    Разработанные и внедренные в ряде стран процессы гидрирования масляных дистиллятов и деасфальтизатов дают возможность в одном каталитическом процессе достичь результатов, получаемых сочетанием глубокой селективной очистки и гидроочистки. Процесс обычно осуществляют под давлением 15— 30 МПа, при температуре 340—420°С, скорости подачи сырья 0,5—1,5 ч и объемном отнощении водородсодержащего газа к сырью 500— 1500. В качестве катализаторов можно применять катализаторы гидроочистки или более активные — сульфидновольфрамовый, ни-кельвольфрамовый на окисноалюминиевом носителе (алюмони-кельвольфрамовый) и др. Для повышения активности применяют промотирующие добавки, придающие катализатору кислотные свойства, — двуокись кремния, галоиды. Введение такой добавки способствует более интенсивному гидрированию азотсодержащих соединений и конденсированных ароматических углеводородов. Благодаря применению высокого давления и активных катализаторов реакции гидрирования протекают весьма глубоко — практически все компоненты, удаляемые при селективной очистке в виде экстракта, превращаются в целевые продукты. Гидрированием под высоким давлением в промышленном масштабе производят базовые высококачественные масла различного назначения индустриальные, турбинные, моторные, гидравлические, веретенные. В зависимости от вида сырья выход масел с одинаковым индексом вязкости при гидрировании равен или несколько выше, чем при селективной очистке. Вырабатываемые масла по эксплуатационным свойствам превосходят масла селективной очистки, особенно по стабильности и, следовательно, по сроку службы. [c.308]

    Фосфорная кислота в качестве катализатора полимеризации используется в двух разновидностях. Твердая фосфорная кислота готовится пропиткой порошка кизельгура ( инфузорная земля , аморфная ЗЮг) раствором Н3РО4 с после ющим формованием таблеток и их прокаливанием при 300—400 °С. Фосфорная кислота связывает порошок кизельгура, и таблетки имеют достаточную прочность, но при увлажнении вследствие снижения вязкости кислоты их механическая прочность резко снижается. Приблизительный состав катализатора Р205 5102 2Н20. Фосфорная кислота частично химически связана с двуокисью кремния, а частично физически адсорбирована. Катализатор жидкая фосфорная кислота [c.194]

    Физические свойства полисилоксанов зависят от характера и количества радикалов, связанных с атомом кремния, а также от соотношения в полимере углеродных атомов и атомов кремпия. Полимеры с высоким содержанием углерода представляют собой вязкие жидкости или высоксэластичные материалы. По мере уменьшения количества углерода нарастает вязкость и снижается растворимость полимера и он переходит в хрупкое стекловидное состояние. С увеличением размера боковых ответвлений (органических радикалов) в полимере начинают преобладать свойства, характерные для полиуглеводородов возрастает растворимость полимера в неполярных растворителях и его эластичность, но уменьшается механическая прочность, снижается температура размягчения и ухудшается термическая устойчивость. Высшие полиалкилснлоксаны обладают меньшей кислородоустойчивостью по сравнению с низшими. С заменой алкильных радикалов арильными увеличивается межмолекулярное взаимодействие, что выражается в повышении термической устойчивости и кислородо-устойчивости полимеров и возрастании жесткости. [c.485]

    СИЛОКСАНЫ — высокомолекулярные соединения, содержащие чередующиеся атомы кремния и кислорода, кроме этого, атомы кремния связаны с органическими радикалами, водородом, галогенами и т. п. Низшие линейные алкилсилокса-ны — бесцветные прозрачные жидкости различной вязкости, нерастворимые в воде. Высокомолекулярные диметилполи-силоксаны — очень вязкие жидкости, которые могут быть вулканизированы органическими пероксидами в резиноподобные эластомеры. Циклические диалкил-силоксаны — твердые кристаллические продукты. С. применяют в качестве полупроводников для получения силоксан-каучуков, масел и др. После вулканизации силоксан-каучуков нз них изготов- [c.227]

    Условия стеклообразования характеризуются кривой давления пара над переохлажденной жидкостью (см. рис. 126, кривая ЬЬ ). Однако даже глубокое переохлаждение жидкости не всегда приводит к образованию стекла. Возможность стеклообразования при затвердевании жидкости определяется характером химической связи и особенностями структуры жидкой и твердой фаз. Жидкости, обладающие преимущественно металлической связью (расплавы металлов, германия, кремния), или жидкости с ионной природой (расплавы солей) не склонны к стеклообразованию вследствие ненаправленности и ненасыщенностн этих типов связи. Поэтому возникновение дальнего порядка при затвердевании происходит достаточно легко и быстро. Затвердевание жидкостей, в которых преобладает ковалентная связь, приводит к образованию твердой фазы с сохранением того же типа связи. Процессы упорядочения при образовании кристаллов с ковалентной связью из-за направленности и насыщаемости ее затруднены и протекают сравнительно медленно. В условиях достаточного переохлаждения при возрастании вязкости жидкости образование упорядоченной (кристаллической) фазы не происходит. Это и приводит к возникновению стекол. [c.306]

