Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пропан как растворитель углеводородо

    Природа и состав растворителя. В процессах депарафинизации, осуществляемых при охлаждении и кристаллизации твердых углеводородов из растворов в избирательных растворителях, основную роль играет растворимость в них углеводородов с высокой температурой плавления. Выделение этих углеводородов из растворов в неполярных и полярных растворителях носит разный характер. В неполярных растворителях — нафте и сжиженном пропане— твердые углеводороды при температуре плавления растворяются неограниченно, причем растворимость их уменьшается с повышением плотности углеводородного растворителя. Поэтому из растворов в жидких углеводородах рафината твердые компоненты выделяются при более высоких температурах. Высокая растворимость твердых углеводородов в неполярных растворителях требует глубокого охлаждения для наиболее полной их кристаллизации и получения масла с низкой температурой застывания. Этим объясняется высокий ТЭД (15—25 °С) при депарафинизации в растворе нафты и сжиженного пропана, что делает этот процесс неэкономичным из-за. больших затрат на охлаждение раствора. [c.169]


    Широкое распространение получил Д.-п., основанный на применении двух растворителей — пропана и крезола. Пропан — растворитель желательных компонентов (парафиновых и нафтеновых углеводородов), крезол — растворитель нежелательных компонентов (асфальто-смолистых, сернистых и др.). Крезол для улучшения его избирательных свойств применяется обычно в смеси с фенолом (от 17 до 35%). Эта смесь получила название селекто . [c.211]

    Из предложенных для процесса парных растворителей рассмотрим одну пару пропан—крезол в смеси с фенолом. Пропан — растворитель полезных компонентов (парафиновых и нафтеновых углеводородов), крезол в смеси с фенолом — растворитель вредных компонентов (асфальтово-смолистых и сернистых веществ,, полициклических ароматических углеводородов и др.). [c.31]

    Широкое распространение получил Д.-п., основанный на применении двух растворителей — пропана и крезола пропан — растворитель полезных компонентов (парафиновых и нафтеновых углеводородов), крезол— растворитель вредных компонентов [c.78]

    Для получения из парафинистых нефтей масел с низкой температурой застывания после очистки масло подвергают депарафинизации — удалению из него высокоплавких парафиновых углеводородов. Масло растворяют в лигроине, жидком пропане или в каком-либо другом низкозамерзающем растворителе. Раствор охлаждают до температуры минус 25—40° С (в зависимости от требуемой температуры застывания масла) и подают на высокооборотные центрифуги, где застывшие углеводороды под действием центробежных сил отделяются от масла. Смесь твердых парафинов с некоторым количеством жидкого масла и примесей, называемую петролатумом, используют для получения твердого белого парафина и церезина. [c.139]

    При избыточном содержании бу — танов за счет повышения растворяющей способности растворителя ухудшается качество деасфальтизата (возрастают коксуемость и вязкость, ухудшается цвет). Особенно нежелательно присутствие в пропане олефинов (пропилена и бутиле — нов), снижающих его селективность, вследствие чего возрастает содержа гие смол и полициклических ароматических углеводородов в деасфальтизате. [c.228]

    Сырье — рафинат — насосом 10 через водяной холодильник 11 подается в регенеративные кристаллизаторы 13—16, где охлаждается фильтратом, полученным в I ступени фильтрования. Число кристаллизаторов зависит от пропускной способности установки. Сырье разбавляется холодным растворителем в трех точках на выходе его из кристаллизаторов 13, 14 и 15. Растворитель подается насосами из приемников сухого и влажного растворителей (на схеме не показано). Из регенеративных кристаллизаторов раствор сырья поступает в аммиачные кристаллизаторы 18—20, где за счет испарения хладагента (аммиак или пропан), поступающего из приемника 24, охлаждается до температуры фильтрования. Охлажденная суспензия твердых углеводородов в растворе масла поступает в приемник 1, а оттуда самотеком в вакуумные фильтры 2 ступени I. Уровень суспензии в вакуумных фильтрах регулируется регулятором уровня, который связан с линией ее подачи. Фильтрат I ступени (раствор депарафинированного масла) собирается в вакуум-приемнике 7, откуда насосом 17 подается противотоком к раствору сырья через регенеративные кристаллизаторы, а затем через теплообменник 12 для охлаждения влаж- [c.80]


