Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Интеркомбинационная конверсия энергия состояний

    Молекула обладает набором энергетических состояний (рис. 28). Молекула, попавшая на верхние колебательные уровни любого возбужденного состояния, быстро теряет избыток колебательной энергии при столкновениях с окружающими молекулами. Это процесс колебательной релаксации. Безызлучательный переход между электронными состояниями одинаковой мультиплетности называется внутренней конверсией, аналогичный переход между состояниями разной мультиплетности — интеркомбинационной конверсией. [c.51]


    Молекула в состоянии Ti может вернуться в основное состояние 5о путем выделения энергии в виде тепла (интеркомбинационная конверсия) или света (фосфоресценция) [22. Конечно, и здесь существуют препятствия, связанные с угловыми [c.314]

    Кривая потенциальной энергии реакции основного состояния пересекается с соответствующей кривой триплетного возбужденного состояния. Вследствие этого реакция может идти двумя независимыми каналами адиабатическим с образованием двух молекул формальдегида в основном состоянии и неадиабатическим с возникновением одной молекулы формальдегида в возбужденном триплетном состоянии. Сильная интеркомбинационная конверсия вследствие большого спин-орбитального взаимодействия приводит к тому, что реакция идет почти полностью по неадиабатическому каналу. Этим объясняется большой выход молекул формальдегида в триплетном состоянии с последующим высвечиванием путем фосфоресценции, [c.357]

    Формально различаются процессы обмена электронной энергией, разрешенные правилом Д5 = 0 или запрещенные им. Термин внутренняя конверсия (1 ) применяется к безызлучательным переходам между состояниями одинаковой мультиплетности, тогда как название интеркомбинационная конверсия (IS ) относится к обмену энергией между состояниями различных спиновых систем . Процессы как внутренней, так и интеркомбинационной конверсии происходят без изменения полной (элект-ронной-+-колебательной) энергии, и поэтому соответствующие волнистые линии горизонтальны (т. е. ни поступательная, ни вращательная энергия не возникает во внутримолекулярных процессах обмена электронной энергией см. разд. 4.5). [c.61]

    Фосфоресценция, как правило, происходит после заселения уровня Г) посредством безызлучательного синглет-триплетного перехода с уровня 5], который в свою очередь возбуждается в результате поглощения света. Состояние 1 обычно имеет меньшую энергию, чем состояние 5ь поэтому долгоживущее излучение (фосфоресценция) является более длинноволновым, чем короткоживущее излучение (флуоресценция). Относительная интенсивность флуоресценции и фосфоресценции зависит от скорости излучения и интеркомбинационной конверсии с 5 абсолютный квантовый выход зависит также от меж- и внутримолекулярных процессов переноса энергии, фосфоресценция конкурирует не только со столкновительным тущением Ти но и с интеркомбинационным переходом на 5о. Разница между общей скоростью образования триплетов из 51 и скоростью фосфоресценции может быть использована для определения эффективности процесса 7 1 5о в условиях, когда процессами бимолекулярного тушения можно пренебречь. [c.101]


    T i/5 о-интеркомбинационная конверсия (ИКК). Вследствие сильного спин-орбитального взаимодействия ИКК обеспечивает эффективное заселение (Зл)(7,)-состояния бирадикала. Движение по T ППЭ ведет к переходному состоянию (ПС2), соответствующему разрыву С—С-связи и образованию молекул формальдегида в основном и триплетно-возбуж-денном состояниях (см. рис. 3.2). ПС2 локализовано также на (Зя)(5,) ППЭ [97], причем энергия синглетного ПС2 на 13.4 кДж/моль выще энергии (Зп) n j, что хорощо согласуется с экспериментально наблюдаемым распределением (3п)/ (3я) продуктов реакции. [c.194]

    Интеркомбинационной конверсией называются безызлучательные переходы между состояниями различ гай мультиплетности. Так как по причине, упомянутой выше, первое триплетное возбужденное состояние обычно имеет более низкую энергию, чем первое синглетное возбужденное состояние, то наиболее характерным примером интеркомбинационной конверсии является переход 5]-- [c.549]

