Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Температура плавления состава раствора

    Системы, компоненты которых образуют смешанные кристаллы (твердые растворы) в любых относительных количествах. Примером систем этого вида может служить система серебро-золото. Нз рис, 121 видно, что диаграмма состояния ее отлична от рассмотренных нами ранее. На этой диаграмме нет эвтектики, а плавные кривые ликвидуса и солидуса соединяют температуры плавления компонентов. Определение состава выделяющихся кристаллов- показывает, что они всегда содержат оба компонента. Относительное содержание компонентов зависит от состава расплава, причем содержание золота (более тугоплавкий компонент) в кристаллах больше, чем в жидком расплаве, из которого они выделялись. Кривая солидуса характеризует состав кристаллов, выделяющихся при различных температурах и, следовательно, равновесных с расплавом того состава, который показан для этой температуры кривой ликвидуса. В этом случае опыт приводит к той же чечевицеобразной форме кривых, как на рис. 107. [c.346]


    Метод физико-химического анализа заключается в следующем. Измеряют какое-нибудь физическое свойство раствора или расплава (плотность, вязкость, температуру плавления, давление пара, поверхностное натяжение, электропроводность, показатель преломления, диэлектрическую проницаемость и т. д.). Последовательно изменяя состав, получают таблицу числовых данных измеряемого свойства. С помощью этих данных строят диаграмму состав — свойство. Изучают геометрические особенности диаграмм состав — свойство для растворов различных компонентов и ищут зависимость между геометрическими особенностями такой диаграммы и природой раствора. [c.167]

    Титан имеет довольно высокую (1668 °С) температуру плавления и плотность 4,5 г/см . Благодаря высокой удельной прочности и превосходным противокоррозионным свойствам его широко применяют в авиационной технике. В настоящее время его используют также для изготовления оборудования химических производств. В ряду напряжений титан является активным металлом расчетный стандартный потенциал для реакции Т + + 2ё Л составляет —1,63 В . В активном состоянии он может окисляться с переходом в раствор в виде ионов Т " [1]. Металл легко пассивируется в аэрированных водных растворах, включая разбавленные кислоты и щелочи. В пассивном состоянии титан покрыт нестехиометрической оксидной пленкой усредненный состав пленки соответствует ТЮ . Полупроводниковые свойства пассивирующей пленки обусловлены в основном наличием кислородных анионных вакансий и междоузельных ионов Т , которые выполняют функцию доноров электронов и обеспечивают оксиду проводимость /г-типа. Потенциал титана в морской воде близок к потенциалу нержавеющих сталей. Фладе-потенциал имеет довольно отрицательное значение (Ер = —0,05В) [2, 3], что указывает на устойчивую пассивность металла. Нарушение пассивности происходит только под действием крепких кислот и щелочей и сопровождается значительной коррозией. [c.372]

    Определение процентного состава неизвестного вещества проводится с целью выяснения его эмпирической, а в конце концов и молекулярной формулы. Эмпирическая формула выражает в простейшей форме относительное количество атомов каждого из элементов, входящих в состав одной молекулы вещества. Молекулярная формула вещества указывает на истинное число атомов каждого из элементов, входящих в состав одной молекулы вещества. Для данного вещества эти две формулы могут совпадать или не совпадать, что зависит от свойства вещества, называемого молекулярным весом. Его легко определить с помощью одного из стандартных физических методов — измерением плотности пара, депрессии температуры плавления, вязкости раствора, скорости седиментации и т. д. [c.15]


    Раствор для химического осаждення сплава N i — Со с добавлением двуокиси германия наряду с коррозионной устойчивостью осадков обеспечивает его более низкую температуру плавления. Состав электролита следующий (г/л)  [c.115]

    Еще одна диаграмма, имеющая большое значение в теории зонной очистки, приведена на рис. 4. На представленной системе добавление примеси к основному компоненту А повышает температуру плавления. Если раствор, характеризующийся / (см. рис. 4), охлаждается, то состав начального твердого осадка соответствует точке N. Твердое вещество содержит больше компонента В, чем начальный расплав. При дальнейшем охлаждении системы состав жидкости изменяется по кривой ЬА, а состав твердого вещества — по кривой NA. [c.17]