    Процессы солеобразования, характерные для диоксида кремния, осуществляются путем замыкания тетраэдров [SiOi] через ионы металлов, что сопровождается поляризацией связей. Расстояния в цепях при этом возрастают, что приводит к более легкой диссоциации соединений на ионы при высоких температурах. Упрощение структуры жидкой фазы сопровождается снижением вязкости. Структура некоторых силикатов представлена на рис. 194. [c.433]

    Важную роль в процессе выплавки стали имеет степень ее раскисления, от которой зависит качество стали. По степени раскисления сталь делится на спокойную, полуспокойную и кипящую. В спокойной стали кремния содержится 0,12—0,35 %, в кипящей стали лишь следы (равно или менее 0,05 %), а в полу-спокойной стали кремния содержится менее 0,17%. Для уменьшения содержания в стали серы и неметаллических включений, оказывающих вредное влияние на свойства стали, применяют обработку жидкой стали редкоземельными металлами, а также бором, при этом содержание серы уменьшается в 2—5 раз, повышаются пластические свойства, в 1,5—2 раза растет ударная вязкость, смещается критическая температура хладОломкости в область более низких температур. [c.24]

    Абразивные материалы. Корунд — единственная встречающаяся в природе наиболее устойчивая кристаллическая модификация глинозема (оксид алюминия, А12О3) —в настоящее время редко используется в качестве промышленного абразивного материала. В промышлеиностн применяют преимущественно искусственный корунд. Основным сырьем для получения такого корунда служит высокосортный боксит (гидроксид алюминия), более чистый, чем тот, который применяют для получения алюминия. Искусственный корунд получают следующим образом. Сначала во вращающихся печах из боксита удаляют воду при температуре около 1100°С, а затем иолучают спеченный корунд, сплавляя кальцинированный глинозем при 2000 °С с коксом (чтобы восстановить оксиды железа), железом (чтобы удалить диоксид кремния) и диоксидом титана (добавка для придания ударной вязкости) в электропечи. Далее материал охлаждают, причем скорость охлангдения определяет степень кристалличности получаемого материала. После охлаждения крупные куски корунда (2—3 т) дробят и измельчают в абразивный порошок. Имеются различные виды спеченного корунда, которые отличаются друг от друга по составу, механическим свойствам п ударной вязкости нормальный, с высоки.м содержанием диоксида титана, мелкокристаллический и белый . Свойства некоторых абразивных материалов приведены ниже  [c.228]

    Карбид кремния (карборунд), нолучаюн1,нйся ирп взаимодействии кварцевого песка с коксом в электропечи при температуре около 2000 С, обладает большей твердостью, по не такой высокой ударной вязкостью, как оксид алюминия. На основе карборунда выпускают материалы двух типов, которые различаются чистотой [c.228]

    Применение никеля при легировании стали увеличивает ее вязкость и понижает критическую температуру хладноломкости [53, 55]. Высокая хладостойкость малоуглеродистых никелевых сталей позволяет широко использовать их в условиях низких температур. Известно [56], что в стали с 8— 9%-ным содержанием никеля даже при температуре испытания— 196°С излом ударных образцов остается (на 70— 80%) волокнистым. Однако влияние никеля на механические свойства стали неоднозначно избыточное легирование сталп никелем может снизить запас вязкости [55]. Смягчающее действие никеля зависит от содержания в стали углерода, марганца, бора, кремния и вольфрама [51]. В ферритных и малоуглеродистых сталях никель повышает запас вязкости тем сильнее, чем больше его содержание и чем меньше в стали углерода. С повышением количества углерода и общей легированности стали благоприятное влияние никеля умень- [c.40]

    В результате этих исследований появились четыре новых сплава, обладающих прекрасным сочетанием прочности, вязкости разрушения и стойкости к КР, превосходящих в этом отношении широко применяемый сплав 7075 [2, 131, 149]. Использование специальных способов обработки и снижение уровня посторонних примесей в составе 7075 привели к созданию сплава 7175, а в результате повышения содержания цинка при снижении концентраций хрома, железа и кремния появился сплав 7049. Промежуточное положение по содержанию цинка между сплавами 7049 и 7075 занимает сплав 7050, в котором также понижено содержание железа и кремния, но увеличена концентрация меди, а хром заменен цирконием. Низкое содержание железа и кремния и замещение хрома цирконием характеризует также и новый сплав МА52, который пока еще не относится к стандартным [149]. При использовании в штамповках все эти сплавы превосходят сплав 7075 [149], особенно в отношении вязкости разрушения (см. табл. 6). Наиболее низкая чувствительность к закалке наблюдается у сплавов 7050 и МА52, но сплав МА52 несколько менее стоек к КР, чем другие сплавы из этой группы, тогда как 7050 слегка превосходит остальные в этом отношении [149]. [c.87]


Смотреть страницы где упоминается термин Вязкость кремния: [c.519]    [c.62]    [c.196]    [c.147]    [c.17]    [c.606]    [c.193]    [c.202]    [c.328]    [c.14]    [c.212]    [c.75]    [c.254]    [c.254]    [c.266]    [c.279]   
Неорганические хлориды (1980) -- [ c.180 , c.181 ]




ПОИСК





Смотрите так же термины и статьи:

Вязкость четыреххлористого кремния



© 2025 chem21.info Реклама на сайте