    II ступени фильтрования. Суспензия твердых углеводородов, выходящая из кристаллизатора 2 сверху, охлаждается в аммиачных кристаллизаторах 3 и 4 за счет испарения хладагента (аммиак или пропан) до температуры фильтрования и собирается в приемнике 6, откуда самотеком поступает в фильтры 7 ступени I. Уровень суспензии в вакуумных фильтрах регулируется регулятором уровня, связанным с линией ее подачи. Фильтрат I ступени (раствор депарафинированного масла) поступает в вакуум-приемник И, откуда насосом 13 подается через теплообменник 16, где охлаждается растворитель для разбавления сырья, в приемник 18, из которого раствор депарафинированного масла направляется в секцию регенерации растворителя. [c.86]

    Хотя деасфальтизация пропаном не принадлежит к процессам экстракции растворителем, целесообразно рассмотреть ее здесь, так как она часто тесно связана с этими процессами. Деасфальтизация пропаном представляет собой процесс удаления асфальта из остаточных продуктов осаждением. Асфальт состоит главным образом из высокомолекулярных углеводородов, имеющих сложное строение в виде молекул с большим числом конденсированных колец 1, вместе с небольшими количествами неуглеводородных соединений, находящихся в нефтяных остатках. [c.198]

    Деасфальтизация пропаном. Соединения асфальтового характера имеют очень высокий молекулярный вес и концентрируются в тех остатках, которые имеют такую высокую температуру кипения, что не могут быть выделены дистилляцией. Вещества смолистого характера имеют молекулярный вес несколько ниже и находятся как в масляных дистиллятах, так и в мазуте. Асфальты и смолы часто в промышленности выделяются из масла отгоном более летучих веществ, и этот процесс экономичен, если сырье содержит незначительное количество ценных высокомолекулярных углеводородов, которые не могут быть отогнаны. Однако во многих случаях желательно в дальнейшей переработке этих остатков получить вязкие масляные дистилляты или тяжелое сырье для каталитического крекинга. Общепринятая сольвентная очистка одним растворителем непригодна, и применяется деасфальтизация пропаном или дуосол-процесс, в котором также используется пропан.  [c.285]

    Растворимость в пропане органических соединений разного строения неодинакова. Наибольшее стремление выделиться из раствора проявляют те компоненты, молекулы которых наиболее сильно взаимодействуют между собой и особенно слабо с молекулами пропана. Практически нерастворимыми являются асфальтены при достаточном расходе растворителя они выделяются из раствора при любых температурах. Далее растворимость уменьшается в такой последовательности смолы, полициклические и моноциклические ароматические углеводороды с алкильными боковыми цепями, парафино-нафтено-вые углеводороды. Это и используют при проведении процесса деасфальтизации. [c.39]

    На эффективность деасфальтизации влияет соотношение между количествами пропана и гудрона. При добавлении небольших порций пропана к гудрону происходит их полное смешивание. Дальнейшее добавление пропана приводит к образованию двухфазной системы раствора углеводородов в пропане и раствора пропана в смолисто-асфальтеновых веществах. С увеличением доли пропана в системе разбавляется пропано-вый раствор, в результате концентрация растворенных в нем компонентов уменьшается, силы взаимного притяжения угле водородов ослабевают и из раствора выделяются наиболее высокомолекулярные углеводороды. Действие этого фактора проявляется до тех пор, пока оно не перекрывается другим — обычным увеличением количества растворенного вещества при увеличении количества растворителя. Таким образом, существует оптимальное соотношение между пропаном и гудроном при котором получается и оптимальное качество деасфальтизата. Выход асфальта при этом наибольший, а температура размягчения наименьшая. С Повышением температуры деасфальтизации упомянутый оптимум наблюдается при меньших содержаниях пропана. [c.40]

    Процесс переработки остатков вакуумной перегонки мазутов на масла связан с разделением высокомолекулярных компонентов на две фазы пропано-масляную и асфальтовую. Пропан обычно относят к растворителям-коагуляторам асфальтено-смолистых веществ и одновременно к избирательным растворителям. Это — не обычный избирательный растворитель с повышением температуры растворяющая способность пропана падает, а избирательность возрастает. Селективность пропана проявляется в первую очередь по размеру молекул, а уже во вторую очередь— по групповому химическому составу. В пропановый раствор избирательно переходят более низкомолекулярные масляные компоненты, преимущественно нафтено-парафиновые и ароматические углеводороды с длинными боковыми цепями. [c.219]

