Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сера адсорбция ее действие ее на катализатор при

    Его дезактивирующее действие выражается в создании пространственных затруднений при адсорбции углеводородов на активных центрах контакта. При значительных количествах сульфатной серы на носителе происходят фазовые превращения, обусловленные переходом определённого количества оксида алюминия в сульфат, плотность которого в 1,5 раза ниже. Эти переходы сопровождаются перестройкой структуры носителя и уменьшением размера транспортных пор, -и это снижает механическую прочность катализатора и ухудшает условия массообмена. [c.55]


    Установлено [166], что на активность синтетических алюмосиликатных катализаторов сернистые соединения влияют незначительно. В то же время активность и селективность природного катализатора при переработке сернистого сырья снижалась. Вначале предполагали, что это вызвано заменой гидроксильных групп катализатора группами 5Н [166] или адсорбцией соединений серы на активных центрах [167]. Однако исследования [64] показали, что дезактивация природных катализаторов сернистыми соединениями связана с присутствием в них железа. После разработки методики удаления железа из глин [64] удалось получить природный катализатор с такой же устойчивостью к действию сернистых соединений, как и синтетический. [c.125]

    Интенсивность действия каталитического яда тем выше, чем больше энергия его химического взаимодействия с активным компонентом катализатора, чем труднее его химическая регенерация или десорбция яда. Обычно дезактивирующая способность каталитического яда растет с увеличением его атомной или молекулярной массы. Так, отравляемость гидрирующих катализаторов никель — оксид хрома соединениями серы, селена и теллура растет от S к Те. С другой стороны, отравление металлических (Pt, Ni) катализаторов органическими соединениями серы (меркаптаны, сульфиды) растет с увеличением длины цеии органического радикала фиксированная на активном участке поверхности атомом серы молекула яда вращающимся вокруг него по поверхности алифатическим радикалом экранирует и ближайшие участки поверхности, препятствуя адсорбции на них компонентов реакции. Частичное отравление энергетически неоднородной поверхности может в случае сложных реакций влиять на течение лишь отдельных стадий, чем можно регулировать селективность каталитического действия и повышать выход целевого промежуточного продукта торможением последних (или параллельных) стадий процесса. Практически важным случаем является дезактивация катализаторов побочными продуктами реакции, отлагающимися на поверхности, например закоксовывание катализаторов нефтехимических про- [c.305]

    В последнее время установлена связь между величиной работы выхода электронов (Дф) серебра и наличием разных примесей в катализаторе При адсорбции кислорода на серебре работа выхода электронов увеличивается. Такое же действие наб-людалось при введении добавок серы, фосфора, селена и других металлоидов. С увеличением работы выхода электронов уменьшается активность серебра и увеличивается избирательность процесса окисления. Различие скоростей реакций, вызванное модифицированием катализатора, связано, по-видимому, с изменением поверхностных концентраций компонентов. Так как скорости реакции образования окиси этилена и реакции глубокого окисления этилена до двуокиси углерода по-разному зависят от содержания кислорода, то, по мнению авторов , их уменьшение с увеличением работы выхода электронов происходит различным образом с возрастанием порядка реакции по кислороду (для Wl порядок 0,4—0,7 для — примерно 1,1) скорость образования двуокиси углерода сильнее уменьшается с изменением Дф. Следовательно, увеличение работы выхода электронов приводит к росту селективности окисления этилена. [c.221]


    Поведение других металлов различно. Платина и никель проявляют специфическое взаимодействие некоторых плоскостей своих кристаллов с серой, повышая тем самым как селективность, так и активность (см. разд. 6.2). Подтверждено [16], что это происходит вследствие как реконструкции поверхности катализатора, так и разницы в поверхностной энергии различных кристаллографических плоскостей металла, обладающих низкими индексами Миллера. Считают, что адсорбция небольших количеств НгЗ изменяет энергетический баланс поверхности и приводит к новому равновесному распределению плоскостей с различной каталитической активностью. Такое объяснение имеет важные последствия для тех типов реакций, на которые влияют отравление катализаторов сероводородом или реконструкция поверхности под его действием. Таким образом, этот вид отравления должен влиять в значительно большей степени на такие структурно-чувствительные реакции как гидрогенолиз и изомеризация, чем на такие структурно-нечувствительные реакции как гидрогенизация. [c.150]

    Отравляющее действие [289] таких газов, как окись углерода, двуокись углерода, двуокись серы, окись азота и двуокись азота, на катализаторы, применяемые в синтезе аммиака, меньше при повышенных температурах (515°), чем при низких температурах (430°). Подобным образом, отравление адсорбцией Водорода железного катализатора, промотированного окисью алюминия [c.388]

