Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Время удерживания элюирования

    При элюировании центра полосы t=xn, где т —время удерживания, а Хй H LH. Поэтому [c.28]

    Эффективность разделения в газовой хроматографии зависит от скорости миграции молекул исследуемого соединения через колонку и от распределения компонента между неподвижной и подвижной фазами, т. е. от наклона изотермы или константы распределения. Количественным выражением первого явления служит время удерживания (время элюирования) tr или удерживаемый объем Уг, второго явления — число теоретических тарелок N (безразмерная величина) или высота, эквивалентная теоретической тарелке, Н, мм. Кроме того, большое внимание уделяется изучению факторов и явлений, непосредственно воздействующих на [c.226]


    Величина может изменяться в интервале О < Кг < I. При получении внешней хроматограммы исследование элюата можно проводить непрерывно, регистрируя концентрацию вещества в подвижной фазе. Отдельные вещества проявляются на хроматограмме в виде пиков (горы, полосы, см. рис. 7.7). При таких хроматограммах для оценки вещества служат объем или время, необходимое для элюирования веществ из стационарной фазы,,— удерживаемый объем или время удерживания. Стандартами для сравнения являются чистый растворитель — подвижная фаза или стандартное веще-> ство. [c.345]

    За время удерживания (время элюирования) принимается время от момента ввода пробы образца до появления максимума пика (в секундах или минутах). [c.5]

    Время удерживания <д — время, необходимое для элюирования компонента из колонки и измеренное относительно максимума пика. [c.134]

    В современных масс-спектрометрах, снабженных ЭВМ, построение хроматограмм производится компьютером. В этом случае через равные промежутки времени по мере элюирования компонентов смеси из колонки регистрируются масс-спектры, количественные характеристики которых накапливаются в памяти машины. В процессе обработки масс-спектральных данных для каждого сканирования производится сложение интенсивностей всех регистрируемых ионов. Поскольку эта суммарная величина пропорциональна концентрации вещества в ионном источнике, она используется для построения хроматограмм (по оси абсцисс откладывают время удерживания и номер сканирования, а по оси ординат - интенсивность суммарного ионного тока). [c.44]

    В хромато-масс-спектрометрах, снабженных ЭВМ, метод масс-фрагментографии может реализоваться не с помощью устройств МИД, а путем построения хроматограмм по заданным ионам. Эти ионы автоматически выбираются ЭВМ из полных масс-спектров, зарегистрированных и внесенных в ее память в результате многократного сканирования спектров в процессе элюирования из колонки всех компонентов смеси. Для примера на рис. 8.4 приведены хроматограммы сложной смеси алканов и алифатических спиртов, зарегистрированные по полному ионному току (а) и по иону с m/z 31 (б), характерному для спиртов. Видно, что время появления максимумов (т.е. время удерживания) компонентов на обеих хроматограммах совпадает. Однако вторая хроматограмма принципиально отличается от первой, поскольку на ней проявляются зоны только тех спиртов, масс-спектры которых характеризуются пиком с m/z 31. [c.195]


    Самый простой вариант элюирования — изократический, при котором состав элюента не меняется. Его используют при разделении соединений с близким сродством к неподвижной фазе. В некоторых случаях, используют градиентное элюирование, при котором состав элюента в процессе разделения компонентов изменяют по заданному закону. В этом случае элюирующая сила подвижной фазы возрастает, в результате чего сокращается время удерживания сильно сорбируемых веществ и улучшается разделение смеси. [c.269]

    Время от момента ввода анализируемой пробы до регистрации максимума пика называют временем удерживания элюирования). Время удерживания складывается из двух составляющих — времени пребывания вещества в подвижной и неподвижной I, фазах  [c.271]

    Зная свойства неподвижной жидкой фазы и природу разделяемых веществ, например класс, строение, можно достаточно быстро подобрать подходящую для разделения данной смеси селективную жидкую фазу. При этом следует учитывать, что время удерживания компонентов будет приемлемым для анализа, если полярности стационарной фазы и веществ анализируемой пробы близки. Для растворенных веществ с близкой полярностью порядок элюирования обычно коррелирует с температурами кипения, и если разница температур достаточно велика, возможно полное разделение. Для разделения близкокипящих веществ разной полярности используют стационарную фазу, селективно удерживающую один или несколько компонентов вследствие диполь-дипольного взаимодействия. С увеличением полярности жидкой фазы время удерживания полярных соединений возрастает. В табл. 8.1 приведены жидкие фазы и максимальные температуры, при которых их можно использовать. [c.299]

