Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хром отделение

    Совместно с шестивалентным молибденом экстрагируются смесью (1 1) ацетилацетона и хлороформа [1061] алюминий, железо, ванадий и титан. Гидратированные ионы трехвалентного хрома ие взаимодействуют с ацетилацетоном и не экстрагируются. Это позволяет отделять молибден, алюминий, железо, ванадий и титан от хрома. Отделение производят при pH водной фазы 2,0. [c.53]

    Хром Отделение от ванадия 3-н. НС1 Метилизобутилкетон [260] [c.165]

    Для производства полистирола и его сополимеров используется несколько способов. Одним из таких способов является блочная термическая полимеризация, которая проводится при нагреве стирола от 80 до 200° С. В непрерывно действующей установке имеется два алюминиевых реактора, в которых при 80° С проводится предварительная полимеризация (рис. 130). Получаемый продукт подается в колонну из хромо-никелевой стали, состоящую из шести отделений. В каждом из них имеется своя температура (100—110 110—120° Сит. д.), увеличивающаяся по мере перехода из одного-отделения в другое. В последнем, нижнем отделении температура 120—200° С. Полимеризат из колонны поступает в вакуум-камеру, где при 250° С отгоняется оставшийся стирол. Расплавленный полистирол подается в воздушный холодильник и гранулируется. [c.343]


    Согласно второй точке зрения, металлы, пассивные по определению 1, покрыты хемосорбционной пленкой, например, кислородной. Такой слой вытесняет адсорбированные молекулы НаО и уменьшает скорость анодного растворения, затрудняя гидратацию ионов металла. Другими словами-, адсорбированный кислород снижает плотность тока обмена (повышает анодное перенапряжение), соответствующую суммарной реакции М гё. Даже доли монослоя на поверхности обладают пассивирующим действием [16, 17]. Отсюда следует предположение, что на начальных этапах пассивации пленка не является диффузионно-барьерным слоем. Эту вторую точку зрения называют адсорбционной теорией пассивности. Вне всякого сомнения, образованием диффузионно-барьерной пленки объясняется пассивность многих металлов, пассивных по определению 2. Визуально наблюдаемая пленка сульфата свинца на свинце, погруженном в НаЗО , или пленка фторида железа на стали в растворе НР являются примерами защитных пленок, эффективно изолирующих металл от среды. Но на металлах, подчиняющихся определению 1, основанному на анодной поляризации, пленки обычно невидимы, а иногда настолько тонки (например, на хроме или нержавеющей стали), что не обнаруживаются методом дифракции быстрых электронов . Природа пассивности металлов и сплавов этой группы служит предметом споров и дискуссий вот уже 125 лет. Представление, что причиной пассивности всегда является пленка продуктов реакции, основано на результатах опытов по отделению и исследованию тонких оксидных пленок с пассивного железа путем его обработки в водном растворе К1 + или в ме-танольных растворах иода [18, 19]. Анализ электроно рамм пле- [c.80]

    Отделение железа от алюминия, никеля, хрома и некоторых других элементов путем осаждения купфероном. С ионами трехвалентного железа купферон образует нерастворимый в кислотах купферонат железа  [c.152]

    Практическое значение имеет применение ртутного катода для отделения большого количества одного или одновременно нескольких металлов, переходящих в амальгаму, от примеси другого металла, остающегося в растворе. Такие элементы, как алюминий, титан, цирконий, фосфор, мышьяк, ванадий и др., не образуют амальгам и остаются при электролизе с ртутным катодом в растворе. Другие металлы, как железо, хром, медь, висмут, серебро, кадмий, молибден, цинк, олово, никель, кобальт и др., легко и количественно осаждаются на ртутном катоде, для электролиза с электролиза применяют различные приборы, [c.202]


    Для отделения урана от хрома и ванадия оказывается существенным то, что ионы U02 + в солянокислом растворе в присутствии избытка ионов S N- образуют желтый U02(S N)s, который можно экстрагировать эфиром или метилизобутилкетоном. Проводят соответствующий опыт. [c.627]