    Сернистые соединения при адсорбции на металлической поверхности вызывают изменения поверхностной энергии катализатора. Если адсорбированные примеси изменяют свободную поверхностную энергию различных кристаллических граней, то это может привести к перестройке поверхностной структуры с образованием кристаллических граней с меньшей свободной поверхностной энергией в присутствии примесей, чем в их отсутствие [371]. Так, под воздействием серы (H2S) происходит перестройка поверхностных граней (111) кубической гранецентрированной решетки платины в грани (100), что сопровождается уменьшением свободной энергии поверхности платины. Показано, что к такому типу отравления чувствительны те реакции, которые чувствительны к изменению структуры контакта. Предложено в зависимости от типа взаимодействия серы с платиной вводить в катализатор для стабилизации поверхностной структуры электронодонорные (если сера действует как акцептор электронов) или электроноакцепторные (когда сера — донор) добавки. Автор полагает, что сера может влиять на направление каталитических реакций за счет взаимодействия с адсорбированными молекулами без поверхностной перекристаллизации. В этом случае необходимо, чтобы концентрация ее на поверхности была близка к монослойному покрытию контакта. [c.144]

    Активные катализаторы очень чувствительны к отравлению молекулами посторонних веществ. Особенно сильными ядами являются молекулы со свободной парой электронов, которые могут участвовать в образовании ковалентных связей с поверхностью твердых веществ. В качестве примеров таких соединений можно привести аммиак, фосфины, арсины, окись углерода, двуокись серы и сероводород. Другие яды содержат водород, кислород, галогены и ртуть. Молекулы перечисленных веществ адсорбируются в порах катализатора и экранируют часть его активной новерхности, т. е. отравляют катализатор. При этом молекулы реагирующих веществ должны транспортироваться к неотравленной части поверхности, до того как произойдет реакция, следовательно, отравление приводит к увеличению среднего расстояния, которое, должны преодолеть молекулы реагента, диффундирующие через поры. Выведенное в разделе 4.5.2.2 уравнение применимо к отравленным поверхностям. Таким образом, мы различаем два типа отравления катализаторов а) однородную адсорбцию яда и б) селективное отравление. В первом случае молекулы яда равномерно распределяются по всей поверхности во втором — действию яда сначала подвергается наиболее активная часть наружной поверхности, а затем яд постепенно распространяется вдоль пор катализатора. [c.209]

    Дальнейшие опыты по исследованию взаимного влияния адсорбированных веществ показали, что многие вещества в отличие от воды способны оказывать резкое специфическое тормозящее действие на реакцию дегидратации в адсорбированном слое [21, 22, 28]. При выборе таких веществ (табл. 6) мы исследовали преимущественно соединения, в молекулах которых были места с избыточной электронной плотностью, создаваемой свободными парами электронов на атомах кислорода или азота. Особенность строения таких соединений и связанные с ней особенности их адсорбции на твердых катализаторах привлекли к ним внимание физиков-спектроскопистов. В частности, А. Н. Теренин [29, 30] и его ученики и сотрудники [7, 31, 32] опубликовали большую серию работ, посвященных исследованию инфракрасных спектров поглощения таких адсорбированных молекул, причем были обнаружены новые полосы, свидетельствующие о присоединении этих молекул к поверхности и образовании поверхностных адсорбционных соединений, характер которых зависел от природы адсорбата и катализатора. [c.241]


    Исследование серии из восьми образцов катализатора разной активности при давлении 300 атм и изменении соотношения На N2 от 0,5 до 8,0 показало, что при 450° С и выше соотношение скоростей процесса синтеза аммиака на катализаторах разной активности не зависит от соотношения Н2 N2, тогда как при низких температурах (350° С) оно находится в прямой зависимости от соотношения На N2. На всех образцах при 350° С наблюдается значительное торможение процесса водородом, и чем ниже активность катализатора, тем дезактивирующее действие водорода больше. Таким образом, при низких температурах скорость процесса синтеза аммиака лимитируется активированной адсорбцией азота на поверхности, свободной не только от атомов азота или иминных радикалов, но и от хемосорбированного водорода, находящегося в равновесии с водородом газовой фазы. По-видимому, в этих условиях торможение реакции аммиаком прекращается, а возникает торможение водородом. Возможно, существует переходная температурная область. [c.145]