    Зависимость удерживания компонентов от особенностей локальной электронной структуры молекул при разделении на полярных сорбентах, содержащих эфирные функциональные группы, проявляется и в элюировании полярных соединений (табл. 10). В отличие от удерживания на поли-сорбе-1 удерживание соединений на полисорбатах определяется не только величиной общей поляризуемости молекул, но зависит и от дипольного момента молекул (время удерживания н-пентана меньше времен удерживания диэтилового эфира, ацетона, ацетонитрила), а также от способности соединений к образованию водородных связей [c.41]

    Изучено удерживание структурных изомеров и циклических соединений. Показано, что, как на полисорбе-1, на полисорбате-2 характерно более быстрое элюирование изомерных алканов и более прочное удерживание циклических углеводородов по сравнению с нормальными алка-иами. Для изомерных спиртов наблюдается, как и на полисорбе-1, уменьшение времени удерживания с ростом раз-ветвленности. Так, например, время удерживания спиртов С4 уменьшается в ряду н-бутанол > изобутанол > втор-бутанол > /гарет-бутанол. При этом сами величины относительного удерживания спиртов на полисорбате-2 значительно превосходят соответствующие величины на полисорбе-1. [c.45]

    Приведенная общая тактика выбора состава подвижной фазы непосредственно применима лишь в простейших случаях, в отсутствие затруднений, связанных с особым химическим характером разделяемых веществ. При изучении высокополярных и ионогенных соединений зачастую не удается найти удовлетворительного рещения этим простейшим способом, так как для них характерна тенденция образовывать асимметрические аномально уширенные хроматографические зоны. Иногда либо вообще не удается добиться элюирования, либо наоборот — времена удерживания слишком малы. Можно назвать некоторые типичные причины таких осложнений  [c.43]

    Жидкостная адсорбционная хроматография. Жидкостная адсорбционная хроматография применяется для группового разделения углеводородов на алкано-циклоалкановую и ареновую фракции, а также для разделения аренов по степени цикличности. Хроматографические колонки заполняют силикагелем или двойным адсорбентом — оксидом алюминия и силикагелем. В качестве десорбентов при анализе керосиновых и масляных фракций для вымывания насыщенных углеводородов используют н-алканы С5 — С7, для десорбции ароматических и гетероатомных компонентов — бензол, спиртобензольные смеси, ацетон, хлороформ. Применение ступенчатого или непрерывного увеличения полярности подвижной фазы позволяет значительно уменьшить время удерживания веществ. Этот метод называется градиентным элюированием. [c.130]

    В качестве колоночной насадки в большинстве случаев применяют сефадекс LH-20 и стиролдивинилбензольные гели, через которые алканы и циклоалканы элюируются растворителями по молекулярно-ситовому механизму. Порядок элюирования полициклических аренов зависит от применяемого растворителя. При использовании хлороформа, тетрагидрофурана и для аренов сохраняется порядок, типичный для гель-фильтрации. Однако при элюировании кетонами, спиртами, ацетонитрилом может проявляться адсорбционный эффект, вследствие которого с увеличением числа ароматических колец время удерживания соединений увеличивается. [c.133]


    Однако, если при тонкослойной хроматографии на цилиндрической поверхности используется большой путь, приходится сталкиваться с общей задачей элюирования, характерной для колоночной жидкостной и газовой хроматографии (т.е. с тем, что для быстро перемещающихся зон отмечается недостаточно высокая разрешающая способность, а для медленно перемещающихся зон характерно избыточное время удерживания и их трудно обнаружить). Когда значение Rr слишком велико (значение к слишком мало), произведение NQ стремится к нулю если значение Rr слишком мало (слишком велико значение к ), продолжительность элюирования t->oD, произведение NQ приобретает конечное значение, а отношение NQ /t стремится к нулю. Оптимальное значение Rr (для жидкостной хроматографии) попадает в интервал от 0.2 до 0.4 (величина к в интервал от 4 до 1.5). [c.257]

