Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Осмометрия для определения молекулярных

    Вискозиметрический метод определения молекулярных масс не является абсолютным для каждой системы полимер — растворитель следует проводить сопоставление результатов, полученных этим методом, с данными, найденными посредством абсолютных методов — осмометрией или светорассеянием, и применять при этом полимеры, которые имеют очень узкое либо достоверно установленное молекулярно-массовое распределение. Если для данной системы полимер — растворитель установлена зависимость между вязкостью и молекулярной массой, то вискозиметрия является самым простым и быстрым методом определения молекулярных масс. [c.172]


    Возможно ли определение молекулярной массы целлюлозы методом осмометрии  [c.391]

    Ряд физических методов исследования свойств растворов, зависящих от числа растворенных частиц, пригоден для определения среднечисловых молекулярных весов полисахаридов . Из них наибольшее применение получила осмометрия (см., например, 132-135 — метод, достаточно простой в выполнении и мало зависящий от наличия в исследуемом веществе низкомолекулярных примесей, которые легко диффундируют через полупроницаемые мембраны. Осмометр и ческое определение дает наилучшие результаты в интервале значений молекулярного веса от 10 до 5-10 ниже этого интервала значительные ошибки обусловлены диффузией вещества через мембраны, а выше — невысокими абсолютными значениями осмотического давления. Для определения молекулярных весов в пределах 10 —2-10 используются методы изотермической перегонки или осмометрии в паровой фазе " , основанные на зависимости давления паров растворителя от концентрации растворенного вещества. Сходные по физической сущности эбулиоскопический и криоскопический методы определения среднечислового молекулярного веса для полисахаридов применяются крайне редко. [c.515]

    Широкое распространение для определения молекулярной массы ВМС с помощью осмометрических измерений получил осмометр Хел-фрица (рис. 1-12). Он позволяет производить измерения как динамическим, так и статическим методами [42]. В последней модификации этого прибора исключен возможный прогиб мембраны. [c.40]

    Определение молекулярного веса полипропилена любым из перечисленных методов затруднено из-за необходимости проведения исследований ири высоких температурах (при нормальной температуре приготовить даже сильно разбавленные растворы, обычно применяемые ири этих методах, можно только из атактической фракции). Кристаллические полимеры растворимы только ири температурах выше 100° С, что усложняет аппаратурное оформление и создает опасность деструкции полимера при длительном нагревании. По этой причине молекулярный вес полипропилена предпочитают определять более доступными методами, в том числе измерением вязкости раствора или расплава. Вискозиметрическое определение молекулярного веса в настоящее время еще не является, однако, абсолютным методом для любой системы полимер— растворитель. Для определения величины молекулярного веса вискозиметрическим методом требуется провести предварительную калибровку ири помощи какого-либо абсолютного метода, например осмометрии пли светорассеяния. Вискозиметрический метод применим лишь для линейных полимеров. [c.74]


    Б. Догадкин, И. Соболева, М. Архангельская, Колл, ж., 11, 143 (1949). Определение молекулярного веса полистирола методом светорассеяния и осмометрии. [c.229]

    Однако осмометрия вполне применима для определения молекулярного веса высокомолекулярных веществ, образующих истинные растворы и не требующих для стабилизации растворов присутствия в них электролитов. Такое определение возможно благодаря тому, что растворы высокомолекулярных веществ могут быть получены достаточно высокой концентрации, как правило, вполне агрегативно устойчивы и обычно хорошо выдерживают операции очистки. [c.68]

    Измерение осмотического давления является одним из методов определения молекулярных масс, позволяющих в современных мембранных осмометрах определять М. до 10 (каучук, целлюлоза, белки). [c.192]

    Парофазная осмометрия применима для определения молекулярных весов растворимых полимеров вплоть до 20 000. [c.106]

    Второй вириальный коэффициент обычно находят при определении молекулярного веса методами светорассеяния и осмометрии. Он характеризует степень отклонения раствора от идеального поведения и служит мерой межмолекулярного взаимодействия в растворе. Современные термодинамические теории растворов полимеров связывают второй вириальный коэс ициент с молекулярными параметрами, поэтому изучение второго вириального коэффициента может быть источником дополнительных сведений о свойствах и структуре макромолекул в растворах. Зависимость второго вириального коэффициента от величины молекулярного веса выражается эмпирическим уравнением [c.421]