    Первое правило Гиббса — Розебома. Твердый раствор по сравнению с жидким обогащен компонентом, который повышает температуру начала кристаллизации расплава. Это правило определяет положение на диаграмме состояния линии ликвидуса но отношению к линии солидуса. Например, если примесь компонента В повышает температуру плавления твердого раствора, то, как показано на рис. 79, состав твердой фазы сосуществующей с жидкой фазой состава I, должен лежать на диаграмме состояния бли-ше к компоненту В, а не наоборот. [c.237]

    Если вещества образуют жидкие и твердые растворы, то температура затвердевания расплава (точка а) определенного состава выше температуры плавления твердого раствора (точка Ь) этого же состава (рис. 6.5). Соответственно при одной и той же температуре состав жидкой фазы (точка а) и твердой фазы (точка с) различаются. С изменением состава сплава постепенно изменяются его свойства. [c.157]

    Учение о зависимости свойств многокомпонентных систем (давление пара, температура плавления, внутреннее строение и структура, твердость, электрическая проводимость и др.) и условий их существования от состава получило название физико-химический анализ . Начало и основное развитие это учение получило в работах Н. С. Курнакова и его школы. В физико-химическом анализе широко пользуются геометрическими методами, представляя зависимости графически в виде диаграмм состав — свойство. Переходя к систематическому изложению этого материала, укажем, что совершенно условно диаграммы состав — давление насыщенного пара будут рассмотрены в главе V после описания общих свойств жидких растворов. [c.115]

    Рацемический твердый раствор образуется, когда энантиомеры кристаллизуются изоморфно. Это можно определить но тому обстоятельству, что кривая (рис. 4.42, а) температура плавления — состав является практически горизонтальной прямой линией, т. е. добавление небольшого количества любого из энантиомеров к веществу не оказывает влияния на исходную температуру плавления. [c.96]

    Природа и состав растворителя. В процессах депарафинизации, осуществляемых при охлаждении и кристаллизации твердых углеводородов из растворов в избирательных растворителях, основную роль играет растворимость в них углеводородов с высокой температурой плавления. Выделение этих углеводородов из растворов в неполярных и полярных растворителях носит разный характер. В неполярных растворителях — нафте и сжиженном пропане— твердые углеводороды при температуре плавления растворяются неограниченно, причем растворимость их уменьшается с повышением плотности углеводородного растворителя. Поэтому из растворов в жидких углеводородах рафината твердые компоненты выделяются при более высоких температурах. Высокая растворимость твердых углеводородов в неполярных растворителях требует глубокого охлаждения для наиболее полной их кристаллизации и получения масла с низкой температурой застывания. Этим объясняется высокий ТЭД (15—25 °С) при депарафинизации в растворе нафты и сжиженного пропана, что делает этот процесс неэкономичным из-за. больших затрат на охлаждение раствора. [c.169]

    П.29). Отложим по оси абсцисс концентрацию смеси. Точки а и Ь отвечают температурам кристаллизации (плавления) индивидуальных веществ — соответственно А и В. Кривые ае и еЬ — взаимосвязи между температурой и концентрацией насыщенных растворов — соответственно насыщенными компонентами А и В. Точка е характеризует состав раствора, насыщенного обоими компонентами. Выше аеЬ система гомогенна (ненасыщенные растворы). [c.129]

    При нагревании твердого расплава рассматриваемые явления происходили бы в обратной последовательности. Так, нагревая смесь льда и соли состава Я (рис. 86) при te (точка 5), получим первую капельку жидкой фазы состава е. Система станет безвариантной, повышение температуры прекратится, т. е. подводимая теплота будет расходоваться на плавление . Точка е лежит левее 5, поэтому из смеси выплавляется больше льда, чем соли, и твердая смесь относительно обогащается солью. После исчезновения последнего кристаллика льда система станет одновариантной, температура начнет повышаться, а состав раствора изменится, так как в него переходит только оставшаяся соль. Состав жидкой фазы [c.262]


