Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеры открытые углеродные

    В еще большей степени это замечание справедливо в отношении более высоких уровней организации углеродных структур. Когда человечество стоит на пороге XXI века и наука ежедневно вносит конструктивные изменения, давая жизнь новейшим открытиям (коаксиальные углеродные нанотрубки, линейные аналоги фуллеренов и пр.), структурная химия до сих пор оставляет невыясненным, хотя бы с принципиальной точки зрения, строение разнообразных пространственно сшитых полимеров углерода, открытых более четверти века назад. И признается лишь тот факт, что различные его формы -поликристаллические фафиты, сажи, углеродные пленки, дендриты, ламелярные и надмолекулярные образования, коксы, стеклоуглерод, пироуглерод, карбин, алмаз и алмазные пленки, шунгит, антрацит, углеродные и фафитовые волокна, микропористые адсорбенты, композиционные материалы и пр. - существуют. [c.3]


    Проблема становится более ясной, если провести сравнение двух хорошо известных каучуковых полимеров (ис-полиизопрена (натуральный каучук) и полиизобутилена, которые кристаллизуются при более низкой, чем комнатная, температуре. Как следует из эластичных свойств этих полимеров, оба они, хотя и по совершенно различным причинам, имеют очень гибкие молекулы. У натурального каучука имеется в какой-то степени открытая структура цепи со связями = СН — СНг —. что позволяет молекуле ыс-изомера достаточно свободно изменять конформацию. С другой стороны, молекула полиизобутилена чрезвычайно перегружена, так как для размещения вдоль цепи пар метильных групп, присоединенных к чередующимся углеродным атомам, не хватает места (см. табл. 1). Важной особенностью структуры является то, что повороты вокруг связей цепи дают мало возможностей для снятия напряжения. Такая перегруженность цепи совсем не зависит от конформаций поэтому энергии отдельных конформаций мало различаются, в результате чего молекула является очень гибкой [14]. [c.418]

    Полиацетилен — один из простейших органических полимеров. В его углеродном скелете двойные связи чередуются с одинарными. Химики называют такую систему связей сопряженной, что подразумевает особую подвижность электрического заряда вдоль цепи. Тем не менее открытие необычных электрических свойств полиацетиленов произвело большое впечатление. Эти полимеры, подвергнутые воздействию подходящих реагентов, например брома, иода и пентафторида мышьяка (физики называют такие вещества присадками), приобретают металлический блеск и начинают проводить электричество лучше многих металлов (хотя и не так хорошо, как медь). [c.87]

    Эластичный пластик поролон имеет до 50—70% открытых пор. Его получают при использовании алифатических кислот с длинной углеродной цепью между карбоксильными группами (например себациновая кислота) и алифатических изоцианатов. При избытке полиэфира пластик сохраняет свои эластичные свойства. При избытке изоцианата получается твердый полимер трехмерного строения. В последнее время предложено применять фторированные полиуретаны, обладающие высокой стабильностью свойств. Пенопласт можно наносить при помощи распылительного пистолета с двойным питанием. Две жидкости (полиэфирная смола и изоцианат) подаются по шлангам к пистолету, в котором жидкости двигаются раздельно. Например, по внутреннему соплу подается изоцианат и по кольцевому соплу —смола. Смешивание происходит в воздухе вне пистолета. Таким образом, пистолет не засоряется. Этим методом удается получить на вертикальных стенках слой пенопласта толщиной до 25 мм. В течение 1 минуты можно за один раз покрыть площадь 0,6—1,2 [c.368]


    Достаточно широкое применение получила ГААХ с макропористыми адсорбентами-носителями с довольно большой удельной поверхностью (10—300 м /г), в частности с макропористыми силикагелями [349, 350], пористыми полимерами [351] макропористыми углеродными адсорбентами [1, 3] и другими макропористыми адсорбентами i[3, 352, 353] (табл. 9.10). На них наносят как полярные, так и неполярные жидкости. Высокоселективные сорбенты получают при применении в этом варианте ГААХ жидких кристаллов [89, 90]. ГААХ используют также в открытых капиллярных колоннах со слоем силикагеля или ГТС. [c.162]

