Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ванадий ангидрид

    Дигидрофуран можно каталитическим окислением над пятиокисью ванадия перевести в ангидрид малеиновой кислоты  [c.252]

    Ангидрид малеиновой кислоты получают окислением бензола воздухом-I) паровой фазе над катализатором — пятиокисью ванадия, нанесенной на окись алюминия  [c.268]

    Окисление. Катализаторы окисления поочередно адсорбируют кислород и выделяют его в активной форме. Первичные окислы металлов служат акцепторами не только при окислении элементарным кислородом, но и в присутствии хромовой, марганцовой и хлорноватистой кислот, а также перекиси водорода. Примерами катализаторов различных процессов являются окись серебра (для получения окиси этилена из этилена) серебро или медь (для получения формальдегида из метанола) соединения щелочных металлов, марганца или алюминия (для окисления жидких углеводородов) окислы ванадия и молибдена (для получения фталевого ангидрида из нафталина) раствор нафтената марганца (для получения жирных кислот из высокомолекулярных углеводородов). Чаще всего окисление происходит при повышенных температурах. [c.330]


    Агрессивность УгОз проявляется только тогда, когда этот оксид находится в жидком состоянии. Скорость ванадиевой коррозии возрастает с ростом температуры и при наличии в газовой фазе серного и сернистого ангидридов, а также сульфата натрия. Имеется обширная информация зарубежных фирм об аналогичных коррозионных разрушениях печных деталей установок платформинга, каталитического крекинга и других, где в качестве топлива применяется мазут, содержащий 100 млн. ванадия, 2000 млн. натрия и 35% серы. В этих печах настенные опоры для труб вышли из строя после 14 месяцев работы. [c.175]

    В работах [14, 15] описывается применение катализаторов из корунда, пропитанного расплавом пятиокиси ванадия или смеси пятиокиси ванадия с трехокисью молибдена, соответственно для окисления нафталина и о-ксилола во фталевый ангидрид и бензола в малеиновый ангидрид. [c.183]

    Для окисления нафталина во фталевый ангидрид используют катализатор из плавленой пятиокиси ванадия, получаемой в виде гранул неправильной формы. Пятиокись ванадия в виде порошка или кусков контакта расплавляют в графитовых тиглях в электропечах при 690 °С. [c.197]

    Преимуществом плавленой пятиокиси ванадия как катализатора является ее высокая производительность, а недостатком — относительно низкий выход фталевого ангидрида — порядка 72—73% (на 10—15% ниже выхода на промотированных ванадиевых катализаторах). [c.177]

    Указанный метод состоит в том, что носитель (сорбент) растворяется в расплаве ванадатов щелочных металлов, меняя ири этом свою макроструктуру. Это было установлено при создании износоустойчивого ванадиевого катализатора КС для окисления сернистого ангидрида во взвешенном слое. Этот катализатор был получен путем пропитки носителя — алюмосиликатного катализатора крекинга — раствором солей ванадия с последующей его термической обработкой [89—94, 147—149, 153]. Как известно, алюмосиликатный катализатор крекинга — материал, имеющий вполне определенную, сформировавшуюся глобулярную пористую структуру [84, 122]. Радиус большинства иор составляет единицы и десятки ангстрем. При прокаливании пропитанного соединениями ванадия (например, КУОз) алюмосиликата, структура его изменяется следующим образом радиус иор увеличивается на 1—3 порядка при пропорциональном уменьшении удельной поверхности суммарный же объем изменяется очень незначительно. Результаты, свидетельствующие о трансформации структуры алюмосиликата, представлены на рис. 33. Данные отражают средние результаты многочисленных серий опытов. [c.86]

    Плавленая пятиокись ванадия является одним из лучших катализаторов окисления нафталина во фталевый ангидрид [2, 186— 188]. Катализатор производят в виде гранул неправильной формы желтого цвета с характерным металлическим блеском и следующими характеристиками  [c.165]