Рис. 2.36. Диаграмма состояииа систем веществ, образующих твердые растворы с максимумом (/) и минимумом (//) температур плавления а-состав нагреваемого твердого раствора /ц-состав первой каапи С1 - состав последнего кристалла С1 - кривая составов тающих> кристаллов 1С-кривая составов равновесньи кристаллов жидких растворов (на варианте //) Рис. 2.36. Диаграмма состояииа систем веществ, <a href="/info/1842372">образующих твердые растворы</a> с максимумом (/) и минимумом (//) <a href="/info/6380">температур плавления</a> а-состав нагреваемого <a href="/info/2260">твердого раствора</a> /ц-<a href="/info/1810046">состав первой</a> каапи С1 - состав последнего кристалла С1 - кривая составов тающих> кристаллов 1С-кривая составов равновесньи <a href="/info/1332656">кристаллов жидких растворов</a> (на варианте //)
    Система, состоящая из четыреххлористого углерода (С) и диоксана (О), имеет две эвтектические точки при 5,2 мол.% О и —24,7° С и при 49,5 мол.7о О и —20,2° С. Имеется одно бинарное соединение СгО с конгруентной точкой плавления —18,2° С. Температура плавления чистого С —22,7° С, температура плавления чистого О 11,8° С. Постройте фазовую диаграмму состав — температура этой системы, приняв, что твердые растворы не образуются [52]. Фазовая диаграмма давление — температура для углерода показана на рисунке [53] (I бар = = 0,987 атм). [c.88]

    Согласно первому правилу Гиббса — Розебума твердый раствор по сравнению с жидким раствором, находящимся с ним в равновесии, богаче тем компонентом, прибавление которого к расплаву повышает температуру начала кристаллизации твердого раствора. По второму правилу Гиббса — Розебума в точках максимума и минимума кривых температур плавления твердый раствор и находящийся с ним в равновесии жидкий расплав имеют одинаковый состав. Система, изображенная на диаграмме плавкости фигуративной точкой О (рис. 147, 148), при Р = onst инвариантна (С = = 2-2+1-1 =0). [c.410]

    В случае образования в двухкомпонентной системе трех сосуществующих друг с другом фаз, как было сказано выше, число степеней свободы равно 1 / = 2 — 3 + 2=1. Это значит, что при Т или р = onst число степеней свободы становится равным нулю. Так как влияние давления на состояние равновесия в конденсированных фазах незначительно, то обычно рассматривают диаграммы состояния таких систем при закрепленном (часто атмосферном) давлении. Тогда f=2 — 3+1 = 0, т. е. температура сосуществования фаз и их состав однозначно определяется давлением. Рассмотрим графическое изображение равновесия твердое тело — жидкость в координатах температура плавления — состав. В тех случаях, когда компоненты (А и В на рис. V. 32) не образуют твердых растворов, добавки другого вещества понижают температуру плавления первого [см. разд. V. 7.2, формулу (V. 234)]. Поэтому в результате прибавления В к А или А к В температуры плавления смесей понижаются до тех пор, пока обе кривые не встретятся в точке s. [c.307]

    Твердые растворы этого типа образуют, например, системы нафталин—р-нафтол, а-бромкоричный—а-хлоркоричный альдегиды. Некоторые вещества, как, например, й -ка к1фара и й -борнеол, образуют очень оригинальные твердые растворы, состав которых совсем не отличается от состава жидкостей, находящихся с ними в равновесии. Кривые затвердевания и плавления сливаются в этом случае в одну прямую линию, соединяющую точки плавления обоих чистых веществ. Некоторые оптические изомеры, например оксимы с -и /-камфары, имеющие одинаковые температуры плавления, образуют растворы, которые плавятся и затвердевают при одной и той же температуре независимо от состава смеси. Кривые плавления и затвердевания взаимно налагаются, образуя одну горизонтальную прямую [c.38]