    Асфальтены—аморфные твердые тела темно-бурого или черного цвета. При нагревании не плавятся, а переходят в пластическое состояние прн температуре около 300 °С, прн более высокой температуре разлагаются с образованием газообразных и жидких веществ и твердого остатка.— кокса. Плотность асфальтенов несколько больше единицы. Асфальтены очень склонны к ассоциации, поэтому молекулярная масса в зависимости от метода определения может колебаться на несколько порядков (от 2000 до 140 000 а. е. м.). В настоящее время общепризнанными методами определения молекулярной массы асфальтенов являются криоскопия в нафталине или осмометрия сильно разбавленных растворов. Определенная этими методами молекулярная масса асфальтенов составляет около 2000 а. е. м. [c.289]

    Исследование макромолекул как синтетических, так и биологических полимеров требует прежде всего определения молекулярных весов (м. в.). Эти определения производятся в растворах полимеров с помощью ряда методов. Методы, основанные на понижении точки замерзания и на повышении точки кипения раствора, — криоскопия и эбуллиоскопия — пригодны лишь для весьма разбавленных растворов полимера малого молекулярного веса (100—5000). Чувствительность таких методов падает с увеличением м. в., и ими практически не пользуются. Метод изотермической перегонки, основанный на понижении давления пара над раствором по сравнению с чистым растворителем, достаточно точен в интервале м. в. 1000—20 ООО, но связан с большими экспериментальными трудностями [47, 52]. Теоретические основы этого метода в сущности те же, что и метода измерения осмотического давления, осмометрии, который весьма широко применяется в физике и физической химии полимеров [47, 52, 53]. [c.146]

    Уравнение Хаувинка — Марка применяется для определения молекулярной (вискозиметрической) массы полимеров. Коэффициенту а я К в этом случае должны быть предварительно установлены путем исследования полимеров этого же полимергомологического ряда с известной молекулярной массой, определенной прямыми, независимыми от вискозиметрических, методами (светорассеяние, осмометрия, седиментация, диффузия). [c.16]

    При идентификации фуроксанов немаловажной константой бывает молекулярная масса, поскольку она показывает удвоение молекулы по сравнению с соответствующим нитрилоксидом или (приблизительно) с его предшественником. Для определения молекулярной массы фуроксанов использовали осмометрию [277, 278], криоскопию [275, 345], эбулио-скопию [280), а также масс-спектрометрию [232, 272, 341]. [c.98]

    Масс-спектрометрия — наиболее точный метод определения молекулярной массы органических соединений. Однако при этом необходимо, чтобы определяемое вещество было бы достаточно устойчивым при температуре ввода в масс-спектрограф. Кроме того, структура соединения должна допускать возможность образования достаточно интенсивного пика молекулярного (первичного) иона. Если при определении температуры кипения или при газохроматографическом анализе (см. выше) изучаемое вещество проявляет признаки разложения, то для определения его молекулярной массы лучше применить другие методы (осмометрию в паровой фазе, метод Раста и др.). [c.93]

    Степень полимеризации иолисахаридов ГМЦ в большинстве случаев находится в диапазоне 30—300. Для характеристики величины молекулярной массы широко используются химические методы, основанные на определении восстанавливающей способности полисахарида. Из физических методов находят применение вискозиметрия, осмометрия, светорассеяние, ультрацентрифугирование, определение скорости седиментации и др. [57,77,78]. Распространено определение молекулярных масс полисахаридов с помощью молекулярных сит — сефадексов, биогелей. [c.56]


    При определении молекулярного веса полимеров осмотическим методом необходимо учитывать ряд ошибок, которые могут возникнуть из-за адсорбции вещества на мембране, асимметрии мембраны, частичного проникновения растворенного вещества через мембрану, прогиба мембраны и т. д. [81—83]. Ниже будут подробно разобраны некоторые из этих причин ошибок в осмометрии. [c.205]

    Средняя молекулярная масса нефракционированного полимера зависит от метода ее определения. Например, осмометрией находят среднечисловое значение, а по светорассеянию — среднемассовое. При описании молекулярно-кинетических свойств приводились некоторые методы определения молекулярных масс осмометрия, седиментация и седиментационное равновесие в центробежном поле. В дополнение к ним применяется также вискозиметрнческий метод. [c.212]

    Среднечисловой молекулярный вес Мп может быть определен методом концевых групп, эбулиоскопией и криоскопией для УИ не более 1 10, осмометрией — в интервале 3 10 — 1 10 . Средневесовой молекулярный вес определяется по светорассеянию, применение которого дает точные результаты, начиная с М 1 10, причем точность увеличивается с увеличением молекулярного веса, -средний молекулярный вес получается из данных исследования седи-ментационного равновесия в ультрацентрифуге. Этим же методом можно получить и значение Ма,- Средневязкостный молекулярный вес может быть определен в очень широком интервале молекулярных весов при наличии калибровочных данных, полученных при помощи одного из абсолютных методов определения молекулярного веса. [c.344]