    Открытые углеродные полимеры. Если молекулы тщательно подобранной структуры полимеризуются при достаточно низких температурах, между определенными атомами в исходных структурах образуются полимерные связи С—С. Открытые структуры могут возникать, когда наблюдаются сильные отклонения от графитовой структуры, хотя и образуется твердая фаза. Наличие атомов водорода или других атомов, а также и самих атомов углерода может способствовать сохранению открытой структуры. Одна группа таких твердых веществ включает углерод с большим содержанием кислорода и образуется при пиролизе поликарбоновой кислоты, например меллитовой кислоты и меллитатов ртути и бария, бензолпентакарбоновой кислоты, инозита и различных производных гуминовой кислоты [966]. Рентгеновские данные указывают, что все эти углеродные остатки имеют практически постоянную величину периода решетки с (в интервале 8—10 А), в то время как период а гексагональной углеродной сетки изменяется от 20 А (в случае образования отложения при 400°С) до 32 А (при 1000°С). Измерения адсорбционной способности, проведенные на азоте, указывают на высокую удельную поверхность (до 2125 м 1г) это говорит в пользу наличия у аморфного углерода открытой структуры с поперечными связями, подобной о-тетрафенилену [731]. Подобным же образом в углероде, образованном при дегидрогенизации ацетилена при низкой температуре, не обнаруживается заметной графитовой структуры. [c.49]

    В 1953 г. проблемами гетерогенного катализа заинтересовалась группа сотрудников Миланского политехнического института во главе с профессором Натта [5]. Первоначально они применяли процесс Циглера, а позже стали вводить в полимеризационнуюсистему предварительно приготовленное твердое комплексное соединение, полученное в результате реакции четыреххлористого титана с триэтилалюминием. Изучение образующегося при этом осадка привело Натта с сотрудниками к открытию комплексных катализаторов на основе низших хлоридов титана и органических производных алюминия. Они установили, что при полимеризации пропилена, бутилена, стирола и других непредельных углеводородов на комплексных катализаторах образуются полимеры с высоким выходом и большим молекулярным весом. Эти полимеры коренным образом отличаются от обычных полимеров, синтезированных в гомогенной среде (способны кристаллизоваться, имеют гораздо более высокие и четкие температуры плавления, большую плотность и хуже растворяются в органических растворителях). Таким образом, можно провести аналогию между этими полимерами н двумя типами поливинилизобутиловогоэфира, описанными Шильд-кнехтом. Натта с сотрудниками с помощью рентгеноструктурного анализа и инфракрасной спектроскопии установили типы пространственного расположения заместителей у третичных углеродных атомов и строгую линейность полимерных цепей. [c.9]

    Важный показатель Т. в. и волокнистых материалов - их огнестойкость, т. е. сохранение функцион. св-в при действии открытого пламени. Офаниченной огнестойкостью обладают только особо термостойкие трудногорючие волокна из гете-роароматич. лестничных и углеродных полимеров. Эти виды неплавких волокон при действии открытого пламени сохраняют форму и определенный уровень мех. св-в. Галогенсодержащие волокна на основе алифатич. полимеров, а также многотоннажные огнезащищенные (обработанные антипиренами) волокна огнестойкостью не обладают. [c.15]

    В 1940 г, методом ИК-спекроскопии было обнаружено [58, с. 433], что содержание метильных групп в ПЭВД значительно превосходит возможное содержание концевых групп. На основании этого был сделан вывод о разветвленности макромолекул полиэтилена, но вопрос о длине ветвей и механизме их образования оставался открытым. Изобилие метильных групп при сравнительно малом значении молекулярной массы, ошибочно найденном методом характеристической вязкости, дало основание считать ветви короткими. Лишь в 1953 г. были опубликованы данные [58, с. 32], убедительно показывающие, что условия радикальной полимеризации этилена благоприятны для реакций передачи цепи на полимер по двум механизмам (см. гл. 4) мономолекулярному (внутримолекулярному) и бимолекулярному (межмолекулярному), что приводит к образованию в ПЭВД соответственно двух типов разветвленности короткоцепной (КЦР) и длинноцепной (ДЦР). При этом возникновение КЦР предпочтительно в силу благоприятных стерических факторов и высокой концентрации групп СН2 в пределах пяти последних углеродных атомов растущего макрорадикала. [c.114]