    Для систем, к которым применимы уравнения ( -286) и его частные формы ( -287) и ( -288), можно рассчитать состав твердых фаз по данным о растворимости, определяющим расположение изотермы растворимости в концентрационном треугольнике. Принцип такого расчета иллюстрируется с помощью рис. 142, на котором пунктирной и сплошной линиями изображены проекции изотерм на поверхностях ликвидуса ЬЬ ) и солидуса (38 ). Расплав, состав которого на рис. 142 изображается точкой I, находится в равновесии с твердой фазой состава 8, определяемого так, чтобы рассчитанное по формуле ( -286) значение производной dyJdy т совпадало с найденным графически. Расчет выполняется следующим образом. По данным о температурах плавления твердых растворов и температурах кри- [c.384]

    Система 1)Ог—РиОг. Оба этих окисла имеют кристаллическую решетку типа флюорита и поэтому способны неограниченно растворяться друг в друге. Параметры решетки непрерывного ряда твердых растворов этой системы определяются стехиометрией состава, так как возможно образование твердых растворов состава (и, Ри)Ог ж с X, зависящим от состава атмосферы [53—58]. Чикалла [54] определил температуру плавления твердых растворов иОг—РиОг и нашел, что линия ликвидуса имеет максимум при составе, содержащем 90% иОг и 10% РиОг параметры решетки твердых растворов, подвергнутых плавлению, также оказались больше ожидаемых значений. Автор объяснил эти явления отклонением составов образцов от стехиометрии вследствие потери кислорода (с сохранением однофазной структуры препаратов). Для двуокиси плутония, расплавившейся при 2280 30°С, был обнаружен большой дефицит кислорода, изменивший состав двуокиси [c.244]

    Растворы гексафторида урана в неорганических растворителях. Поведение гексафторида в большом числе различных неорганических растворителей изучено лишь с качественной стороны [104], и лишь для системы гексафторид урана— трифторид бора были получены количественные данные. Для этой системы )азработана также диаграмма температура плавления—состав (рис. 56) [105]. 7ри —125° гексафторид урана лишь умеренно растворим в трифториде бора. [c.358]

    Разбавленный н1,елочной раствор динитрогексатриаконтана окисляли 1,5%-ным раствором перманганата калия и в качестве единственного продукта получили соединение с температурой плавления 69,5—70°. Чтобы определить положение кетогруппы, продукт окисляли хромовой кислотой в растворе ледяной уксусной кислоты. Полученное после выделения плохо кристаллизующееся соединение перекристаллизовывали нз водного метанола. Элементарный анализ вещества, плавившегося при 58,5—60°, указывал на состав С,з4НббОг (кислотное число не приводится). Сведения об общих выходах и выходах по отдельным стадиям отсутствуют. [c.566]

    Метан (СН4) — бесцветный газ, без запаха н вкуса. Молекулярная масса 16,04, плотность 0,72 кг/м при 0°С и 760 мм рт. ст. Температура кипения минус 161,58°С, температура плавления минус 182,49°С, плотность по воздуху 0,5543, в воде не растворим. Метан не ядовит. При высоких концентрациях оказывает наркотическое действие и может вызвать удушье. В процессе переработки природного и коксового газов получаются полутные газы — окись и двуокись углерода, которые входят в состав азотоводородной смеси. [c.22]