    Отделение фосфатов бария, стронция, кальция, магния, марганца, железа III), хрома, алюминия. Исследуемый раствор обрабатывают избытком концентрированного водного раствора NHg. [c.196]

    Таким образом, при прокаливании осадка образуется 1,52 г Сг О . В фильтрате после отделения гидроксида хрома остались 1.36 г (3,4 — 2,04= 1,36) сульфида аммония, 3,21 г хлорида аммония и 1,02 г сероводорода. [c.75]

    Для регенерации отработанных растворов хромовой кислоты, используемых для органического синтеза, применяют электрохимический способ, при котором ионы хрома (111) анодно окисляются до хрома (VI). Анодное пространство ванны отделено от катодного диафрагмой. Регенерируемый раствор непрерывно пропускают сначала через катодное (с экранированным катодом), а затем через анодное отделение ванны. [c.141]

    Реакции гидролиза также используются для отделения алюминия от цинка, хрома (111) от алюминия, сурьмы (1П) от других катионов и т. д. [c.208]

    Действие ацетата натрия относится к очень важным реакциям качественного анализа и применяется для отделения катионов желез 1, хрома и алюминия от остальных катионов П1 аналитической группы. [c.256]

    Электролиз с применением ртут ного катода является прекрасным ме тодом отделения алюминия, титана циркония, магния, кальция, стронция бария, бериллия, ванадия, фосфата мышьяка и урана от железа, хрома цинка, никеля, кобальта, меди, олова молибдена, висмута и серебра, осаждающихся на ртутном катоде. При этом осаждение ведут из сернокислого раствора. В принципе можно осаждение проводить также из раствора H I, но при этом в электролит необходимо прибавлять гидроксиламин. Схема электролиза с ртутным катодом представлена на рис. 12.6. В качестве анода обычно используют платиновую проволоку. Электролиз проводят при силе тока 5—6 А и напряжении 6—7 В. Конец электролиза определяют капельной пробой на отделяемый элемент. Затем, не прерывая тока, сливают электролит и промывают ртуть водой. Промывные воды присоединяют к электролиту, перемешивают и определяют интересующие компоненты, [c.234]

    Ni(NH3)4] +, [Со(ЫНз)4]Ч [Со(ЫНз)бР+ и др. Очень малоустойчивый аммиакат образует хром(П1) [ r(NH3)6] . Аммиакаты металлов применяют главным образом для разделения ионов. Аммиакат меди широко используют для обнаружения меди, так как он окрашен в интенсивно синий цвет. Аммиакаты никеля и кобальта также окрашены в слабый зеленоватый и темно-красный цвет. Аммиакат хрома образуется только при большом избытке аммиака и частично. Если же в растворе присутствуют ионы, которые осаждаются при действии аммиака в виде гидроксидов, например железо(1И), хром полностью осаждается в виде гидроксида, так что отделение хрома в виде аммиаката невозможно. Другие ионы, образующие аммиакаты, широко применяют для их отделения в виде аммиакатов. [c.265]

    Используемые в нефтедобыче гели могут подвергаться явлению синерезиса (отделение от геля растворителя в результате его усадки) либо набухать при длительном контакте с избыточным количеством воды. Синерезис геля может существенно уменьшать его объем, привести к разрушению межмолекулярных связей и, в конечном счете, к потере изолирующих свойств. К таким же негативным последствиям может привести и набухание геля, т.е. поглощение им воды. Исследовалось влияние на стабильность геля температуры окружающей среды, содержания ионов двухвалентных металлов и pH воды, контактирующей с гелем. Изучалась зависимость набухания и синерезиса, связанных между собой общим законом подобия, от структуры геля, представленной двумя параметрами плотностью хрома и плотностью эффективного сшивания. Плотность хрома является критерием количества сшивателя в геле и определяется числом грамм-молекул иона хрома, связанных с полимерной сеткой, на единицу объема полимера и характеризует химическую структуру гелевой сетки. Плотность эффективного сшивания является мерой числа сшивок в геле, отвечающих за упругость сетки, характеризует физическую структуру геля и определяется числом грамм-молекул упруго - эффективных сшивок в гелевой сетке на единицу объема полимера. [c.84]