    Действительно, и всем известные фафит и алмаз, и менее знакомый большинству из нас карбин - полимеры, состоящие из углеродных атомов. Любой кристалл алмаза, даже офомный Куллинан массой более шестисот фаммов, по существу, - одна молекула трехмерного полимера. Благодаря удивительной способности к усложнению углерод и по сей день принимает совершенно неслыханный облик полых шаровидных молекул - фуллеренов, недавнее открытие которых позволяет считать их новой элементарной аллотропной формой существования углерода. [c.3]

    Явление электронного парамагнитного резонанса, открытое в 1944 г. советским физиком Е. К. Завойским, стало новым методом для изучения структуры вещества. Парамагнетизмом обладают системы, на электронных оболочках которых имеются неспаренные электроны. К числу таких систем относятся, например, парамагнитные ионы, внедренные в кристаллическую решетку или в молекулу комплексных соединений, свободные радикалы и т. д. Исследования в области ЭПР различных органических соединений (красители, полимеры, угли, нефти и т. д.) показали, что они также обладают парамагнетизмом. Вопрос о природе носителей парамагнетизма органических соединений пока остается открытым. Д. Инграм [30] считает, что в процессе карбонизации проис.ходит изменение в структуре органического соединения (возможны удаление периферийных групп и разрыв связей) и неспаренные электроны стабилизуются на ароматических системах. Другие исследователи [Блюменфельд Л. А. и др., 1962 г. Га-рифьянов Н. С. и др., 1956 г.] предполагают, что парамагнетизм нефти и ее продуктов обусловлен нечетным числом углеродных атомов в ароматических структурах и что парамагнитные области в органических соединениях представляют собой ароматические свободные радикалы или ионы. Очевидно, правы те исследователи, которые объясняют парамагнетизм органических соединений не одной, а несколькими причинами [75 76, 91]. [c.357]

    Открытие Натта спиралеподобной конформации полимерных цепей а-олефинов в кристаллических областях вместе с более ранними работами по полиизобутилену, поливинилиденхлориду и политетрафторэтилен показывает, что спиральные структуры играют важную роль в полимерах винилового типа. Уже давно было качественно известно, что цолипептидпым цепям присущи преимущественно спиральные конформации в кристаллической решетке [42]. Количественная расшифровка а-спирали приобрела чрезвычайно важное значение в развитии химии белка [43]. За этим этапом пос.ледовало систематическое изучение вообще полипептидных спиралей [44], и в частности их рентгеноструктурпых характеристик [45]. Спиральные конформации этого типа стабилизованы водородными связями, которые могут существовать между повторяющимися вдоль цилиндрической поверхности спирали СО- и КН-группами диаметр спирали и ее шаг определяются по существу размерами и полярностью заместителей, находящихся у а-углеродного атома основной цепи. Водородные связи настолько сильны, что такие полипептидные спирали устойчивы даже в растворенном состоянии [46] и играют, по-видимому, важную роль [47] в стереорегулировании процессов полимеризации, приводящих к образованию этих макромолекул. [c.62]

    Для придания необходимой пластичности и уменьшения хрупкости полимеров полимеризация может проводиться с добавкой пластификаторов. Добавка пластификаторов может осуществляться как перед полимеризацией, так и во время процесса. В качестве пластификаторов могут применяться как наиболее распространенные — трикрезилфосфат, диэтил-и дибутилфталат, триацетин, так и многие другие, упоминаемые по преимуществу в патентных заявках. Особенно рекомендуются простые эфиры одно- и многоатомных спиртов или фенолоЕ одноатомные спирты с открытой цепью, содержащие в своей молекуле 9—22 углеродных атомов, и т д. [c.389]

    Открытие сверхвысокопрочных волокон, основу которых составляет графит, внедренный в органический полимер, привело к разработке нового класса материалов — композитных материалов с улучшенными свойствами. Волокно, например графитовую углеродную цепь, мииеральное волокно или вытянутый углеводородный полимер, суспендируют в обычном высокомолекулярном полимере, например в эпоксидной смоле. Образующийся материал может не уступать конструкционной стали по пределу прочности при растяжении при значительно меньшей массе. Вследствие высокого соотношения прочность/ масса он находит широкое применение в аэрокосмических технологиях. Использование композитов для изготовления фюзеляжей и других деталей привело к значительному уменьшению массы изделий в военном и гражданском самолетостроении. Композитные материалы нашли применение в астронавтике, при изготовлении спортивного инвентаря, деталей автомобилей (например, ведущий вал, листовые рессоры), корпусов судов. [c.132]