    В заключение в табл. 43 приводим сводку идентифицированных в нефтях стеранов и углеводородов ряда гопана, а также их относительные времена удерживания. На рис. 55 представлена хроматограмма смеси этих углеводородов самотлорской нефти. Из рисунка видно, что определение гопанов является более простой задачей, так как в области элюирования гопанов jg— gg практически отсутствует горб , столь характерный для области элюирования стеранов. [c.142]

    С технической стороны выполнение первых двух условий не связано с какими-нибудь трудностями. Более сложным является получение эталонных углеводородов. Одвака нет никакой необходимости в синтезе всех индивидуальных углеводородов, которые могут присутствовать в анализируемых смесях, т. е. нет необходимости полного повторения того пути, который у же был пройден исследователями, разрабатывающими эти методы. Для газохроматографических целей с успехом можно использовать методы равновесной изомеризации или метиленирования, позволяющие легко и быстро получать смеси необходимых для анализа углеводородов. При использовании в качестве неподвижной фазы сквалана в целях большей достоверности желательно проведение газохроматографических анализов при нескольких температурах, отличающихся на 10—20° С. При этом полезно, для целей более надежной качественной идентификации, использовать следующие изменения в характере элюирования углеводородов различного строения. С повышением температуры уменьшаются времена удерживания алканов и, менее значительно, пятичленных цикланов. Углеводороды, имеющие групировку четвертичного атома углерода, начинают элюироваться позднее, чем их изомеры, не содержащие этой группировки. Само собой понятно, что понижение температуры приводит к противоположным эффектам. [c.337]

    В колоночной (в том числе газовой) хроматографии по достижении положения, показанного на рис. 61, б, подачу подвижной фазы не прегфащают. Хроматографирование продолжают до тех пор, пока подвижная фаза выносит из колонки разделяемые вещества. Этот процесс называют элюированием, а выходящую из колонки подвижную фазу, содержащую разделяемые вещества, — элюатом. Элюат обычно контролируют на содержание разделяемых веществ с помощью датчиков, которые называют детекторами. Сигналы детекторов принимаются измерительными приборами и передаются к самописцам. Получают хроматограммы, подобные той, которая показана на рис. 61, в. Если на оси абсцисс отложено время, по хроматограмме можно определять время удерживания вещества в колонке. Для 81 это 1, а для 83 — 2 (отсчет времени ведется с момента ввода смеси разделяемых веществ). Часто все же по оси абсцисс откладывают не время, а объем элюата. Нулевая точка тогда соответствует выходу той порции подвижной фазы, в которую была введена смесь разделяемых веществ. Потом в элюате меняются концентрации разделяемых веществ в соответствии с различными степенями их удерживания. По полученной хроматограмме определяют объем удерживания. Для 81 это v , а для 83 = а-Время (объем) удерживания при постоянных условиях хроматографирования представляет собой величину, характерную для данного вещества. Поэтому наряду с другими методами обнаружения для идентификации веществ можно использовать значения времени (объема) удерживания. Количества же разделенных веществ пропорциональны площадям их пиков. Это используют для проведения количественных определений. Можно также собрать отдельные порции элюата и определить содержание в них разделяемых веществ с помощью подходящих методов количественного анализа. [c.258]

    На рис. 3 представлены хроматограммы, полученные прн определении I) -бензола (Б), дихлорэтана (В), диизоамило-вого эфира (Г) и этилацетата (Д). Для сравнения здесь же дана хроматограмма, полученная только с подвижной фазой (А). В этих условиях было определено относительное время удерживания двадцати двух растворителей, образующих, элюотропный ряд (табл. 1). Р.стественно, что этот элюотропный ряд не исключает возможности применения других растворителей для разделения нефтепродуктов. Следует иметь в виду, что растворители, применяемые для хроматографического разделения нефтепродуктов, должны иметь низкую-температуру кипения, не вступать в химическое взаимодействие с компонентами пробы адсорбентом и другими растворителями. Широкие возможности такого способа элюирования хорошо иллюстрируются хроматограммами, приведенными на рис. 4. Разделение осуществлялось в капиллярной колонке высотой 250 мм, диаметром 1,2—1,4 мм на силика-, [c.8]