    Возможности определения молекулярной массы осмометрическим методом офаничиваются точностью отсчета АЛ, а также проницаемостью мембраны для частиц исследуемого вещества. Наиболее достоверные значения Л/ , получаемые методом осмометрии, находятся в пределах от 1-10 до 7-10 . [c.31]

    Уравнение (XIV.1) используется в осмометрии для определения молекулярной массы различных неэлектролитов, в том числе высокомолекулярных соединений. В этом случае концентрация С заменяется на моляльность та = g2 ЮООШаё ь после чего можно написать  [c.204]

    Среднечисловую молекулярную массу определяют по данным измерений, в результате которых вклад прулпы маиромолекул, обладающих определенной молекулярной массой, в измеряемое свойство пропорционален числу молекул в этой группе. Для определения используют химический (метод концевых групп) и термодинамические (эбулиоскопия, криоскопйя, осмометрия) методы. [c.162]

    Значения средневязкостного молекулярного веса зависят от характера связи мел ду [т] ] и Ж и лежат ближе к значениям средневесового, а не среднечислеиного молекулярного веса. Поэтому при выборе констант к ж а для расчета средневязкостного молекулярного веса лучше пользоваться данными, полученными методом светорассеяния, а не осмометрии, но которой определяется среднечисленный молекулярный вес. Это уменьшает ошибки при расчете и позволяет получить более достоверные значения молекулярного веса. При определении молекулярного веса необходимо обраш ать внимание на то, чтобы полученное значение находилось в пределах того диапазона значений молекулярного веса, для вычисления которого эмпирическое уравнение ( .19) применимо с достаточной точностью. [c.138]

    Для растворов высокомолекулярных соединений осмометри-ческий метод определения молекулярного веса получил большое распространение, так как растворы полимеров устойчивы и могут быть хорошо очищены от низкомолекулярных примесей. [c.21]

    Для определения молекулярного вьса этим способом служат специальные ггриборы — осмометры, Принцип действия осмометров заключается в том, что растворитель, отделенный от раствора полупроницаемой мембраной, проЕшкает через иее в раствор до тех пор. пока уровень последнего в капилляре ке перестанет изменяться. Раз юсть уровней в капилляре осмометра и в контрольном капилляре является мерой осмотического давления. Обычно пользуются двумя методами статическим и динамическим. [c.463]

    Наиболее широкое применение в исследовании полисахаридов находят физические методы определения молекулярного веса вискозиметрия, осмометрия, осмометрия в паровой фазе, метод изотер-, мической перегонки, седиментация центрифугированием, метод све- [c.142]

    Значения Я и а в уравнении Марка — Хоувинка определяются для ряда полимергомологов в определенном растворителе на основании измерений величины [т)] и определений молекулярного веса осмометрией, методами светорассеяния и др. [c.144]

    Все выделенные из древесины препараты целлюлозы характеризуют выходом и примесями эпутствующих полисахаридов, а также изменениями, вызванными процедурой выделения. Одним из важнейших показателей является молекулярная масса, или СП. Молекулярную массу целлюлозы, как и других полимеров, определяют абсолютными и косвенными методами. Из абсолютных методов используют определение осмотического давления (в осмометре) определение констант седиментации (в ультрацентрифуге) и коэффициентов диффузии (в диффузометре) определение интенсивности светорассеяния (в фотометре светорассеяния). [c.30]

    Помимо молекулярной формулы вещества одной из наиболее полезных величин при определении структуры органических веществ является молекулярная масса. По величине молекулярной массы вещества во многих случаях можно сделать вполне квалифицированные заключения о его молекулярной формуле. Классическим способом определения молекулярной массы в течение длительного времени был метод Раста (понижение температуры замерзания растворов). Однако в настоящем издании описание Метода Раста опущено, так как этот метод не дает точных результатов для довольно широкого круга органических соединений. Для очень большого числа органических веществ удобно получать молекулярные массы с помощью метода масс-спектрометрии (разд. 3.5.2). Однако этот метод может оказаться доступным да-, леко не во всех учебных лабораториях. Простым методом, позволяющим получить сведения о молекулярной массе веществ, является осмометрия (разд. 3.5.1). Однако следует опасаться получения ошибочных слишком высоких значений молекулярной массы вследствие склонности определяемого вещества к образованию молекулярных агрегатов. Молекулярные массы или величины, находящиеся с ними в простых кратных отношениях, можно определить на основе эквивалентов нейтрализации или чисел омыления. Ввиду того что эти показатели связаны с наличием специфических функциональных групп (кислотных или аминогрупп и сложноэфирных групп соответственно), их определение описано в гл. 6. Для некоторых классов органических соединений применение масс-спектрального анализа затруднительно, и поэтому более целесообразно применять другие методы определения молекулярной массы. [c.31]