    Пропан применяется как в качестве самостоятельного растворителя, так и в комбинации с другими жидкостями [52—56]. При температуре окружающей среды пропан растворяет исходное масло, а при повышении температуры до 40—60 °С из раствора выделяются смолистые и асфальтовые соединения. При критической температуре пропана 96,8 °С его растворяющая способность падает до минимума и выделяются последующие масляные фракции. Разделение масла происходит по плотности фракций и имеет сходство с эффектом дистилляции, но из-за относительно низких температур проходит в более постоянных условиях. Пропан не отделяет ароматических и нафтеновых углеводородов от парафиновых, и экстракция с его участием нисколько не улучшает свойств масел. Ранее же описанные растворители повышают качество масел. В связи с этим обработка масел пропаном служит только для удаления асфальтовых соединений. [c.394]


    Аналогичный эффект можно получить, пользуясь смесью алифатических углеводородов, например бутана и метана [48—51]. Количество выделенных веществ возрастает с увеличением количества растворенного метана. Давление при работе со смесями значительно выше, чем с пропаном, и доходит до 100 ат (—110 н1м ), из-за чего растворители из смесей алифатических углеводородов не нашли практического применения. [c.394]

    Растворителями служат пропан, который растворяет главным образом парафиновые и нафтеновые углеводороды, и смесь из 40% фенола и 60% крезола, растворяющая ароматические углеводороды, смолы и асфальты. Среднее количественное отношение пропана, фенола и масел равно 5,8 3,7 1,0. Рабочая температура равна 38 °С. В этих условиях в пропане растворяется также и парафин. Благодаря применению больших количеств пропана, этим методом можно перерабатывать парафиновые погоны с высокой вязкостью и остатки, содержащие асфальт [62—66]. [c.397]

    Растворимость углеводородов и смол в ацетоне — полярном растворителе с таким же углеродным скелетом, как и пропан (рис. 11), отличается тем, что при пониженных температурах, да- [c.65]

    При температурах, непосредственно близких к КТ пропана, последовательно понижается растворимость углеводородов, что позволяет разделять сырье а фракции, различающиеся по структуре молекул их компонентов, а следовательно, по плотности, молекулярной массе и другим показателям. В пропане, в области его предкритического состояния, наиболее растворимы, как указано выше, парафино-нафтеновые компоненты, а наименьшей растворимостью обладают смолы. Остальные группы углеводородов в зависимости от структуры и молекулярной массы занимают промежуточное положение. Это создает условия для фракционировки пропаном компонентов деасфальтируемого продукта. Таким образом, сжиженные углеводородные растворители, находящиеся близко к критическому состоянию, в отличие от избирательных растворителей являются фракционирующими растворителями. [c.68]

    Выделяющиеся при высоких температурах смолы и высокомолекулярные ароматические углеводороды способны извлекать из раствора пропана благодаря влиянию дисперсионных сил остающиеся в нем нежелательные компоненты. В результате в верхней части деасфальтизационной колонны совмещаются процессы фракционирующего разделения пропаном и селективной экстракции избирательным растворителем (смолы, полициклические ароматические углеводороды). Этот процесс можно назвать ректификационной экстракцией . Фракционирование сырья растворителями, находящимися близко к критическому состоянию, имеет свои особенности по сравнению с противоточным экстракционным процессом при помощи избирательных растворителей. Главное различие заключается в том, что при существовании температурного градиента в обычной многоступенчатой экстракционной колонне самопроизвольно возникает внутренняя циркуляция только той жидкой фазы, которая подается на. более холодном [c.68]

    Чем выше температура плавления твердых углеводородов, тем выше температура растворения их в нефтяных фракциях, из которых они выделены [2, с. 72] (рис. 3). Растворимость твердых углеводородов в углеводородных растворителях зависит от молекулярной массы последних [3], причем эта зависимость экс1 ре-мальна (рис. 4). Растворяющая способность сжиженных углево-дО родных газов уменьшается три переходе от бутана к этану. Была исследована [3] растворимость в сжиженном пропане твердых углеводородов, выделенных из 50-градусных фракций грозненской нефти, выкипающих в пределах 300— О С (рис. 5). Результаты этого нсследования иллюстрируют влияние температуры плавления, а следовательно, молекулярной массы твердых углеводородов на их растворимость в неполярном растворителе. В области низких температур сжиженный пропан практически не растворяет твердые углеводороды, что позволяет [c.46]