    ДЛЯ ввода инертного газа и мембраной в 15 мл безводного ТГФ (в атмосфере азота) растворяют 0,84 мл (6,00 ммоль) сухого диизопропиламина и раствор охлаждают до 0°С. После этого шприцем добавляют 3,44 мл (5,50 ммоль) 1,6 М раствора н-бутиллития в гексане, смесь перемешивают 20 мин при О °С, охлаждают смесью ацетон-сухой лед до -78°С и шприцем медленно вводят 1,00 г (5,00 ммоль) (48)-3-бути-рил-4-изопропилоксазолидинона-2. Реакционную смесь перемешивают 60 мин при — 78 °С и медленно вводят при помоши шприца охлажденный раствор (см. разд. 1.4) 0,75 мл (10,0 ммоль, с1= 1,577) свежеперегнанного пропаргилбромида в 1 мл ТГФ. Смесь перемешивают в течение 8 ч при — 78 °С и затем в течение 8 ч нагревают до комн. температуры. Смесь обрабатывают, вливая ее в насышенный водный раствор КН4С1 (30 мл), разделяют фазы и водную фазу экстрагируют эфиром (3 х 20 мл). Объединенные органические фазы высушивают над М 804 и растворитель отгоняют в вакууме. ГХ-анализ неочишенного продукта (капиллярная колонка 8Е-30 длиной 50 м, давление N2 1 атм, начальная температура 150 С/15 мин, температурная программа 5 "С/мин, конечная температура 270 °С ПИД) дает соотношение диастереомеров 120 1 (время удерживания = 18,23 мин, 19,11 мин). Продукт очишают методом колоночной хроматографии на 50 г силикагеля (размер зерен 0,063-0,200 мм) при элюировании смесью эфир-петролейный эфир (1 3), что дает 0,83 г (70%) продукта алкилирования в виде прозрачного желтоватого масла. [c.489]

    Смит и Вэддингтон [29] при проведении газохроматографического анализа алифатических спиртов, диолов и эфиров на ароматических полимерах ПАР-1 и порапак О отметили, что для отдельных классов соединений наблюдается линейная зависимость логарифма времени удерживания от температуры кипения элюента. Небольшие отклонения от линейности обнаружены ири изменении структуры алкильной цепи. Характер удерживания спиртов, диолов, эфиров на исследованных полимерах оказался в основном аналогичным удерживанию этих соединений в газо-жидкостном варианте хроматографии на колонках, заполненных сорбентом целит—апиезон Ь, хотя времена удерживания на них гораздо меньше. Для компонентов с близкими температурами кипения порядок элюирования таков диол, спирт, эфир. Диолы разделяются на ароматических полимерах без разложения. [c.33]

    При газохроматографическом разделении алифатических аминов на пористых ароматических сорбентах наблюдаются размывание заднего фронта и большая асимметрия пиков аминов. По мнению авторов [30], размывание обусловлено существованием двух типов активных центров на полимере кислотных центров, которые можно нейтрализовать обработкой основанием, и ионов металлов, которые дезактивируются добавлением нелетучего комплексообразователя, например полиаминов. Времена удерживания алифатических аминов зависят от их структуры, причем порядок элюирования аналогичен наблюдаемому в газожидкостном варианте хроматографии на неполярных жидких фазах. Разделение аминов на пористых полимерах, модифицированных 1—5% полиэтиленимина, осуществляется главным образом адсорбцией на неполярном полистироле наблюдается линейная зависимость между температурой кипения аминов и логарифмом времени удерживания первичных, вторичных и третичных аминов. Добавление полиэтиленимина дезактивирует активные центры. При нанесении больших количеств полиаминов на пористые полимеры разделение амииов осуществляется комбинацией газоадсорбционной и газо-жидкостной хроматографии [30]. [c.33]