    Незначительные изменения давления практически не влияют на состояние системы, поэтому, применяя правило фаз и определяя условную ва-риантность системы, можно пользоваться соотношением Сусл = К—Ф + 1. Так, жидкий расплав (одна фаза) является системой условно двухвариантной (Сусл = 2). Состав расплава и его температуру можно изменять независимо (в соответствующих пределах). Пусть сплав, содержащий 17 вес.% (10 атомн.%) свинца, находится первоначально при температуре более высокой, чем температура плавления олова, например в состоянии, изображаемом точкой А. Охлаждение его показано на нашей диаграмме вертикальной прямой АВ, причем при температуре 232°С в состоянии расплава не произойдет каких-либо изменений, и лишь когда температура понизится до 208° С, из жидкого расплава начнут выделяться кристаллы олова с небольшим (около 2%) содержанием растворенного в нем свинца. Система становится двухфазной и, следовательно, условно одновариантной (Су(.,л=1). При дальнейшем охлаждении будет продолжаться выделение твердого раствора р, вследствие чего остающийся жидкий расплав становится богаче свинцом, и по мере повышения его процентного содержания температура выделения твердого раствора понижается. Состояния двухфазной системы представляются точками прямой ВС,, а состояния жидкого расплава — соответствующими точками кривой ВЭ, как показано стрелками. Процесс будет протекать, пока температура не понизится до эвтектической температуры, при которой начнут выделяться и кристаллы свинца, содержащие 19,5% растворенного в них олова. Система станет таким образом трехфазной и, следовательно, условно безвариантной (С усл = 0). Температура будет оставаться постоянной, пока не отвердеет весь расплав. Таким образом, процесс отвердевания сплава происходит не при одной температуре, а в некотором температурном интервале — от температуры начала кристаллизации до эвтектической. Для сплавов любого состава в этой системе эвтектическая температура (183,3° С) является температурой, при которой происходит окончательное отвердевание расплава. В диаграмме рис. 117 линия солидуса в центральной части диаграммы представляется изотермой 183,3° С, а в обеих областях более разбавленных растворов — кривыми, соединяющими эту изотерму с точками, отвечающими температурам плавления чистых компонентов. Линия ВЭ, изображающая изменение состава жидкой фазы в процессе кристаллизации, носит название пути кристаллизации. [c.341]

    Теплота сгорания топлива (природный газ) расхо.цовалась на нагрев и испарение раствора, перегрев образовавшихся водяных паров до температуры, равной температуре на выходе из реактора, подогрев сухой соли до температуры плавления и ее плавление, а также на покрытие потерь тепла в окружающую среду, вызванных несовершенством изоляции. Расход газа составлял 9,3 м /ч, коэффициент избытка воздуха — 1,6, температура сгорания была равна 1380" С. Расход раствора, состав которого приведен ниже, составлял 7—7,2 л/ч. Температура продуктов сгорания па выходе из установки была равна 200° С. [c.106]

    НО плохо растворяют и жидкие компоненты рафината. Поэтому при температурах депарафинизации вместе с твердыми углеводородами выделяются и высокоиндексные моноциклические углеводороды. При этом в гаче или петролатуме остается большое количество масла, что осложняет произ,иодство глубокообезмаслен-ных парафинов и церезинов. Для повышения растворяющей способности низкомолекулярных кетонов к ним добавляют толуол или смесь его с бензолом. В такой смеси растворителей кетон является осадителем твердых углеводородов, а толуол — растворителем масляной части сырья. При этом в зависимости от содержания твердых углеводородов в рафинате и их температуры плавления, а также от требуемой температуры застывания депарафинированного масла состав растворителя может изменяться. Данные о растворимости твердых углеводородов в различных растворителях приведены в табл. 4 на примере двух парафинов с различили температурами плавления. [c.170]

    Проводился ряд работ по исследованию химического состава органической массы нефтяных отложений. Так, в работе /78/ исследуются отложения, образующиеся в емкостях при хранении ромашкинской нефти. Для выделения парафиновой составляющей донный остаток обрабатывали 10-кратным объемом изопропанола в течение 1 часа в сосуде, снабженном обратным холодильником. При этом 5,7 % твердого асфальтового продукта оставалось на стенках сосуда и еще 0,4 % было суспензировано в растворе и удалено из него фильтрацией в горячем состоянии. Раствор охлаждали до температуры минус 20 С и выделившийся парафин отделяли фильтрацией. Всего было выделено в расчете на донный остаток 39,5 вес. % темно-коричневой массы, содержащей 45,5 вес, % масла, имевшей температуру плавления 65,5°С. Элементарный состав, вес. % С - 85,1 Н - 12,3 К- 0,15 5 - 0,99. При обработке карбамидом было выделено в количестве 39,7 % фракций н-парафинов с температурой плавления 76°С и остаток в количестве 60,3 % с температурой плавления 38°С. Выделенный продукт подвергли фракционной кристаллизации из раствора в метилэтилкетоне. Общий выход микрокристаллического парафина составил на донные остатки 15 вес %. Показано, что добавление микрокристаллического парафина к твердому парафину позволяет значительно улучшить эластичность, твердость и температуру затвердевания, чем открываются возможности для квалифицированного использования донных остатков. [c.155]