    Молекула, находящаяся в состоянии 5ь может вернуться в основное состояние 5о благодаря флуоресценции, если только до этого не произойдет внутренняя конверсия в 5о. Молекула, находящаяся в состоянии Гь может вернуться в основное состояние 5о благодаря фосфоресценции, если только до этого не произойдет интеркомбинационная конверсия в 5о. Поскольку состояния и Г являются начальными состояниями в большинстве фотохимических реакций и поскольку фотохимические реакции должны быть более быстрыми, чем флуоресценция или фосфоресценция, потому что эти процессы не отводят энергию, наше рассмотрение фотохимии мы начнем с флуоресценции и фосфоресценции. [c.550]

    Фосфоресценция возникает при излучательных переходах с низшего колебательного уровня триплетного состояния Т на разные колебательные уровни состояния 5о. Таким образом, спектр фосфоресценции аналогичен спектру флуоресценции. Поскольку состояние Т] обладает более низкой энергией, чем состояние 5ь спектр фосфоресценции наблюдается при больших длинах волн, чем спектр флуоресценции. Спектр фосфоресценции слабее, чем спектр флуоресценции, так как имеется больше времени для того, чтобы энергия была потеряна благодаря интеркомбинационной конверсии. [c.551]

    Замедленная флуоресценция -типа наблюдается у эозина и других красителей. Механизм ее возбуждения можно представить следующим образом (рис. 14.4.74). Вследствие термической активации (АЕ) молекулы, находящиеся на нулевом колебательном уровне триплетного состояния Гь переходят на более высокий колебательный уровень этого состояния, а за счет интеркомбинационной конверсии — в первое возбужденное синглетное состояние 51. Из синглетного состояния 51 молекула возвращается в основное состояние 5о, испуская квант лучистой энергии. Процессы, вызывающие появление замедленной флуоресценции -типа, можно описать схемой [c.503]

    Как известно, вероятность интеркомбинационной конверсии между электронными состояниями разного типа (т. е. 3 л яя или 3 л Тпп. ) на два или три порядка выше вероятности того же процесса между электронными состояниями одного типа Тяп или 8пл Тпл )-Нурмухаметов, Шигорин и Плотников [10, с. 31 12] предложили классификацию молекул органических веществ по относительному расположению уровней энергии возбужденных состояний. Согласно этой классификации (рис. 3) возможны следующие пять основных типов молекул, различающихся спектрально-люминесцентными характеристиками (электронные состояния приведены в порядке возрастания энергий)  [c.10]

    Подавляющее большинство применяемых люминофоров относится к типу 5. У них состояниями 51 и Г являются оба уровня одного типа — 8 п и Тпп - Энергия Т п - и 5 .-состояний выше энергии 5 л -состояния, вследствие чего вероятность интеркомбинационной конверсии мала. Эти соединения обладают флуоресценцией, а в замороженных растворах, кроме того, и длительной фосфоресценцией. [c.11]

    Если возможны какие-либо иные — безызлучательные — процессы дезактивации, сопоставимые по скорости со скоростью радиационного процесса, вероятность флуоресценции уменьшается (падает квантовый выход). Безызлучательная дезактивация электронной энергии возбуждения может осуществляться за счет внутренней и интеркомбинационной конверсии. При внутренней конверсии дезактивация энергии происходит между двумя уровнями одинаковой мультиплетности, например "г 5 . Более важна интеркомбинационная конверсия, сопровождающаяся переходом молекулы с синглетного состояния одного типа (например, 5 ) на триплетный уровень другого типа (Гял )- Время жизни возбужденного триплетного состояния больше, чем синглетного из этого состояния также возможны радиационные (фосфоресценция) и безызлучательные переходы. Ввиду того что время жизни триплетного состояния велико, велика и вероятность перехода энергии возбуждения в кинетическую энергию молекулы. Именно поэтому фосфоресценция проявляется главным образом в замороженных растворах, где вероятность колебательных и вращательных движений молекулы снижена. [c.12]


    Фотосенсибилизация. Фотосенсибилизация представляет собой прекрасный метод перевода в триплетное состояние веществ, имеющих малую эффективность интеркомбинационной конверсии, или веществ, энерги возбуждения которых в синглетном состоянии очень высока.  [c.444]