    В течение последних 15 лет в СССР были разработаны в опытно-промышленном масштабе процессы получения малеинового ангидрида окислением фурфурола, бутиленовой фракции, полученной после первой стадии дегидрирования бутана, а также пипериленовой фракции, являющейся побочным продуктом процесса производства изопрена дегидрированием изопентана. Разработаны катализаторы, предназначенные для работы в неподвижном слое. Катализатор окисления фурфурола, состоящий из окислов ванадия, молибдена, фосфора, никеля и натрия, нанесенных на непористый носитель, позволяет довести выход малеинового ангидрида на стадии контактирования до 60%. Катализатор окисления бутиленовой и пипериленовой фракций, состоящий из модифицированной ванадий-фосфорной массы, нанесенной на шариковый силикагель, при 450 °С обеспечивает выход по малеиновому ангидриду 54—50% и производительность более 100 кг /(м катализатора-ч). [c.213]

    В промышленности известно большое число процессов синтеза малеинового ангидрида. Различия в технологических схемах в основном относятся к способам выделения и очистки малеинового ангидрида, стадия окисления бензола практически одинакова. Окисление проводят в газовой фазе на стационарном слое катализатора при массовом соотношении бензол воздух, равном 1 (25- 30). Избыток воздуха по сравнению с теоретическим предотвращает возможное образование взрывоопасных смесей и способствует сохранению активности катализатора, так как активный оксид ванадия (V) может восстанавливаться в неактивный оксид ванадия(IV). Вследствие большого разбавления реакционной смеси воздухом концентрация малеинового ангидрида в продуктах реакции невелика, и обычно в реакционном газе содержится (%, об.)  [c.66]

    Аппаратурное оформление процесса окисления антрацена подобно производству фталевого ангидрида. Катализаторами окисления служат оксиды ванадия (V) или оксиды ванадия с различными добавками обычно используют катализаторы, содержащие оксиды ванадия и железа [128, с. 72]. Наряду с антрахиноном образуется некоторое количество фталевого и малеинового ангидридов. Выход антрахинона составляет 74% (мол.) или 86% (масс.), а степень превращения во фталевый ангидрид 3—5% [151]. [c.103]

    Большинство известных катализаторов, применяемых при производстве фталевого ангидрида как из нафталина, так и из о-ксилола. содержит в качестве главного активного компонента- пятиокись ванадия. Хотя реакция и выход целевого продукта до некоторой степенк зависят от наличия промоторов и от физического состояния нримопяемого катализатора, особенно от отношения поверхность объем, эти влияния здесь ие учитывались. Для иллюстративнЬ1х целей служил катализатор из очищенной пятиокиси ванадия, нанссенлой в расплавленном состоянии на инертный носитель, например на гранулированный алюмииий (размер зерна от 14 до 30 меш) [5]. При скорости подачи 0.12 моля углеводорода в час (на каждый моль углеводорода подавалось 103 моля воздуха) на 51 см катализатора, имеющего 48% свободного объема, в трубке диаметром 12,5 мм можно получить выход 68% от теоретического, если максимальная температура катализатора находится в пределах 500—600°. Эти условия соответствуют времени контакта около 0Д2 сек. [c.9]

    Минимальная температура, необходимая для инициирования окисления, больше зависит от катализатора, чем от природы окисляемого [4] углеводорода. При применении в качестве катализатора ванадата олова о-ксилол можно окислить даже при температуре 270°, тогда как при применении чистой плавленой пятиокиси ванадия минимальная темпсфатура окисления будет около 425°. Выделяющееся тепло реакции быстро нагревает слой катализатора до более высокой температуры. Обычно реакция контролируется путем регулировки температуры охлаждающей бани таким образом, чтобы максимальная температура, измеряемая в слое катализатора, поддерживалась постоянно в нужном интервале. Максимальные гемпературы катализатора, лежащие несколько ниже 525°, благоприятны для получения продуктов более низкой степени окисления, чем фталевый ангидрид, например альдегидов. При температурах, значительно превышающих 600°, происходит чрезмерное переокисление и реакцию становится трудно контролировать. [c.10]