    После того как в конце прошлого века Вант-Гоффом было сформулировано представление о твердых растворах, выяснилось, что множество твердых веществ самого различного происхождения—сп-лавы, стекла, многие горные породы и минералы — представляют собой твердые растворы. В результате термодинамического исследования Розебума (1899 г.) установлены основные тины диаграмм состояния двойных систем с твердыми растворами. В начале нашего века Н. С. Курнаков заложил основы физико-химического анализа и развил физико-химическое направление изучения твердых веществ. При исследовании металлических сплавов он применил не только диаграммы состояния типа состав — температура плавления, но и типа состав — электропроводность, состав — твердость, разработанные им совместно с С. Ф. Жемчужиным, а также изобрел самопищущий прибор для термического анализа — пирометр Курнакова. Исходя из идеи Д. И. Менделеева о неопределенных соединениях как настоящих химических соединениях, Н. С. Курнаков, как мы помним, постулировал существование двух типов индивидуальных химических соединений — дальто-нидов и бертоллидов и указал, что первые имеют постоянный, а вторые переменный состав. Бертоллиды, по Курнакову, представляют собой твердые растворы неустойчивых в свободном состоянии соединений постоянного состава. [c.164]

    Состав а лежит в поле кристаллизации диопсида и принадлежит элементарному фазовому треугольнику Si02— диопсид — волластонит. Значит, конечной точкой затвердевания расплава будет эвтектика между этими тремя соединениями с температурой плавления 1320°. Первичная кристаллическая фаза — диопсид. Путь кристаллизации пойдет по прямой, соединяющей точки составов диопсида и исходного состава а, затем по пограничной кривой между полями кристаллизации диопсида и тридимита. Однако необходимо учитывать, что составы, расположенные вблизи области стабильной ликвации, при охлаждении могут попадать в область метастабильной ликвации, которая служит продолжением купола стабильной ликвации. Поэтому при охлаждени расплава состава а возможно проявление метастабильной ликвации, и лишь после этого произойдет выделение кристаллов диопсида (или частичных твердых растворов на основе диопсида). [c.128]

    Примером системы, которая дает верхнюю критическую температуру, может служить система фенол — вода. Вода и фенол в жидком состоянии проявляют ограниченную растворимость, а в твердом полностью нерастворимы друг в друге. Диаграмма состояния фенол — вода представлена на рис. 99. Точки ап Ь отвечают температурам плавления фенола и льда. Кривые аВ и со отвечают процессу кристаллизации фенола при охлаждении. Кривая Ьо соответствует процессу кристаллизации льда. Кривая ВКс — кривая расслоения кривая ВК выражает состав фенольного раствора воды кривая Кс — состав водного раствора фенола. Над кривой аВКсоЬ находится устойчивая жидкая фаза. Области соответствуют aBg — смеси фенола с фенольным раствором ВКс — смеси фенольного и водного растворов g od — смеси твердого фенола с водным раствором, оЬе — смеси льда с водным раствором. Ниже изотермы doe находится область смеси кристаллического фенола и льда. Диаграмму эту можно рассматривать как диаграмму неизоморфной смеси, усложненную наличием области ограниченной растворимости. [c.207]

    Нитриды d-элементов имеют типичный состав MeN (S N, TiN, VN, rN и др.) и представляют собой металлоподобные соединения с преимущественно металлической связью. Все они твердые непрозрачные вещества, тугоплавки, химически мало активны. Нитриды железа Fe4N, Fe3N образуются при азотировании стали и придают ей твердость, устойчивость к износу и коррозионную стойкость. Нитриды NbN и TaN не растворяются даже в царской водке и имеют температуру плавления около 3000 °С. [c.342]