    За время после выхода в свет книги Паркера на английском языке появился ряд монографий и обзоров (ссылки на них даны в библиографии, см. стр. 496) и начали издаваться два новых международных журнала [3]. Были получены новые результаты (в частности, в области люминесценции биологически важных соединений [4]), предложены новые методы исследования. Особенно надо отметить революционизирующее влияние применения лазеров. Исключительно малая продолжительность импульса, сравнимая с временами внутримолекулярного перераспределения электронной энергии, а также высокие мощности излучения сделали возможным прямое измерение скоростей внутренней и интеркомбинационной конверсии [5], исследование синглет-синглетной и триплет-синглетной аннигиляции [6] и синглет-син-глетного (S 4-Sb п> 1) поглощения [7,8]. Наконец было обнаружено испускание из самого нижнего синглет-возбужденного состояния азулена [9]. [c.6]

Рис. 12. Уровни энергии триплетных и синглетных состояний и интеркомбинационная конверсия. Рис. 12. Уровни <a href="/info/296085">энергии триплетных</a> и <a href="/info/9382">синглетных состояний</a> и интеркомбинационная конверсия.
    Интеркомбинационная конверсия (g и g ) изображена для простоты так, как будто бы она идет сразу на нижний колебательный уровень соответствующего триплетного состояния. На самом же деле сначала осуществляется собственно интеркомбинационная конверсия на верхний колебательный уровень триплетного состояния, а затем, уже в этом состоянии, происходит быстрая потеря колебательной энергии (см. рис. 12). Интеркомбинационная конверсия из нижнего возбужденного синглета ( ) часто занимает время порядка излучательного времени жизни флуоресценции (10 с). Доказательства существования интеркомбинационной конверсии из высщих возбужденных состояний ( ) пока немногочисленны, и. пренебречь этим процессом нельзя только в тех случаях, если он успешно конкурирует с безызлучательной конверсией, т. е. занимает время порядка 10 2с. Что касается обратных интеркомбинационных переходов — из триплетной системы в синглетную, то конверсия в основное состояние (т) часто происходит медленно (10 —10 с в зависимости от условий). Измерить ее скорость, одпако, весьма непросто, так как ее трудно отделить от процессов тушения. Из других процессов интеркомбинационной конверсии мы будем иметь дело лишь с переходом с нижнего триплетного уровня на первый возбужденный синглетный уровень. Этот переход ответствен за явление замедленной флуоресценции типа Е (см. раздел I, В,4), но идет он только при не очень большой разности энергий, когда возможна термическая активация триплетных молекул на колебательный уровень, равный по энергии нижнему уровню возбужденного синглетного состояния. Символ е на рис. 23 относится к брутто-процессу термической активации, за которой следует интеркомбинационная конверсия. [c.73]

    Соответствующий подбор параметров позволяет осуществить реакцию присоединения. Длину волны света следует подобрать так, чтобы она включала полосу поглощения олефинового или ацетиленового соединения и, предпочтительно, чтобы не включала полосу поглощения продукта реакции по той причине, что желательно, чтобы субстрат в противоположность конечному продукту был достаточно возбужденным, чтобы вступать в реакцию. Лучше всего работать при наименьших длинах волн света, добиваться возбуждения правильным подбором фильтров, даже если это и приведет к значительному увеличению времени реакции. Другим средством инициирования реакции является использование сенсибилизаторов, но они иногда изменяют направление реакции. В основном сенсибилизатор это агент для переноса энергии света. Он активируется до синглетного или триплетного состояния и именно в последнем состоянии активирует субстрат в результате интеркомбинационной конверсии. Энергия возбуждения триплета должна быть выше соответственно энергии субстрата [48]. Ниже приведены некоторые энергии триплетов в ккал/моль пропиофенон 74,6 бензо-фенон 68,5 трифенилен 66,6 нафталин 60,9 пирен 48,7. Если энергия триплета ниже энергии субстрата, сенсибилизатор может подавить реакцию. К сожалению, в случае олефинов используемые в качестве сенсибилизаторов кетоны могут вступать в реакцию с образованием оксетанов. Наконец, выбор растворителя может оказаться решающим. Учитывая все эти переменные величины, трудно сделать обобщения относительно того, что можно и чего нельзя делать. Поэтому будут приведены характерные примеры каждого типа реакции для того, чтобы читатель мог сделать собственные заключения. Среди этих реакций имеются цис-транс-кзоьлериэй-ция (разд. Г.1), изомеризация с перемещением двойной связи (разд. Г, 1), образование мостиков и сдваивание. Эти примеры взяты из работы Кана [49], если не оговорено особо. [c.147]