    В качестве растворителя для удаления из остаточного сырья смолисто-асфальтеновых веществ на большинстве заводов используют сжиженный пропан. Процесс деасфальтизации основан на различной растворимости углеводородов и смолисто-асфальтено-вых веществ в сжиженном пропаие при определенных условиях процесса пропан растворяет углеводороды и не растворяет эти вещества. Глубина извлечения смолисто-асфальтеновых веществ, т. е. эффективность процесса деасфальтизации, оцениваемая по коксуемости деасфальтизата, зависит от ряда факторов качества сырья, температуры и давления процесса, кратности пропана к сырью и чистоты пропана. [c.70]

    Деасфальтизация на нефтеочистительных заводах может быть осуществлена достаточно просто с помощью вакуумной дистилляции — процесса, в котором тяжелые асфальтены и сложные металлоорганические соединения собираются вместе в остаточной массе. Для того чтобы избежать высоких температур и низкого давления — условий, необходимых для- проведения фракционной разгонки, используют пропан (рис. 80) как растворитель углеводородов парафинового, изопарафинового и нафтенового рядов, а также как осадитель смол и асфальтенов. Технологические условия рабочего процесса в пропановом деасфальтенизаторе следующие начальная температура процесса 75—90°С, давление 3039— 4053 кПа, соотношение между пропаном и нефтью 3—10. Прп этих условиях в осадок выпадают тяжелые асфальты. При постоянном повышении температуры последовательно сепарируются наилегчайшие нефтяные смолы. Вместо пропана можно применять бутан, особенно для извлечения очень тяжелых и сложных по составу остатков. [c.364]

    Кристаллизация. Этот метод применяется для отделения веществ с высокими температурами плавления, т. е. твердых углеводородов, растворенных в нефти. Нанлучшие результаты получаются при работе с узкими фракциями и при значительной концентрации твердых веществ. Кристаллизацию проводят путем вымораживания из растворов в подходящем растворителе. Растворитель по возможности должен являться одновременно и осадите-лем для отделяемых кристаллизацией веществ. Во всяком случае, он должен па СТВОРЯТЬ высокоплавкие компоненты значительно хуже, чем низкоплавкие Г Применение растворителя снижает вяз-Й< ть продукта, которая при низких температурах может оказаться настолько большой, что это будет препятствовать кристаллизации. В качестве растворителей применяются жидкий пропан, хлорпроизводные углеводородов, этиловый эфир, смесь спирта и эфира, смесь этилового и изоамилового спирта, ацетоно-толуольная смесь и др. Путем многократной перекристаллизации из растворителя удается достичь высокой степени чистоты твердых веществ. [c.60]

    Растворимость углеводородных и смолистых соединений оста- точного сырья в растворителе определяется структурными особенностями высокомолекулярных молекул и температурными пределами проведения процесса экстракции. Температурная зависимость растворимости различных групп углеводородов и смол в пропане, установленная в работах [12,38], представлена на рис. I. Лля хроматографических групп углеводородов и смол, выделенных на силикагеле, наблюдается линейная зависимость их растворимости в пропане, причем углеводороды парафино-нафтеновые и легкие ароматические с ростом температуры от 60 до 90°С снижают свою растворимость более резко, чем тяжелые ароматические и смолы. Проведение деасфальтизации при болев высоких температурах приводит к повышению качества деасфмь-тизата, но при этом снижается отбор масла от потенциала (рис. 2), [c.19]

    Чаще всего применяется абсорбция. Метод основан на том, что из находящегося под давлением газа при помощи подходящего растворителя (абсорбционного масла) извлекается вышекипящий парафиновый углеводород пропан, в то время как низкокипящие составные части — метан и этан — не растворяются и остаются в газе. Из абсорбционного масла растворенные компоненты выделяются пагреваписм. [c.13]