    На базе этого метода построено в настоящее время получение изоок-танола из изопентена. Отделение кобальта от продуктов гидроформилирования возможно простым нагреванием до 150—160° под давлением 7 — 10 ат водорода. Кобальт затем отфильтровывается в виде осадка. Для восстановления альдегидов в спирты можно, кроме никеля, использовать также хромит меди или устойчивый против действия серы катализатор, состоящий из сульфида никеля и сульфида вольфрама. В этом случае восстановление ведут при 200° и 200 ат давления водорода. [c.218]


    Образование осадков [5.24, 5.55, 5.64]. Очистка сточных вод данным методом заключается в связывании катиона или аниона, подлежащего удалению, в труднорастворимые или слабодиссоции-рованные соединения. Выбор реагента для извлечения аниона, условия проведения процесса зависят от вида соединений, их концентрации и свойств. Очистка сточных вод от ионов цинка, хрома, меди, кадмия, свинца в соответствии с санитарными нормами возможна при получении гидроксидов этих металлов. Более глубокая очистка воды от иона цинка достигается при получении сульфида цинка. Очистка от ионов ртути, мышьяка,- железа также возможна в виде сульфидов ртути, мышьяка и железа. Использование в качестве реагента солей кальция позволяет провести очистку сточных вод от цинк- и фосфорсодержащих соединений. В результате очистки получается суспензия, содержащая труднорастворимые соли, отделение которых возможно методами отстаивания, фильтрации и центрифугирования. [c.492]

    Положенное в США в основу производства синтетическою каучука дегидрирование бутанов и бутенов изучалось Гроссом [43] и Моррелем [44]. В качестве катализаторов этими авторами были использованы хром-молибден и окись ванадия, нанесенная на глинозем. Над теми же катализаторами, приготовление которых было описано Гроссом, может быть осуществлено и дальнейшее дегидрирование олефинов в диолефины [45]. Последнюю реакцию, в отличие от дегидрирования парафиновых углеводородов, осуществляют иод вакуумом в 0,25 атм при 600—6.50 и времени контакта от0,3 до0,03сек. Выход бутадиена за проход колеблется в пределах от И до 30%, а максимальный выход 1,3-бутадиена из бутонов достигает 1 % (при отделении сажи, не превышающем 10%). В С(>СР этот путь синтеза дивинила разрабатывался П. Д. Зелинским, О. К. Богдановой, А. П. Щегловой, М.П. Марушкиными Л. Н. Павловым [46, 47].Производство каучука, а затем резины потребовало, в свою очередь, преодоления ряда новых трудностей. Мы приведем лишь два примера, относящихся к полимеризации смесей дивинила п стирола и к производству сажи. [c.474]

    Образование труднорастворимых комплексных соединений фтора. Из этой группы реакций наибольшее значение имеет образование соединений типа криолита Na.,[AlFJ аналогичные труднорастворимые комплексы образуют ионы трехвалентного железа и трехвалентного хрома. Эти соединения используются для отделения названных элементов, а также для весового и объемноаналитического их определения. В последнем случае необходимо иметь в виду, что состав осадка в обычных условиях не точно отвечает приведенной формуле, а именно содержание фтора в нем меньше (2А1Рз 5КаР) криолит Na,[AlP,. 1 устойчив только в присутствии определенного избытка фтористого натрия в растворе. [c.427]

    Р. И. Агладзе внес предложение использовать для получения чистого хрома некондиционный малоуглеродистый феррохром, который анодно растворяется в 10— 20%-ном растворе NaOH с образованием Na2 r04 и Ре(ОН)з. Полученные растворы после фильтрования и упаривания разлагают репкой серной кислотой для отделения сульфата натрия. Полученный концентрированный раствор хромового ангидрида подвергают перекристаллизации с целью удаления избыточного сульфата и после очистки—электролизу со свинцо вым анодом. [c.540]