    ЗМ, л )1 к радикалу дифенила [состояние ГДя, л )]. Формально этот процесс аналогичен межмолекулярному переносу энергии от бензофенона к дифенилу (см. табл. 23) и может быть иллюстрирован диаграммой (рис, 47). При возбуждении в первой полосе поглощения получается состояние 51(л, л ), из которого, как и в бензофеноне, происходит эффективная интеркомбинационная конверсия в состояние Т2 п, л ) подтверждением этого служит отсутствие флуоресценции 4-фенилбензофенона. Затем возбуждение переходит в состояние Г1(л, л ) дифенильной группы, из которого и происходит фосфоресценция. [c.152]

    В 1943 г. А. Н. Теренин выдвинул гипотезу о том, что фосфорес-центное состояние молекул является триплетным. Годом позже Г. Льюис и М. Каша показали, что фосфоресценция органических молекул, наблюдающаяся в твердых матрицах, обусловлена испусканием света из самого нижнего возбужденного состояния этих молекул и имеет мультиплетность, равнук> трем. Еще в 1936 г. А. Яблонский предложил диаграмму энергетических уровней молекул, введя третий метастабильный уровень. Трехуровневая система объясняла существование трех видов люминесценции флуоресценцию, замедленную флуоресценцию и фосфоресценцию. После возбуждения в нижнее возбужденное синглетное состояние молекула может или испустить нормальную флуоресенцию, или вернуться в основное состояние на высокий колебательный уровень путем внутренней конверсии, или претерпеть интеркомбинадионную конверсию, перейдя в триплетное состояние. Попав в триплетное состояние, молекула оказывается в ловушке , так как излучательный переход в основное синглетное состояние запрещен, а чтобы вернуться в возбужденное синглетное состояние, молекула должна приобрести тепловую энергию, равную АЕ (Т— 5 ). Поэтому молекула остается в триплетном состоянии, пока в ней не произойдет один из следующих процессов 1) испускание запрещенного излучения — фосфоресценции 2) тепловая активация в состояние 5 с последующей замедленной флуоресценцией 3) интеркомбинационная конверсия в основное синглетное состояние. [c.158]

    Большинство молекул в состоянии 51 (хотя, конечно, далеко не все) могут претерпевать интеркомбинационную конверсию (15С), переходя в самое низкое триплетное состояние 7] [20]. Показательным примером служит бензофенон, в котором почти 100 % молекул, возбужденных до состояния 5], переходят в состояние Т1 [21]. Интеркомбинационная конверсия из синглетного состояния в триплетное относится к разряду спин-за-прещенных, так как она связана с изменением угловых моментов (разд. 7.2), но она часто происходит за счет компенсации внутри системы без потери энергии. Синглетное состояние обычно имеет более высокую энергию, чем соответствующее ему триплетное состояние один из путей высвобождения избыточной энергии состоит в переходе молекулы из состояния 51 на высокий колебательный уровень состояния Гь а затем в переходе по колебательным уровням состояния к самому низкому уровню (см. рис. 7.4). Этот каскадный переход происходит очень быстро, за с. Если заселены состояния Г2 и другие, более высокие, они также быстро каскадируют к самому низкому колебательному уровню состояния Гь [c.314]