    Влияние металлоидов (О, 5, Ы). на каталитические свойства металлов (Ш, и др.) в окислительно-восстановительных реакциях было показано Рогинским с сотрудниками в 1935 г. [368]. Дальнейшие систематические работы по действию хлора, брома, иода на каталитическую активность серебра [243] показали возможность регулирования селективности окисления этилена в окись этилена. В 1959 г. Темкин с сотрудниками [390] установил модифицирующее действие серы, селена и теллура на реакцию образования окиси этилена. Авторы считают, что при добавлении в серебро небольших количеств элементов VI группы на поверхности образуются отрицательные ионы (804 , ЗеОз ) при этом энергия адсорбции кислорода снижается, а активность катализатора растет. Уменьшение активности катализатора при высоких, концентрациях электроотрицательной примеси авторы объясняют блокировкой части поверхности. [c.252]

    Каталитические реакции, применяемые в большом масштабе в качестве промышленных процессов, являются в большинстве случаев гетерогенными. Хотя каталитические реакции этого типа уже рассматривались в предыдущих главах, тем не менее здесь будут изложены некоторые специфические случаи гетерогенных каталитических реакций, чтобы показать различия между гетерогенной и гомогенной системами. Для объясне-нения ускоряющего действия катализаторов в гетерогенных системах были предложены различные механизмы, именно 1) катализатор периодически окисляется и восстанавливается [514] 2) электроны, излучаемые из катализатора, ионизируют газы (реагируюыще компоненты), делая их способными реагировать [264], 3) реагирующие компоненты адсорбируются на катализаторе, причем более быстрое превращение происходит благодаря увеличению концентрации на поверхности [154, 177, 178, 470] или созданию условий повышения скорости реакции, и 4) изменяется молекулярное состояние реагирующих компонентов (образование атомов) [55, 514]. Наиболее вероятной причиной ускорения реакции считалась адсорбция газов на катализаторе. В гетерогенном газовом катализе, например, при окислении двуокиси серы в серную кислоту с применением различных катализаторов — платины или ванадиевой и мышьяковой кислот, экспериментально измеряемая скорость реакции — это скорость, с которой сернистый ангидрид диффундирует через слой адсорбированной трехокиси серы, в то время как газы, достигая поверхности катализатора, реагируют почти мгновенно. В противоположность этой группе гетерогенных каталитических реакций имеется другая группа, в которой реагирующие вещества образуют с очень большой скоростью адсорбционный слой на катализаторе, в котором происходит химическая реакция с небольшой скоростью. [c.176]

    В состав технич. резиновых смесей, кроме каучука и вулканизующей системы, входят антиоксиданты, антиозонанты, противоутомители, пластификаторы и наполнители. Эти вещества могут ока.зывать влияние на кинетику В., а также на структуру вулканизационной сетки. Так, стабилизаторы аминного типа часто повышают скорость В., особенно в начальном периоде. Характер действия саж при В. определяется структурой каучука, составом вулканизующей системы и др. ингредиентов резиновой смеси, а также методом В. Сажа — катализатор дегидрогенизации каучука тиильными радикалами она также способствует разложению первоначально образующихся полисульфидных связей и их перегруппировке в поперечные связи с меньшим количеством атомов серы. Адсорбция па частицах сажи макромолекул и вулканизующих агентов способствует расположению потенциально реакциотшх мест макромолекул в положения, выгодные для протекания реакций сшивания, что, с другой стороны, увеличивает неоднородность распределения попереч1[ых связей. Влияние сажи проявляется особенно сильно на начальных стадиях серной В. При этом увеличивается число по- [c.266]

    Под действием катализаторов с сильными протонными центрами из метилового спирта и Н28 образуется метантиол, но указанные катализаторы не активны в тиолировании высших спиртов. Можно предположить, что это связано с быстрым разложением образовавшегося алкалтиола. Известно [83], что данные катализаторы проявляют высокую активность в этом процессе, причем скорость разложения алкантиола повышается с ростом числа атомов углерода в алкильном радикале. В присутствии катализаторов с парными кислотно-основными центрами взаимодействие метилового спирта с Н28 приводит к образованию как метантиола, так и диметилсульфида. В реакции высших спиртов с Н28 образование диалкилсульфидов не наблюдается. Возможно, они разлагаются имеются сведения [83], что каталитическое разложение диалкилсульфидов происходит со значительно большей скоростью, чем алкалтиолов. Но более вероятной причиной различия является образование при адсорбции реагентов неодинаковых поверхностных форм. Метантиол, полученный в результате тиолирования метанола, активируется вследствие ассоциативной адсорбции на основном центре и реагирует с СНзО-фуппой, давая диметилсульфид [16]. Гомологи метантиола при хемосорбции [80] образуют комплекс с участием как атома серы и акцепторного центра, так и 3-атома водорода алкильной фуппы и основного центра. Это приводит к ослаблению и разрыву связи С-8 и выделению алкена и Н28. В общем виде на катализаторах с парными центрами предлагается следующая упрошенная схема протекания реакций. [c.35]