    Фталевый ангидрид получают при окислении воздухом о-ксилола или нафталина. В первом случаев качестве катализатора применяют пятиокись ванадия при температуре 482—621 °С и времени контактирования 0,1—0,15 сек. Новые катализаторы для окисления нафталина содержат 10% УзОз, от 20 до 30% Ка504, остальное—кремнезем. Обычная установка с неподвижным слоем работает при температуре 340—375 °С и избыточном давлении 0,5 ат время контактирования 4,2 сек, объемная скорость 0,07 катализатора. Установка с кипящим слоем ра- [c.333]

    При окислении бензола кислородом воздуха над пятиокисью ванадия при 400—500° С с выходами порядка 50—60% образуется малеиновый ангидрид, а также небольшие количества фумаровой кислоты. Малеиновый ангидрид одновременно получается в виде побочного продукта нри производстве фталевого ангидрида. В отличие от ксилолов, этилбензол втягивается в химическую переработку не путем окисления, а путем дегидрирования (получение стирола). [c.589]


    Большая конверсия в продукты горения объясняется и необходимостью проведения процесса с большим избытком воздуха (почти 5-кратным) во избежание восстановления пя-тиокиси ванадия в его неактивную двуокись. Поэтому так невелика концентрация малеинового ангидрида в продуктах реакции (около 1%) выделение его из этих газов (абсорбцией водой) обходится довольно дорого. [c.172]

    Оксид ванадия (V), или ванадиевый ангидрид, V2O5 — вещество оранжевого цвета, легко растворимое в щелочах с образованием солей метаванадие вой кислоты HVOj, называемых ван а датами. - [c.652]

    Ванадиевый ангидрид и ванадаты применяются в химической промышленности в качестве катализаторов при контактном способе получения серной кислоты и при некоторых органических синтезах. Соединения ванадия используются также в стекольной промыш- яенпости, в медицине, в фотографии. [c.653]

    Существует точка зрения, что металл окисляется пятиокси-дом ванадия, при этом оксидная пленка разрушается и обнажается поверхность металла, который в дальнейшем также ускоренно разрушается. Кроме того, на оголенный металл может усиленно воздействовать серный ангидрид, который образуется в результате окисления сернистого газа, чему ванадий способствует как катализатор. [c.153]

    Низкотемпературная коррозия шеевиков и дымовых труб печей продуктами сгорания топлива. При сжигании сернистого топлива в топочных газах появляется значительное количество серного ангидрида, сероводорода, диоксида углерода, водяных паров, кислорода и других компонентов, вызывающих интенсивную низкотемпературную коррозию трубчатого змеевика И дымовой трубы. Особенной агрессивностью коррозионного воздействия отличается серный ангидрид. Его образование зависит от используемого для сжи1 ания топлива избытка воздуха. В случае неправильной эксплуатации горелок или при нарушении герметичности топки увеличивается поступление воздуха в печь, что приводит к возрастанию коэффициента избытка воздуха до очень высоких значений (1,5—2,0) и усилению коррозии. Активность влияния серного ангидрида на металл значительно увеличивается при каталитическом действии пятиоксида ванадия в присутствии водяного пара, подаваемого на распыление топлива и образуемого при его сжигании. [c.155]

    На примере окисления углеводородов на гетерогенных окисных катализаторах было установлено, что в жидкофазном процессе в ряде случаев образуются иные продукты, чем в газофазном с той же исходной системой [77, 78]. Продукты реакции при этом приближаются к продуктам реакции жидкофазного цепного окисления с гомогенными катализаторами из растворимых солей металлов переменной валентности. Так, о-ксилол в газовой фазе окисляется на пятиокиси ванадия во фталевый ангидрид, а в жидкой — в о-толуи-ловую кислоту, которая получается при окислении о-ксилола в жидкой фазе и с солями кобальта и марганца. В некоторых работах роль поверхности окисных катализаторов при жидкофазном окислении углеводородов сводят только к генерированию радикалов для ценного процесса, протекающего в объеме [79, 80]. Однако исследования [c.42]