    Поглощение излучения на синглет-триплетном переходе мало, поскольку он запрещен в такой же степени, как запрещена фосфоресценция на триплет-синглетном переходе. Следовательно, возбуждение верхнего фосфоресцирующего уровня непосредственно из основного является неэффективным, гораздо чаще фосфоресценция возникает в результате радиационного распада триплетных уровней, заселяемых безызлучательными переходами с синглетных уровней, возбуждаемых поглощением из основного состояния. Диаграмма последовательности событий показана на рис. 4.1. В результате поглощения заселяется уровень Si" после быстрой релаксации (по крайней мере в конденсированных средах) по колебательным уровням молекула оказывается на уровне Si°, где она может потерять энергию либо за счет излучения (фосфоресценции), либо в результате безызлучательного перехода на уровень T l — интеркомбинационной конверсии (IS ), либо в результате безызлучательного перехода на уровень — внутренней конверсии (1 ). Возможно, это может показаться странным, что ISG на уровень Ti , являющийся запрещенным по спину согласно правилам отбора для безызлучательных переходов, может эффективно конкурировать с разрешенной по спину флуоресценцией или внутренней конверсией на So " однако фосфоресценция наблюдается во многих случаях, когда можно предположить, что 1 5i 5o относительно неэффективна. Для полного понимания процессов фотохимии молекул необходимо знать эффективность (квантовый выход) всех процессов, происходящих в ней. Даже если возбужденные частицы не вступают в химические реакции, не подвержены процессам разложения или тушения, то необходимо уметь определять квантовый выход флуоресценции ((pf), фосфоресценции (фр), интеркомбинационной конверсии " So (fis ) и внутренней конверсии 51 5о(ф1с). Учитывая, что суммарная эффективность всех процессов равна единице, получим [c.84]

    Согласно правилу отбора спина А5 = 0, дальнодействующий кулоновский перенос энергии невозможен для любых процессов, протекающих с изменениями мультиплетности, и поэтому дальнодействующий триплет-триплетный перенос энергии должен быть исключен. Однако, поскольку спин-орбитальное взаимодействие допускает электрические дипольные оптические переходы с Д8 0 в сложных молекулах, кулоновский перенос может происходить по с1с1-механизму. Похоже, что этот перенос является более медленным, чем обменные процессы, в которых переходы для донора и акцептора полностью разрешены, но, так как реальное излучательное время жизни триплетных состояний также велико, дальнодействующий перенос энергии может все еще иметь значение наряду с излучением. Отсюда следует, что дальнодействующее взаимодействие, видимо, осуществляется только в системах, в которых тушение или интеркомбинационная конверсия не являются основными процессами потери три-плетпой энергии донора. Интересно, что процесс типа [c.131]

    Другой способ влияния мультиплетности на реакционную способность частиц демонстрируется на примере трехатомной молекулы метилена, СНг. Исследования по импульсному фотолизу указывают на то, что основное состояние метилена является триплетным, хотя имеется первый возбужденный сииглет, лежащий незначительно выше основного состояния (энергия возбуждения 30 кДж/моль). При фотолизе H2N2 или СНгСО преимущественно образуется метилен в синглетном состоянии с небольшой примесью триплетного метилена. Интеркомбинационная конверсия от синглета к триплету индуцируется инертными газами. Химическая реакционная способность триплетных и синглетных частиц совершенно различна. Синглетное состояние реагирует с Нг и СН , на три порядка быстрее, чем триплетное. Синглетный СНг внедряется в связь С—Н алканов, в то время как триплетный СНг отрывает атомы Н  [c.152]

    Эта реакция фотовосстаиовления будет описана в разд. 6.6.) В случае такого донора водорода, как eHj H(ОН)СеНа, в концентрации 0,1 моль/дм квантовый выход разложения беи-зофенона (фв) близок к единице. Один этот факт исключает возможность рассмотрения возбужденного синглета бензофено-iia в качестве участника реакции. Константа скорости отрыва атома водорода синглетом должна быть менее 10 дм У(мольХ Хс), поскольку физическое тушение S l протекает по крайней мере в 100 раз быстрее и контролируется диффузией ( q> >10 ° дм (моль с)). Константа скорости интеркомбинационной конверсии S l T i около 10 ° с , так что конкуренция между отрывом водорода и интеркомбинационной конверсией (IS ) накладывает ограничение на <рв порядка (10 х0,1/10 °) = 10 при [RH]=0,1 моль/дм для реакции S,. В то же время процессы диссипации энергии для T l протекают гораздо медленнее, чем для Si (например, константа скорости IS Ti Sq для бензофенона около 10 С ), и реакция эффективно конкурирует с другими процессами. Дальнейшее утверждение, что триплет является наиболее важной активной частицей, основано на сравнении данных по скорости, полученных именно для триплета, с полученными из рассмотрения кинетических зависимостей фв в реакции фотовосстановления для неизвестного состояния. Триплет бензофенона был идентифицирован в экспери- [c.154]