    Сульфоокислять парафиновые углеводороды, газообразные при обычных условиях, например пропан и бутан, можно почти так же, как сульфохлорировать, т. е. в присутствии растворителя (четыреххлористого углерода). В отличие от сульфохлорирования пропан сульфоокис-ляется с трудом изобутан тоже реагирует еще довольно медленно. Из газообразных углеводородов легче всего реагирует и-бутан. [c.487]

    Влияние температуры экстракции на растворимость химических компонентов сырья различного молекулярного строения в неполярных растворителях обсуждалось в 6.2.3. Как видно из рис. 6.4, при пониженных температурах (50 — 70 °С) пропан проявляет высокую растворяющую способность и низкую избирательность и является преимущественно осадителем асфальтенов. При повышенных температурах экстракции (85 °С и выше) у пропана, наобо — рот, низкая растворяющая способность и повышенная избирательность, что позволяет фракционировать гудроны с выделением групп углеводородов, различающихся по структуре и молекулярной массе. Следовательно, в этой температурной области пропан является фракционирующим растворителем. Высокомолекулярные смолы и полициклические ароматические углеводороды, выделяющиеся при предкритических температурах, благодаря действию дисперсионных сил извлекают из дисперсионной среды низкомолекулярные смолы и низкоиндексные углеводороды, повышая тем самым качество деасфальтизата, но снижая его выход. Антибатный характер зависимости растворяющей способЕюсти и избирательности пропана от температуры можно использовать для целей регулирования выхода и качества деасфальтизата созданием определенного тем — перагурного профиля по высоте экстракционной колонны повышенной температуры вверху и пониженной — внизу. Более высокая температура в верхней части колонны будет способствовать повы — шению качества деасфальтизата, а пониженная температура низа колонны будет обеспечивать требуемый отбор целевого продукта. [c.230]

    Смолы и особенно асфальтены, — компоненты сырья, наименее растворимые в жидком пропане. На различной растворимости составляющих компонентов и основано использование пропана как деасфальтирующего растворителя. При температурах, близких к критической температуре пропана (около 96 °С), растворимолть составных частей масляного сырья уменьшается. С повышением температуры процесса от 75 до 90 °С улучшается качество деасфальтизата, но снижается его выход, так как из раствора выделяются преимущественно компоненты с высокими значениями плотности, коэффициента преломления и молекулярной массы к ним, в частности, относятся высокомолекулярные полицикли-ческие углеводороды. [c.64]

    Два растворителя совместно применяются по меньшей мерс в двух промышленных процессах очистки смазочных масел. Это — очистка сернистым ангидридом и бензолом, в которой бензол служит для повышения растворяющей способности сернистого ангидрида в отношении высокомолекулярных углеводородов, и дуосол-процесс, в котором применяются пропан и селекто (смесь фенола и крезолов). Последний процесс, который особенно пригоден для обработки остаточных продуктов, состоит из деас-фальтизации растворителем и очистки другим растворителем, объединенных в одну операцию. [c.192]

    Асфальто-смолпстые вещества очень плохо растворяются в пропане, а асфальтены практически не растворяются. При температурах обработки выше 40° С они начинают незначительно растворяться в пропане. Это свойство п позволяет применять пропан в качестве деасфальтирующего и обессмоливающего растворителя для очистки масляных фракций желательные углеводороды перехпттяд. в раствор, а нежелательные выделяются. Процесс деасфальтизации гудрона или полугудрона основан на различной растворяющей способности жидкого пропана по отношению к жидким углеводородам и асфальто-смолистым веществам. [c.212]

    В качестве растворителей пользуются жидкостями, обладающими свойством избирательного растворения смол и асфальтов. Для выделения этих примесей применяются пропан или смеси других легких парафиновых углеводородов, например раствор бутана и метана. Эти жидкости вытесняют из сырого масла обе группы неже- [c.380]