    Рис 5 иллюстрирует действие на никель-хромовый катализатор сернистых соединений тиофена и сероуглерода [20]. Тиофен значительно токсичнее сероуглерода полное отравление наступает при адсорбции одним граммом катализатора 8 мг тиофено-вой серы и около 45 мг сероуглеродной. Причем после снижения активности катализатора до нуля поглощения тиофена в дальнейшем не происходит, тогда как сероуглерод продолжает поглощаться даже каталитически неактивной поверхностью никеля Это объясняется тем, что для хемосорбции тиофена необходима свободная- актив- [c.21]

    При гетерогенном катализе обычно каталитическим действием обладает не вся поверхность катализатора, а лишь ее незначительная часть, так называемые активные центры. В пользу этого говорят следующие факты. Есть вещества, известные под названием каталитически.х ядов, которые, попадая на поверхность катализатора, отравляют его, т. е. выводят из строя. Например, платиновые катализаторы отравляются соеди-непнями мышьяка, селена, те.члура. Соединения серы отравляют катализатор для синтеза аммиака. Отравление катализатора вызывается очень небольшим количеством каталитического ила, достаточным для адсорбции или химического взаимодействия лишь на небольшой части его поверхности. Следовательно, активной в отношении катализа является лишь часть поверхности катализатора. [c.52]

    Во многих случаях активность катализаторов обусловливается небольшими количествами постороннего вещества, изменяющего [26] качественно и количественно хемосорбционные свойства поверхности. Если это изменение приводит к усилению каталитической активности, мы говорим о промоторах , если же активность уменьшается, мы говорим о ядах . От поверхностной концентрации часто зависит, действует ли примесь как промотор или как яд. Атомы серы на поверхности никелевого катализатора гидрогенизации могут действовать как яд по отношению к реакции гидрогенизации, но одновременно они могут приводить к промотированию процесса селективной изомеризации с участием в нем хемосорбированных атомов водорода. Селективная гидрогенизация тройной связи может быть проведена на осторожно отравленном металлическом катализаторе, промотирование которого осуществлено прочно адсорбирова-ными органическими основаниями или металлическими примесями [27]. Во многих случаях действие небольших количеств примесей сильно зависит от их распределения в катализаторах, обладающих микропористой структурой адсорбция в устьях пор может привести к очень сильному отравляющему эффекту, а равномерное распределение — к увеличению избирательности действия [28]. Качественно природа действия примесей часто зависит от знака диполей, которые они образуют на поверхности [13]. [c.159]

    Атом кислорода, действительно, имеет возможность оказаться вблизи атома серы уже по одному тому, что очевидным условием реакции является соприкосновение и кислорода. Наличие таких атомов кислорода на поверхности катализатора доказано Г. К. Боре-сковым [2 ] из кинетических соображений. Кроме того, само появление атомов из адсорбированной молекулы кислорода можно объяснить с помощью схемы в той же левой части рисунка. При адсорбции кислорода будут выполняться два условия. Во-первых, молекула кислорода будет предпочтительно ориентироваться к атому серы (из SOj),. как противоположному по своему характеру сравнительно с атомам кислорода же (из Oj). Во-вторых, независимо от того, произойдет ли адсорбция молекулы Og так, что атомы кислорода будут разделены атомами платины (левая часть рис. 6), или же они будут вместе локализоваться по впадинам решетки (наклонная часть рис. 6), — всё-равно, так же как это имеет место в гидрогенизационном катализе,, молекула окажется растянутой действием вандерваальсовых сил контакта в направлении, указанном стрелками, благодаря чему атомы будут стремиться перейти в ближайшие к ним ложбины решетки. Это— также активированное состояние, здесь деформация молекулы делаег ее более реакционноспособной, содействует появлению атомарного кислорода. В то время как двуокись серы на поверхности платины — хорошо подготовленный акцептор, молекула кислорода является также хорошо подготовленным донором кислородных атомов. В целом, возникает новая структура, образовавшаяся в результате адсорбции, в которой деформированные и потому обладак)Щие ослабленными и частично как бы развязанными химическими связями молекулы уже подготовлены к реакции, как находящиеся в более активном состоянии. Естественно поэтому, что следующим — уже легким — этапом явится возникновение именно той молекулы, которая почти без всяких натяжений, по своим размерам и форме, соответствует рельефу поверхности платинового контакта, а именно молекулы серного ангидрида. Каталитический акт, с этой точки зрения, сводится к облегчению химического акта, как переходу от менее вероятного к более вероятному состоянию — переходу от большей деформации сорбированных моле-К) л к меньшей их деформации. [c.35]