    Эксперименты на миллисекундной и микросекундной временных шкалах дают информацию о скоростях бимолекулярных реакций фотолитических фрагментов и возбужденных состояниях, а также о фосфоресценции (испускании света при переходе из триплетного возбужденного состояния). В нано-секундных экспериментах можно исследовать флуоресценцию, испускаемую при переходе из нижнего синглетного возбужденного состояния, а также интеркомбинационную конверсию. Измерения с пикосекундным разрешением дают кинетические данные о геминальной рекомбинации, обмене энергией, колебательной релаксации и более медленных процессах внутренней конверсии и изомеризации. Начинают появляться сообщения об исследованиях в фемтосекундном диапазоне. Следует помнить, что за одну фемтосекунду свет проходит расстояние лишь в 300 нм или порядка одной длины волны Эксперименты на этой временной шкале касаются процесса поглощения света и самых ранних стадий превращения энергии, вызывающего химические и физические изменения вещества. [c.204]

    Безызлучательный переход из 81 в 8 с последующим рассеиванием избыточной энергии в виде теплоты или инфракрасного излучения называется внутренней конверсией. Безызлучательный переход в состояние Тх называется интеркомбинационной конверсией. Несмотря на то что переход этого типа является запрещенным, поскольку связан с изменением мультиплетности, вероятность его в ряде случаев оказывается достаточно большой. Вследствие резонансного характера перехода возиикает колебательно-возбужденное состояние однако избыточная энергия колебаний достаточно быстро рассеивается и дальнейшие события происходят преимущественно с термически равновесным триплетным состоянием. [c.157]

    Молекулы в триплетном состоянии легко теряют свою энергию в различных безызлучательных процессах. Они могут дезактивироваться молекулами с неспаренными электронами, например кислородом, или в столкновениях с другими окружающими молекулами. Поэтому фосфоресценция в жидких растворах при комнатной температуре наблюдается чрезвычайно редко. Как правило, фосфоресценцию наблюдают в жестких средах или при пониженных температурах. Син-глет-триплетное поглощение очень слабо. Поэтому заселение триплетного уровня производится не прямым поглощением света в полосе синглето-триплетного перехода, а путем интеркомбинационной конверсии через синглетное состояние. [c.128]

    Установлено, что явление мультилюминесценции, наблюдаемое для биядерных [М(С/ Ы)(ц-СЫ)М (С Ы)] комплексов, определяются процессами деградации энергии из двух в значительной степени изолированных возбужденных состояний, локализованных на М(С Н) - и М (С Ы) -фрагментах, каждое из которьк характеризуется фиксированными энергетическими и кинетическими параметрами практически независимо от состава комплексов. Влияние состава комплексов в определяет эффективность образования возбужденных состояний, локализованных на М(С Ы) - и М (С К) -фрагментах, в результате процессов колебательной релаксации, внутренней и интеркомбинационной конверсии. [c.63]

    Г] состоянием называется интеркомбинационной конверсией (ИКК). Этот переход происходит за время 10 -10 с и может конкурировать с флуоресценцией, полностью подавляя последнюю. Молекула, перешедшая в результате интеркомбинационной конверсии на возбужденный колебательный уровень триплетного состояния, быстро релаксирует (КР) до самого низшего колебательного состояния Г,. При определенных условиях (обычно при низкой температуре, -196 °С, в отсутствие парамагнитных молекул) для триплетных молекул оказывается возможным запрещенный переход с уровня Т на уровень 5о с излучением фотонов фосфоресценции (Фс). Это свечение имеет значительно большую длительность 10 -10 с. Энергия фотонов фосфоресцеш1ии меньше энергии фотонов флуоресценции. [c.503]

    Имеется два пути заселения триплетных состояний. 1) Прямое заселение в результате запрещенных по спину -> -переходов мало эффективно. Молярный коэффициент Г, -поглощения равен -10" . 2) Заселение триплетных состояний через систему синглетных состояний. В результате рассмотренных выше процессов колебательной релаксации и внутренней конверсии молекула очень быстро ( 10 с) возвращается на нижний колебательный подуровень первого синглетного состояния. Вследствие достаточно небольшой разницы в энергии 5, - и T -состояний последнее заселяется за счет интеркомбинационной конверсии с нижнего колебательного уровня 5, -состояния на имеющий ту же полную энергию колебательный уровень — Г, -состояние. Интеромбинационная конверсия — безызлучательный переход между состояниями различной мультиплетности. Затем вследствие быстрого процесса колебательной релаксации молекула перейдет на нижний колебательный подуровень — T -состояние. Безызлучательная дезактивация —> 5 конкурирует с излучательным Г, -> -иерехоцом-фосфоресцещией. Фосфоресценция — излучательный переход между состояниями различной мультиплетности. [c.302]