    Чувствительность катализаторов к воздействию высоких температур связана с рядом различных явлений. Прежде всего повышение температуры размораживает дефекты решетки катализаторов (как полупроводниковых, так и металлических), приближая систему к равновесию. Такое изменение дефектного состояния решетки неизбежно приводит к изменению активности катализатора в большинстве случаев к ее понижению [47 ]. Далее, повышение температуры и приближение ее к температуре плавления материала вызывает значительное ускорение самодиффузии в твердом веществе и, как следствие этого, — яв.чение спекания, приводящее к уменьшению поверхности катализатора. Как указывалось ранее, это во многих случаях приводит к понижению активности катализатора. Примеров такого рода явлений описано очень много можно указать на работу Борескова с сотрудниками но катализатору парофазного гидролиза хлорбензола [48 ] и работу Битенаж по алюмосиликатным катализаторам [49]. Еще одним следствием повышения температуры может быть превращение каталитически активных соединений в неактивные. Например, при температуре выше 500° С в смешанном катализаторе окисления нафталина во фталевый ангидрид происходит взаимодействие сульфата калия с сульфатом ванадия и образуется каталитически неактивный ванадат калия. Кро е указанных явлений, при высоких температурах может происходить растрескивание или расплавление всей массы катализатора, или носителя. [c.199]

    Производство малеинового а нгидрида окислением бутилена.. Как известно, малеиновый ангидрид в настоящее время получают окислением бензола кислородом воздуха в присутствии катализатора—пятиокиси ванадия, аналогично получению фталевого ангидрида окислением нафталина. Процесс этот весьма сложен и идет с низкими выходами порядка 50% от теоретического. В последнее время исследована возможность получения малеинового ангидрида окислением бутилене. В создаваемом комплексе нефтехимических производств намечается осуществить синтез малеинового ангидрида из бутилена. Дальнейшая переработка его будет вестись путем совместной конденсации с ( алевым ангидридом и дизтиленгликолем. [c.372]

    Соединения ванадия используют как катализаторы в производстве H2SO4, при окислении спирта, гидрогенизации олефинов, получении фталевого ангидрида, уксусной кислоты, ряда красителей и т. д. Карбиды ниобия и тантала вместе с карбидами некоторых других металлов являются исключительно термостойкими н твердыми материалами (т. пл. Nb 3500 °С, т. пл. ТаС 3900 °С), Изделия из них получают методом порошковой металлургии. [c.525]

    Здссь При практически полной конверсии о-ксилола селективность по фталевому ангидриду оказывается значительно более низкой, а выход малеинового ангидрида возрастает до 5—8%, и на крупных установках становится выгодным выделять его из полученных смесей в виде товарного продукта. Лучшим катализатором окисления о-ксилола является оксидный ванадий-титановый контакт, на котором выход фталевого ангидрида достигает 70—75% при 370— 40( °С. Несмотря на более низкий выход фталевого ангидрида, про-изьодство его из менее дорогостоящего о-кснлола растет. [c.430]

    Лучшим катализатором окисления бензола оказалась смесь оксидов ванадия и молибдена, которую обычно наносят на широко-пористый А12О3. Катализатор часто модифицируют оксидами фосфора, титана, бора. Оптимальная область температур 350—400°С, иричем выход малеинового ангидрида, как правило, составляет 70-75%. [c.432]

    В установках с кипящим слоем применяют катализаторы, в основном, того же состава, что и в установках с неподвижным слоем. Первоначально в промышленных агрегатах КС применяли плавленую пятиокись ванадия, но в дальнейшем ее заменили промоти-рованным катализатором ца силикагеле, обеспечиваюпщм более высокие выходы фталевого ангидрида. Этот катализатор [119—121] характеризуется следующим составом (в вес. %) VjOg — 6—9, К2О — 11—13, SO3 — 19—22, SiOa — 58—64, окислы и соли железа в пересчете на Fe не более 0,2, [c.177]

    Ройтером с сотрудниками [118, 123, 125] подробно исследовано влияние макрофакторов на избирательность процесса окисления нафталина на плавленой пятиокиси ванадия. Этот катализатор обладает значительной внутренней поверхностью, труднодоступной для газов вследствие большой извилистости и малого диаметра пор. Процесс протекает, в основном, во внутридиффузионной области, переходя при температуре выше 400° С во внешнедиффузионную область с резким разогревом катализатора. Внутри пор катализатора вследствие затруднения диффузионного обмена и увеличения времени контакта образующийся из нафталина фталевый ангидрид окисляется до конечных продуктов СО и НаО, что приводит к снижению избирательности по фталевому ангидриду. [c.179]