    Рассмотрим некоторые типичиые случаи двойных систем, характерных для сплавов металлов, которые приводит Н. С. Куриаков. Построим диаграмму состав—свойство (рис. 1.2). По оси абсцисс отложим процентный состав двойной системы, образованной компонентами А и В по оси ординат — температуры плавления. Ординаты крайних точек Л и В определяют температуры плавления взятых компонентов. При образовании растворов ) аблюдается понижение температуры плавления растворителя. Поэтому [c.21]

    Пример 4. о-Динитробензол (1) и ж-динитробензол (2) образуют идеальный раствор и дают диаграмму с простой эвтектикой. Состав эвтектической смеси N = 65 (мольная доля), эвтектическая температура 64° С. Теплоты плавления о-динитробензола и ж-дпнптробензола соответственно равны 130,2 и 100,7 Эж/г. Определить температуры плавления чистых компонентов. [c.197]

    Нитриды и карбиды титана и его аналогов — соединения переменного состава. Все они—кристаллические вещества, химически инертные, очень твердые, тугоплавкие, хорошо проводят электрический ток. Нитрид циркония — один из самых устойчивых в термодинамическом отношении нитридов. Его состав где изменяется от О до 0,42. Карбиды Т1, г и НГ легко образуют сплавы типа твердых растворов с металлами, друг с другом и с карбидами других элементов. Карбиды Т1С, 2гС и НГС плавятся при температурах 3140, 3630 и 3890°С соответстенно. Сплавы НГС (20%) с Т1С(80%) и НГС (20%) с ТаС (80%) самые тугоплавкие их температуры плавления 4000 и 4215°С соответ- [c.284]

    Если компоненты А и В химически взаимодействуют между собой и образуют соединение постоянного состава (АВг, А2В3, АВ ИТ. п.), то оно отражается на диаграмме состав — свойство в виде сингулярной, или дальтоновской, точки (М, т, рис. 3, 4). Состав, отвечающий этой точке, является инвариантным для всех свойств, например, для температуры плавления Тпл, температуры кристаллизации Гкр, вязкости Т1 и т. д. (рис. 3). Образующиеся таким путем соединения подчиняются закону постоянства состава Пруста и закону кратных отношений Дальтона. Поэтому Н. С. Курнаковым они названы дальтонидами. В точке М дальтониды представляют собой чистые индивидуальные соединения АВ. В точках, близких к М, это растворы компонентов А и В в соединении АВ, а в точках, отдаленных от М. где концентрация соединения АВ невелика, имеет место раствор этого соединения в избытке того или другого компонента, А или В. В общем же все другие точки по обе стороны от М (и, следовательно, кроме М) отвечают образованию растворов или фаз переменного состава. [c.67]

    Состав карбидов малоактивных металлов обычно не соответствует их валентности. Часто среди них встречаются субкарбиды, в которых атомы металлических элементов соединены друг с другом, а также карбиды переменного состава. Эти карбиды представляют собой металлоподобные очень твердые, но хрупкие вещества, иногда образующие с элементарными металлами твердые растворы. Все они отличаются сравнительной химической инертностью, не разлагаются водой и кислотами. Карбиды тяжелых металлов наряду с твердостью и химической инертностью характеризуются очень высокими температурами плавления. Все эти свойства обусловлены тем, что карбиды малоактивных металлов являются веществами полимерными. [c.195]


Смотреть страницы где упоминается термин Температура плавления состава раствора: [c.47]    [c.95]    [c.348]    [c.207]    [c.79]    [c.366]    [c.193]    [c.156]    [c.452]    [c.31]    [c.200]    [c.220]   
Кристаллизация полимеров (1966) -- [ c.58 , c.59 ]




ПОИСК





Смотрите так же термины и статьи:

Растворов состав

Температура плавления



© 2025 chem21.info Реклама на сайте