    При высаживании асфальтенов из раствора наблюдается увлечение вместе с ними некоторого количества углеводородов и смол, растворимых в данном растворителе при температуре высаживания, причем часть из них захватывается механически, а часть удерживается внутри агрегированных мицелл вследствие частичной сорбции вместе со смолами. Дрисутствие углеводородов в мицеллярной оболочке можно объяснить дисперсионными силами, возникающими между молекулами смол и углеводородо-в. На поверхности мелкодисперсных твердых частиц асфальтенов смолы сорбируются таким образом, что полярная часть их молекул обращена в сторону ядра коллоидной мицеллы, а неполярная — в сторону дисперсионной среды. В то же время вследствие упорядоченности неполярных частей молекул смол и влияния дисперсионных сил между ними встраиваются молекулы углеводородов. Так как в остатках нефтей содержится больше смол, чем необходимо для пептизации асфальтенов, вероятно образование поли-молекулярных мицеллярных оболочек, в результате чего углеводороды прочно удерживаются между чередующимися молекулярными слоями полярных соединений (смол). Извлечь эти углеводороды можно, полностью разрушая молекулярные оболочки коллоидных мицелл растворением смол многократной коагуляцией или отмывкой. Выше КТРг вследствие ограниченной растворяющей способности пропана по отношению к смолам происходит их выделение из раствора. Выделяющиеся смолы растворяют полициклические ароматические углеводороды и, таким образом, относительно раствора углеводородов выполняют роль селективного растворителя, несмешивающегося с пропаном. [c.67]

    Остаточное сырье широкого фракционного состава содержит низкомолекулярные компоненты, которые в области температур, близких к критической, более растворимы в пропане, чем высокомолекулярные фракции. Растворяясь в пропане, низкомолеку-ляряые фракции действуют как промежуточный растворитель, повышая благодаря наличию в молекулах длинных парафиновых цепей дисперсионные силы молекул пропана, а следовательно, и его растворяющую способность по отношению к высокомолекулярным углеводородам и смолам. Это приводит к снижению глубины деасфальтизации, ухудшению селективности процесса и, как следствие, к повышению коксуемости и снижению вязкости деасфальтизата при одновременном увеличении его выхода. С углублением отбора дистиллятов при вакуумной перегонке мазута эффективность извлечения смолисто-асфальтеновых веществ из гудрона возрастает. Деасфальтизаты, полученные при переработке [c.70]

    Повышение температуры процесса в области, близкой к критической температуре пропана, приводит к последовательному снижению растворимости лрупя компонентов, что позволяет фракционировать гудроны с выделением групп углеводородов, различающихся по структуре и молекулярной массе. Следовательно, в этой температурной области пропан является фракционирующим растворителем. Высокомолекулярные смолы и полициклические ароматические углеводороды, выделяющиеся при высоких температурах, благодаря действию дисперсионных сил извлекают из раствора в пропане визкомолекулярные смолы и низкоиндексные углеводороды, повышая тем самым качество деасфальтизата. Таким образом, при температурах в области предкритического состояния пропана имеют место процессы фракционирования сырья пропаном и селективной экстракции, где роль избирательного рас- [c.76]

    Растворимость углеводородов и смол в пропане при температурах, лежащих в области щредкритического состояния растворителя (температуры деасфальтизации), зависит от. кратности пропана к сырью в этой области существует оптимальная кратность пропана, обеспечивающая наиболее высокое качество деасфальтизата [18, 24]. При малой кратности пропана к сырью (до 2 1 по объему) происходит насыщение сырья растворителем. Увеличение расхода пропаиа ведет к образованию двухфазной (системы насыщенного раствора углеводородов в пропане и раствора пропана в смолисто-асфальтеновых веществах. Лри некоторой к-рат-ности пропана глубина извлечения этих веществ и высокомолекулярных компонентов увеличивается, что приводит к постепенному уменьшению выхода деасфальтизата и улучшению его качества. Однако после достижения оптимума при дальнейшем увеличе1нии кратности пропана выход деасфальтизата начинает увеличиваться с одновременным ростом его коксуемости и ухудшением цвета. Так, при деасфальтизации (температура 70°С) гудрона с коксуемостью 12,6% оптимальная массовая кратность пропана оказалась равной 5 (рис. 19). [c.78]


Смотреть страницы где упоминается термин Пропан как растворитель углеводородо: [c.5]    [c.64]    [c.123]    [c.47]    [c.229]    [c.82]    [c.193]    [c.211]    [c.58]    [c.381]    [c.65]    [c.67]    [c.74]    [c.79]    [c.80]    [c.99]   
Технология переработки нефти и газа Часть 3 (1967) -- [ c.107 , c.108 ]




ПОИСК





Смотрите так же термины и статьи:

Пропан

Пропанои



© 2025 chem21.info Реклама на сайте