    В лабораторных условиях для более полного отделения металла от шлака оксида хрома (VI) следует брать несколько больше. Шихту составляют из 10 г безводного оксида хрома (VI), 40 г оксида хрома (1Н) и 19,59 г алюминия. При исиользованнн дихромата калия смесь составляют из 35 г оксида хрома (III), 25 г дихромата калия и 17 г алюминия. Для снижения алюминия в хроме его берут для восстановления на 3—4% меньше теоретически рассчитанного. Реакции проводят, как было оиисано (ч. I, гл. II, 1). [c.224]

    Отделение А - " - и Сг -ионов от Ре " - и В -ионов. Осадок 2 обрабатывают при нагревании 5—6 каплями 6 н. раствора щелочи и 3—4 каплями 3%-ного раствора перекиси водорода. При этом происходит растворение фосфатов алюминия и хрома и окисление Сг " -ионов в Сг04 -ионы. [c.59]

    Раствор, полученный после отделения сульфидов кобальта и никеля, обрабатывают 20%-м раствором NaOH и пероксидом водорода. При кипячении смеси выпадает осадок, содержащий Ре(ОН)з и МпОг, з в ))a -творе остаются [Zn(0H)4] , [А1(ОБ),] и хромат-ионы rOf, образовавшиеся при окислении хрома(1П) пероксидом водорода раствор имеет желтую окраску, характерную для хромат-ионов. [c.296]

    Открытие катионов ашминия и отделение катионов алюминия и хрома Сг ". К осадку фосфатов трехвалентных катионов прибавляют 5—6 капель 6 моль/л раствора гидроксида натрия и 4—6 капель 3%-го раствора пероксида водорода Н2О2. Раствор нафевают. Фосфаты алюминия и хрома растворяются, причем хром(Ш) окисляется пероксидом водорода до хромат-ионов СгО . Фосфаты висмута н железа остаются в осадке. [c.309]

    Отделение проводят следующюл образом. Если в предварительных испытаниях не были обнаружены кагионы железа(П1) Ре необходимые для полного осаждения фосфата хрома(П1), но обнаружены катионы хро-ма(1И) Сг , то вначале к расгвору. гюлученному на предыдущей стадии, прибавляют -0,5 мл раствора хло Я1Д1 железа(И1). [c.318]

    Металлы целесообразно выделять цинком после отделения серебра, ртути и свинца в виде хлоридов и щелочноземельных металлов и свинца в виде сульфатов. В растворе остается достаточно кальция для его обнаружения, особенно если раствор упарить, так как растворимость СаЗО 2,5 г/л. Его можно обнаруживать в виде оксалата кальция. При этом алюминий, хром, марганец, железо дают растворимые комплексы (Ме(С204).. 1 , не мешающие обнаружению кальция. [c.151]

    Явление амфотерности играет большую роль в химическом анализе. Например, для отделения Zn , Al -и Сг+ +-ионов от остальных катионов HI аналитической группы можно воспользоваться дснстпнем избытка щелочи, осаждающей все остальные катионы в виде 1И/1рооки-сей при этом в растворе остаются цинкат, алюминат и хромит. С другими конкретными случаями проявления амфотерности и использованием этого свойства в целях анализа познакомимся при детальном изучении свойств катионов Н1, IV и V аналитических групп. [c.204]

    Отделение ионов алюминия и хрома. Осадок 1 обработайте при нагревании несколькими каплями воды и NajOa (или NaOH -f Н2О2) при этом осадок частично или полностью растворяется. Если осадок полностью не растворится, отделите его центрифугированием. [c.277]

    Отделение ионов алюминия н хрома (осадок 1) H20+Na,0., или Na0H-fH 02 (при кипячении) Осадок 2 Ре(ОН)з (далее нс-исследуется) Раствор 2 АЮГ", СгОГ —  [c.282]