    Отравление катализатора мол ет использоваться на практике и для повышения его селективности, поскольку действие яда в ряде случаев неодинаково сказывается на основные и побочные реакции процесса. Этот прием, известный как селективное отравление, применяется, например, при получении окиси этилена его окислением на серебряном катализаторе. Используемые в качестве яда галогены сильнее подавляют реакцию полного окисления углеводорода, чем целевую реакцию образования окиси этилена. Возможно также селективное отравление катализатора для повышения его избирательности в реакциях газофазного восстановления нитро- и нитрозосоединений. Явление селективного отравления свидетельствует о том, что адсорбция яда может оказывать более сложное воздействие на каталитическую поверхность, чем просто понижение адсорбирующей способности по отношению к реагенту. Показано, что, тогда как на гранях (100) чистого никеля происходит распад метанола на СО и Нг, при адсорбции серы на этих же гранях происходит, наоборот, его синтез. Установлено также, что осериение поверхности Р1 даже повышает адсорбцию на ней алкилароматических углеводородов. [c.100]

    Получаемые из сернистых нефтей В. содержат в своем составе различные сернистые соединения, наличие которых снижает восприимчивость В. к ТЭС. Некоторые сернистые соединения, например HjS, элементарная сера и низшие меркаптаны вызывают коррозию металлов и присутствие их в В. недопустимо. Очистка В. от нежелательных примесей является одним из важных элементов их технологии. Необходимо удаление сернистых соединений, смолистых веществ, органич. к-т и их солей и др. Очистка В. может производиться серной к-той, щелочью, плюм-битом натрия, гипохлоритом, действием водорода под давлением (гидроочистка) и др,, а также обработкой адсорбентами, катализаторами, избирательными растворителями, В. газовые и прямой перегонки из малосернистых нефтей очищаются от сероводорода и меркаптанов щелочью, В случае высокосернистого сырья применяют гидроочистку, Крекинг-Б, обессеривают обработкой щелочью, после чего в них вводят ингибиторы. Последнее время в США получили распространение процессы удаления из В. нормальных парафиновых углеводородов путем адсорбции на высокоизбирательных адсорбентах — цеолитах ( молекулярных ситах ). При этом поры адсорбента заполняются только молекулами углеводородов с прямой цепью. Этот процесс позволяет значительно повысить 04 В, прямой перегонки и термич, крекинга. [c.202]

    В монографии сформулирован общий подход к прогнозированию каталитического действия твердых веществ в реакциях органических соединений серы и показана его плодотворность для подбора катализаторов различных реакций. Впервые систематизированы данные по адсорбции соединений серы и их влиянию на свойства твердых катализаторов, определены границы использования металлов, окислов и сульфидов металлов при катализе реакций сернистых соединений. Изложен обширный экспериментальный материал о закономерностях каталитических превращений тиоэфиров, сульфо-ксидов, сульфонов, тиофенов (гидрирование, гидрогенолиз, дегидрирование, циклизация, дезалкилироваиие, элиминирование, изомеризация, окисление). [c.2]

    Одной из о ень вероятных причин изменения активности катализаторов под влиянием сернистых соединений (так же, как и других ядов) является избирательная адсорбция серусодержащего вещества на активных центрах катализатора. При этом благодаря прочной хемосорбции затрудняется доступ к ним реагирующих молекул (блокировка, экранирование активных центров поверхности). Доказательством существования такого типа отравления служит то, что, по крайней мере в начальной стадии, кривая отравления сернистым соединением совпадает с кривой его адсорбции и наблюдается линейная зависимость каталитической активности от количества введенного сернистого соединения [226, 244, 314, 336, 362, 385]. Если в систему с отравленным серой катализатором внести вещество, которое более прочно хемосорбируется, то отравляющее действие сернистого соединения снимается. Например, осерненный никель неактивен в реакции гидрирования олефинов. В присутствии водорода катализатор проявляет активность в изомеризации бутена и в реакции обмена С2Н4—С2В4 после контакта [c.74]


Смотреть страницы где упоминается термин Сера адсорбция ее действие ее на катализатор при: [c.680]    [c.269]    [c.212]    [c.262]    [c.41]    [c.202]    [c.117]    [c.117]    [c.501]    [c.408]    [c.137]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Действие серы

Катализаторы от серы



© 2024 chem21.info Реклама на сайте