Рис. 4.20. Зависимость емкости хроматограммы Р от предельного времени удерживания вмакс для градиентного и изократического элюирования и различной эффективности колонок время удерживания несорбирующегося вещества 1 мин. Элюирование (теоретич. тарелки) 1 — градиентное, 1000 2 — изократичес кое, 1000 3 — градиентное, 10 000 Рис. 4.20. <a href="/info/321856">Зависимость емкости</a> хроматограммы Р от предельного <a href="/info/1648515">времени удерживания</a> вмакс для градиентного и <a href="/info/142837">изократического элюирования</a> и <a href="/info/1721799">различной эффективности</a> <a href="/info/39889">колонок время удерживания</a> <a href="/info/168251">несорбирующегося вещества</a> 1 мин. Элюирование (теоретич. тарелки) 1 — градиентное, 1000 2 — изократичес кое, 1000 3 — градиентное, 10 000
    Как следует из изложенного в предшествующих главах, хиральная хроматография делает возможным определение абсолютной конфигурации соединения, присутствующего в очень малых количествах, если известно время удерживания обоих антиподов и если оно согласуется с общим механизмом хирального распочнавания в данной системе. При этом можно руководствоваться дв>тия подходами 1) устанавливать идентичность, исходя только из данных по удерживанию и используя в качестве стандарта соединение с уже известной абсолютной конфигурацией, и 2) исходить из предположения, что порядок элюирования данного соединения идентичен с таковым для родственного соединения с известной абсолютной конфигурацией. [c.218]

    ЩИМИ ВЫХОД в данном разделении, служат нагрузка и время. Подобно многим другим переменным, которые рассматривались до сих пор, они являются взаимозависимыми с точки зрения компромисса, необходимого при оптимизации системы разделения (рис. 1.2). Если скорость потока подвижной фазы (объем в единицу времени) и объем системы остаются постоянными в ходе разделения, то, как было показано в разд. 1.3.1 и проиллюстрировано рис. 1.4, объем можно выразить непосредственно через время удерживания. Важно отметить вышеуказанное условие, так как, например, может изменяться подача насоса или сжиматься или набухать (как ионообменные слои при градиенте соли) слой в хроматографической колонке. В любом случае в крупномасштабной препаративной ЖХ время, необходимое для осуществления разделения и полного элюирования всех интересующих нас компонентов и приготовления колонки для последующего использования (путем промывания, установления равновесия и так далее), вносит вклад по крайней мере в два [c.40]

    Рассмотренный выше принцип подбора состава подвижных фаз на основе смесей растворителей, резко различающихся по элюирующей силе, применим лишь в простейших случаях, когда отсутствуют затруднения, связанные с особым химическим характером разделяемых веществ. При изучении высокополярных и ионогенных соединений зачастую не удается найти удовлетворительного решения с помощью этого способа. Иногда при их разделении образуются асимметричные аномально уширенные хроматографические зоны. В других случаях вообще не удается добиться элюирования, либо наоборбт — времена удерживания слишком малы. Можно назвать некоторые типичные причины таких осложнений в системе одновременно осуществляется сорбция по нескольким разным механизмам изотерма сорбции нелинейна молекулы сорбата или сорбента находятся в форме, препятствующей реализации требуемого механизма сорбции. [c.299]

    Время, прошедшее с момента ввода образца до момента выхода инертного, несорбируемого компонента, называется мертвым временем колонки а время, прошедшее с момента ввода образца до момента элюирования компонента Я,—временем удерживания (/к). Разность получила название исправленное время удерживания. Если перечисленные величины определяются из хроматограммы, то аналогичные расстояния на хроматограмме обозначаются как н и Умножая временные характеристики на объемную скорость газа-носителя получаем объемные характеристики удерживания мертвый объем колонки — tмPu объем удерживания Ук = и исправленный объем удерживания [c.17]


Смотреть страницы где упоминается термин Время удерживания элюирования: [c.523]    [c.90]    [c.158]    [c.288]    [c.299]    [c.629]    [c.319]    [c.5]    [c.8]    [c.118]    [c.148]    [c.5]    [c.8]    [c.8]    [c.118]   
Современное состояние жидкостной хроматографии (1974) -- [ c.13 ]

Современное состояние жидкостной хроматографии (1974) -- [ c.13 ]




ПОИСК





Смотрите так же термины и статьи:

Удерживание

Удерживание время

Элюирование



© 2024 chem21.info Реклама на сайте