    Металлические матрицы перед гальваническим процессом также очищают кроме того, для облегчения отделения гальванокопин от матрицы на нее наносят очень тонкий (1—2 мкм) промежуточный слой никеля или серебра, который легко химически оксидируется. Затем матрицу помещают В гальваническую ванну и получают с нее точную пустотелую копию ИЗДелия. При СЛОЖНЫХ формах изделий (бюсты, статуи) их делят НЗ дзс И дзжб три части, ДЛЯ каждой из которых изготавливают свою матрицу и копию. Затем отдельные копии соединяют друг с другом пайкой. Широкое применение получила гальванопластика в полиграфии. Свинцовую пластину накладывают на цинковое или медное клише, предварительно смазав керосином или раствором воска в бензине, после чего прессуют оттиск под давлением 50—100 МПа. Полученную матрицу отделяют от оригинала и помещают в гальванопластическую ванну, где снимают копии с клише из меди, а затем методами гальваностегии покрывают их тонким слоем никеля, железа или хрома. Если цинковое клише выдерживает 25—30 тыс. оттисков, а медные копии — до 200— 250 тыс., то покрытые никелем или железом — до миллиона оттисков, а хромированные — до полутора миллионов оттисков, [c.347]

    Основные условия синтеза в этом случае такие же, как при варианте с взвесью катализатора, но олефиновое сырье и синтез-газ пропускают нисходящим потоком через реактор, заполненный катализатором — твердым кобальтом на пемзе. Для восполнения потери кобальта, выщелачиваемого из слоя в виде карбонила, к сырью добавлялась кобальтовая соль жирной кислоты. Рациональным выбором аниона этой соли достигалось легкое выделение ее из продукта реакции. Вместо охлаждающих змеевиков для отвода тепла реакции применяли рециркуляцию достаточного количества газа температура в реакторе повышалась не более чем на 11—17°. На ступени гидрокарбонилирования был установлен лишь один реактор. Жидкий продукт после отделения газа обрабатывали водородом при 200 ат и 100—120° для разложения растворенного карбонила и осаждения металлического кобальта на слое пемзы. Эта операция декобальтизации осуществлялась в реакторе, аналогичном реактору гидрокарбонилирования, но при вдвое большей объемной скорости. После работы в течение времени, достаточного для насыщения пемзы, кобальт регенерировали, растворяя в азотной кислоте или превращая в карбонил обработкой окисью углерода. Образующийся карбонил можно абсорбировать спиртом, получаемым в процессе, и возвращать на ступень гидрокарбонилирования. Декобаль-тизированный продукт гидрировали обычным способом на соответствующем катализаторе. На установке в Людвигсгафене для этого применяли хромит меди. [c.277]

    Напротив, отложения накипи, коррозионные образования в трубках пароперегревателей, золовые образования на экранных трубах - все эти материалы весьма трудно растворимы даже в концентрированных кислотах. Для их разложения (вскрытия) обязательно тщательнейшее измельчение. Это может быть достигнуто только длительным истиранием в агатовой или яшмовой ступке, так как фарфор недостаточно тверд для частиц этих материалов. Истирание целесообразно сопровождать отделением шариков грата, которые не должны, естественно, попадать в анализируемую порцию (в навеску). Состав отло5кений, которые образуются при эксплуатации теплосилового оборудования, весьма разнообразен. Так, отложения из проточной части турбин обычно состоят из соединений натрия, кремниевой кислоты, окислов железа и меди. Однако встречаются отложения, состоящие преимущественно из окиси алюминия, а также содержащие значительное количество молибдена, хрома, марганца и других элементов. [c.411]


Смотреть страницы где упоминается термин Хром отделение: [c.58]    [c.140]    [c.103]    [c.144]    [c.152]    [c.19]    [c.259]    [c.198]    [c.177]    [c.200]    [c.240]    [c.332]    [c.338]    [c.185]    [c.226]   
Методы аналитической химии Часть 2 (0) -- [ c.0 ]

Методы аналитической химии - количественный анализ неорганических соединений (1965) -- [ c.909 , c.914 ]




ПОИСК







© 2024 chem21.info Реклама на сайте