    У четвертичных солей азометинов азот СН=М-группы кватер-низован. Это существенно увеличивает энергию пя -состояния. Можно предположить, что Г л -уровень оказывается выше5 -уровня. Тогда резко снижается вероятность интеркомбинационной конверсии и возникает флуоресценция. Четвертичные соли азометинов флуоресцируют в кристаллах весьма интенсивно [58]. [c.69]

    Находясь на уровне молекула может либо потерять свою энергию с потерей фотона (этот процесс называется флуоресценцией), либо перейти в триплетное состояние за счет интеркомбинационной конверсии (молекула теряет энергию, переходя из 81 в Тх), либо потерять энергию без излучения (внутренняяГконверсия продолжительностью около с), либо передать свою энергию другой молекуле (перенос энергии), либо вступить в фотохимическую реакцию. [c.441]

    Если бы за счет интеркомбинационной конверсии образовывалось триплетное состояние, то действительно существовал бы долгоживущий промежуточный продукт. Обычно энергия тринлетно-го бирадикала ниже, чем синглетного состояния. Хотя триплет может давать продукт в возбужденном состоянии, более естественным его поведением должна быть еще одна интеркомбинационная конверсия с возвращением к единственному бирадикалу или к искаженной форме продукта. [c.421]

    Важно подчеркнуть, что в ряду рассмотренных соединений наименьшей энергией триплетного состояния обладает тимидин-З -фосфат в нейтральной форме. Интенсивность заселения возбужденного триплетного состояния характеризуется квантовым выходом интеркомбинационной конверсии ф кк- Для рбТ и р11 при pH 7 эти величины равны нулю (см. табл. 12.1), т. е. в разбавленных растворах при низких температурах возбуждение изолированных молекул этих соединений на триплетный уровень возможно, по-видимому, только путем сенсибилизации. Однако в концентрированных замороженных растворах рс1Т и р1Л наблюдается фосфоресценция, что свидетельствует о заселении в этих условиях триплетного уровня Возбужденные состояния нуклеотидов в растворах при температурах выше 0° С исследованы в значительно меньшей степени. [c.622]

    Различие скоростей двух упомянутых процессов интеркомбинационной конверсии можно качественно объяснить исходя из вероятности пересечения поверхностей потенциальной энергии трех состояний (см. рис. 13). Потенциальная поверхность Г, ближе к поверхности 5), чем к поверхности 5о. Следовательно, можно ожидать, что она пересекает поверхность во многих точках и что поэтому вероятность 5] Т гконверсии высока. Напротив, разность энергий триплетного и основного состояний сравнительно велика, поэтому пересечение потенциальных поверхностей и, следовательно, интеркомбинационная конверсия [c.46]

    Третий тип интеркомбинационной конверсии, играющий важную роль в явлении замедленной флуоресценции, представляет собой обращение Si Трконверсии (процесса а на рис. 12). Он может осуществляться в молекулах, у которых триплет располо-. жен настолько близко к верхнему синглету, что уже при комнатной температуре за счет термической активации ощутимо заселяются те колебательные уровни триплета, которые имеют энергию, равную энергии нижнего колебательного уровня электронно-возбужденного синглетного состояния. Это и обеспечивает возможность перехода в возбужденное сннглетное состояние, или обратной интеркомбинационной конверсии. Для триплетных молекул, термически активированных указанным путем, вероятность интеркомбинационной конверсии по-види- [c.47]


Смотреть страницы где упоминается термин Интеркомбинационная конверсия энергия состояний: [c.47]    [c.352]    [c.67]    [c.315]    [c.105]    [c.139]    [c.321]    [c.93]    [c.541]    [c.557]    [c.641]    [c.45]   
Молекулярная фотохимия (1967) -- [ c.73 ]




ПОИСК





Смотрите так же термины и статьи:

Интеркомбинационная конверсия

Энергия состояния



© 2024 chem21.info Реклама на сайте