    Здесь будут рассмотрены пять методов определения молекулярной массы метод Раста (определение депрессии температуры замерзания), парофазная осмометрия, масс-спектрометрия, определение эквивалента нейтрализации и числа омыления. Метод Раста требует крайне простого оборудования. Кроме того, он часто оказывается полезен для тех веществ, молекулярную массу которых невозможно измерить масс-спектрометрически. Результаты, получаемые по методу Раста, в большинстве случаев оказываются лишь приближенными, поэтому описание техники проведения измерений по этому способу здесь не приводится . Осмометрия в паровой фазе и масс-спектрометрия требуют применения очень сложных приборов. Наиболее точные значения молекулярной массы, а часто молекулярная формула и структура вещества, могут быть получены с помощью масс-спектрометрии. Однако молекулярные массы веществ, термически нестойких, имеющих слишком малую упругость пара или не образующих стабильных молекулярных ионов, нельзя измерить с помощью масс-спектрометрии и приходится прибегать к другим методам измерения. С помощью методов титрования определяют эквиваленты нейтрализации (для числот и аминов) и числа омыления (для сложных эфиров). Од-яако эти методы обязательно требуют информации о числе и характере функциональных групп, присутствующих в молекуле данного неизвестного соединения. Поэтому эти методы обсуждаются в соответствующих разделах гл. 6. Осмометрия в паровой фазе нр [c.89]

    Техника определения молекулярной массы осмометр ическим методом заключается в измерении осмотического давления ряда разбавленных растворов полимера в одном и том же растворителе (концентрация 0,5 г на 100 мл раствора и меньше) с последующей экстраполяцией зависимости Р1С от С до С = 0. Определения производятся при помощи специальных осмометров, в которых раствор полимера отделен от чистого растворителя полупроницаемой мембраной, изготовляемой обычно из целлофана. Вследствие большой чувствительности осмометрических измерений к температурным колебаниям осмометры должны быть дчцательно термостатированы. [c.527]

    Определение молекулярного веса полимеров можно проводить различными методами. Точность каждого метода зависит от величины молекулярного веса. Так, метод светорассеяния наиболее применим для полимеров с молекулярным весом выше 10 000. Метод определения молекулярного веса, основанный на измерении вязкости растворов полимеров, может быть использован в тех случаях, когда эмпирически установлена зависимость вязкости от молекулярного веса. Метод седиментации применим для полимеров с молекулярным весом 20000—60000. Методы осмометрии, эбу-лиоскопии и криоскопии применимы для определения молекулярного веса низкомолекулярных полимеров [571]. [c.173]

    Для определения молекулярного веса полимера осмометриче-ским методом необходимы осмометры, 4 шт. стаканы для осмометров, 4 шт. осмометрические мембраны термостат упрощенный катетометр на оптической скамье стеклянный люеровский шприц на 10 мл с иглой длиной 30 см] колбочки с притертыми пробками емкостью около 150 мл. [c.48]

    Танг для определения молекулярного веса полиэтилена низкого давления в ксилоле использовал модифицированный осмометр Фусса — Мида, в котором применялись капилляры маленького диаметра (0,2 мм), и поэтому оказалось возможным вести определения при температурах 105 и 110°С. [c.180]

    Пиннер и Стабин для определения молекулярного веса полиэтилена (с мол. весом от 28 000 до 790 000) в ксилоле использовали осмометр, представленный на рис. 127. [c.180]

    Полупроницаемые мембраны. Основная трудность в определении молекулярных масс методом осмометрии заключается в выборе мембраны. Идеальная полупроницаемая мембрана должна быть непроницаемой для молекул растворенного вещества и обладать высокой проницаемостью для растворителя. Материал мембраны не должен взаимодействовать с растворителем. В зависимости от типа применяемой мембраны могут наблюдаться значительные отклонения при осмотических определениях, особенно для поли-дисперспых образцов с высокой молекулярной массой. Так, для одного и того же образца полистирола были получены значения Мп от 7000 (при использовании плотной мембраны, проницаемой для молекул с массой < 1000) до 225 ООО (для пористой мембраны, через которую способны диффундировать молекулы с массой [c.96]


Смотреть страницы где упоминается термин Осмометрия для определения молекулярных: [c.464]    [c.134]    [c.339]    [c.464]    [c.111]    [c.179]    [c.123]    [c.180]    [c.7]   
Химия и биохимия углеводов (1978) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Молекулярный вес, определение

Молекулярный вес, определение методом осмометрии

Осмометр

Осмометрия

Осмометрия осмометры

Осмометрия, определение молекулярного всса



© 2025 chem21.info Реклама на сайте