    Энергетические факторы необходимо сочетать со структурными соответствиями молекул реагентов и катализаторов [55]. Так, например, в элементарной ячейке пятиокиси ванадия имеются такие расстояния между атомами кислорода, которые весьма близки к длине связи между атомами углерода в молекуле бензола и других ароматических веществ. Пятиокись ванадия — хорощий катализатор для процессов окисления толуола и нафталлна во фталевый ангидрид [17]. [c.36]

    Пятиокись ванадия в виде порошка или кусков контакта, уже бывших в работе, расплавляют в графитовых тиглях в электропечах при 690 °С. Расплав выливают на стальные противни (20 X X 10 X 2 см) слоем / -3 мм. Образовавшиеся при застывании расплава пластины дробят и рассеивают в валковой дробилке с классификатором. В промышленности используют гранулы размером 8—10 мм (1фупная фракция) и 5—8 мм (мелкая фракция). Преимуществом плавленой V2O5 по сравнению с другими известными катализаторами окисления нафталина является ее высокая производительность недостатком — относительно низкий выход фталевого ангидрида 72—73% (на 10—15% ниже выхода на промотированных ванадиевых катализаторах). [c.165]

    В вихревом реакторе целесообразно проводить и санитарную очистку газов, содержащих органические примеси выше критических концентраций. В этом случае внутренняя поверхность трубы покрывалась нами соответствующей катализаторной пленкой [62]. В выявленных нами более поздних публикациях по исследованию трубчатых реакторов со слоем катализатора, нанесенным на стенки трубок, например, для получения малеинового ангидрида из нафталина на катализаторе с пятиокисью ванадия (для интенсификации тепло- и массообмена трубку заполняли инертной насадкой — кольцами Рашига) [63, 65], для окисления аммония на кобальтовом катализаторе (С03О4) не раскрывается технология приготовления и нанесения катализаторных покрытий. [c.128]

    Катализаторы окисления ароматических углеводородов. Среди гетерогенных процессов окисления ароматических углеводородов в кислородсодержащие продукты наибольшее распространение получили парофазные процессы синтеза малеинового ангидрида из бензола и фталевого ангидрида из нафталина и о-кси-лэла. В качестве основного компонента катализаторов служат соединения ванадия [461. [c.416]

    Получение малеинового ангидрида окислением бензола. При окислении бензола используются модифицированные ванадий-молибденовые катализаторы. Модифицирующими добавками служат соли кобальта, никеля, фосфора, натрия, вольфрама, титана и т. д. Каталитическая масса формуется в гранулы или наносится на носитель, в качестве которого чаще всего используется a-AlyOg. Основная реакция  [c.209]

    Различие в расходных показателях процессов объясняется, с одной стороны, технологией производств и их отлаженностью, а с другой, свойствами используемых катализаторов. В настоящее время в промышленности используются катализаторы, обеспечивающие выход малеинового ангидрида 68—72% в расчете на пропущенный бензол, но уже имеются катализаторы, позволяющие увеличить выход ангидрида до 75—78%. Это ванадий-молибденовые катализаторы, модифицированные фосфором, титаном, бором и серебром (патентные данные). [c.211]

    Окисление о-ксилола во фталевый ангидрид проводится на ванадийеодержа-щих катализаторах. Так, применяются низкотемпературный ванадиевый катализатор, содержащий серу, или высокотемпературный окиснованадиевый катализатор на непористом носителе. Однако катализаторы этого типа недостаточно селективны (выход составляет 55—65%, а производительность 100 кг ангидри-да/(м катализатора-ч). В последнее время нашли применение более эффективные ванадий-титановые катализаторы на носителях. Этот тип катализатора используется в разных странах. Различия между отдельными марками обусловлены методам приготовления катализатора и модифицирующими добавками. Выход фталевого ангидрида на этих катализаторах составляет 70—75% в расчете на пропущенный о-ксилол при практически полной конверсии, а производительность колеблется от 180 до 300 кг/(м -катализатора-ч). [c.217]

    Парофазным окислением беизо/а воздухом в присутствии ия-тиокиси ванадия на инертном носителе при 400—450°С и атмосферном давлении получают малепиовый ангидрид (см. гл. 13). Большая часть малеинового ангидрида направляется на производство полиэфирных смол. Кроме того, он используется в реакциях дненового синтеза, для получения фумаровой кислоты, присадок к смазочным маслам. [c.158]

    Принципиальная схема получения фталевого ангидрида газофазным окислением о-ксилола представлена на рис. 15. В настоящее время окисление обычно проводят на стационарном слое катализатора в реакторе трубчатого типа. Катализатором является оксид ванадия (V) на носителе или смешанные ванадий-калий-сульфатносиликагелевые катализаторы. Для сохранения активно- [c.81]

    Во всех промышленных катализаторах газофазного окисления о-ксилола активной частью являются оксиды ванадия. Для повышения селективности катализаторов применяют различные добавки или изменяют соотношения между составными частями катализатора. Катализатор КФК, разработанный, во ВНИИнефте-химе, обеспечивает выход фталевого ангидрида 73—75% (мол.) и позволяет работать при низких (380—390 °С) температурах с нагрузкой до 200 г/(дмЗ-ч) [94]1. Введение в состав ванадиевого катализатора оксидов сурьмы увеличивает выход фталевого ангидрида до 80% (и выше). По данным 93], наибольший выход фталевого ангидрида из о-ксилола (86,2% мол.) получен на катализаторе следующего состава ЗЬгОз К2О SO3 У20з = 6- 2 2 6 на диоксиде титана. [c.83]

    Аналогичные результаты получены при окислении антрацена на катализаторе ВКСС [152] при 360—380 °С соотношение воздух антрацен равно 60 1, нагрузка на катализатор 30 г/(л-ч). По данным [153], антрацен можно окислять в псевдоожиженном слое катализатора, представляющего собой оксид ванадия (V), нанесенный на силикагель (410—415 °С, отношение воздух антрацен равно 15 1, время контакта 5—6 с). Процесс освоен на опыт-но-промышленной установке, селективность его составляет 81 — 82% (мол.), выход по массе 94—96%. Антрахинон выделяют охлаждением в полых конденсаторах, очищают от ангидридов промывкой водой, а от смолистых примесей — сублимацией (как при синтезе из фталевого ангидрида и бензола). В промышленном масштабе испытывается конденсация антрахинона в кипящем слое продукта [154]. В этом процессе при определенной температуре [c.103]

    Бензонитрил и индол изменяют состав и структуру катализатора, уменьшая выход фталевого ангидрида. Поэтому они должны быть удалены из сырья. В противном случае в катализаторе резко снижается содержание ванадия (V), при этом увеличивается количество мало активного ванадия(IV), и снижается содержание серы [23, с. 36]. Содержание непредельных соединений не должно превышать 1%. Последние не влияют на активность катализатора, но вызывают смолообразование и снижают выход фталевого ангидрида. Тионафтен в количестве 0,1 —1,2% необходим для селективной работы катализатора. При окислении нафталина высакой чистоты на катализаторе ВКСС возможна также непрерывная подача диоксида серы в реакционную смесь. [c.130]


Смотреть страницы где упоминается термин Ванадий ангидрид: [c.194]    [c.652]    [c.487]    [c.32]    [c.177]    [c.183]    [c.38]    [c.92]    [c.39]    [c.119]   
Приготовление растворов для химико-аналитических работ (1964) -- [ c.2 , c.5 , c.246 ]




ПОИСК





Смотрите так же термины и статьи:

Ванадий восстановлением сернистым ангидридом и титрованием перманганатом

Ванадия пентоксид (ванадиевый ангидрид)

Кинетика окисления бензола в малеиновый ангидрид на нятиокиси ванадия

Кинетика окисления бензола в малеиновый ангидрид на пятиокиси ванадия

Хромовый ангидрид, определение ванадием



© 2025 chem21.info Реклама на сайте