    Дальнейшие превращения образующихся таким образом полимеров могут происходить в нескольких направлениях. Путем гидрогенизации за счет водорода, всегда содержащегося в крекинг-продуктах этиленовых углеводородов, непредельные полимеры могут легко превратиться в соответствующие им углеводороды предельного характера с открытой группировкой углеродных атомов. С другой стороны, те же полимеры или изомерные им этиленовые углеводороды в результате частичного крекинга с отщеплением конечных групп (в виде метана и т. п.) могут превратиться в дву этиленовые углеводороды последние же путем циклизации с последующей гидрогенизацией и дегидрогенизацией должны дать сначала нафтилены, а затем нафтены и ароматику по схемам, рассмотренным выше. Таким образом, становится понятным нахождение в продуктах крекинга этиленовых углеводородов всех трех основных типов углеводородов предельного характера парафинов, нафтенов и ароматики. Большее или меньшее преобладание одного из этих типов пад другими зависит от условий процесса. Так, например, в процессе крекинга этиленовых углеводородов при атмосферном давлении нафтены образуются в ничтожном количестве, тогда как под давлением они составляют, нови-димому, главный продукт крекинга. [c.452]

    Однако удается лишь частичное превраш ение полимера в карби-новые цепочки благодаря сшиванию полииновых участков с раскрытием тройных связей. Образующиеся продукты химической карбонизации представляют собой своеобразную угольную структуру, в которой значительная часть пространственно сшитых цепей двойных сопряженных связей находится не в конденсированной ароматической, а в открытой форме [10]. Процесс термической карбонизации органических веществ благодаря мнон5.еству параллельных и последовательных реакций, а также разнообразию продуктов невозможно описать конкретными схемами химических уравнений. Однако вполне доступна описанию физико-химическая сущность этого процесса. Низкомолекулярные летучие продукты термической деструкции, образующиеся в процессе карбонизации, но естественным причинам обогащены водородом, кислородом и другими деструктирующими элементами, входяпщми в состав карбонизуемого вещества. В то же время в твердом остатке, прогрессивно обогащаемом углеродом, возникает угольное вещество, строение которого отвечает наибольшему взаимному насыщению валентностей углеродных атомов с наименьшим запасом свободной энергии. [c.238]

    Для производства высокопористых углеродных материалов на основе вспененных полимеров — пенококсов— используют пенопласты (газонаполненные ячеистые материалы с изолированными порами-пузырьками) и поро-пласты (вспененные материалы с открытыми порами-полостями). Пено- и поропласты получают из синтетических смол с использованием порообразователей (газо-образователей). В качестве основы используют феноло-формальдегидные, фенолофурфуролформальдегидные, мочевиноформальдегидные, кремнийорганические (силиконовые), эпоксидные, полиуретановые смолы, полистирол, поливинилхлорид, ацетат целлюлозы, полиэтилен и другие полимерные материалы [ПО, 111] . Порообра-зователями служат различные вещества органического и и неорганического происхождения, например карбонат аммония, бикарбонат натрия, диазоаминобензол. [c.114]

    Алюминийалкилы оказалось возможным получать более просто и прямо, чем какие-либо другие металлоорганические соединения из металла, олефина и водорода. Обмены их с другими металлами или галогенидами металлов открыли новый доступный путь синтеза других алифатических металлоорганических соединений. Способность присоединяться по кратным углерод-углеродным связям дала возможность широко использовать способ синтеза углеродных цепей, вплоть до синтеза высокомолекулярных углеводородов, а открытие комплексных катализаторов полимеризации олефинов 1А1(С2Н8)з-ЬТ1С1з] и других привело к созданию способа получения ценнейших изотактических полимеров олефинов. Возможности развития синтетических методов с использованием алюминийорганических соединений далеко еще не использованы. Можно ожидать, что алюминнйорганический синтез займет особое, наряду с магнийорганическим синтезом место. Особенности алюминийорганического синтеза, не свойственные синтезу Гриньяра,—это прежде всего построение углеродных скелетов реакцией присоединения по л-связям и, кроме того, разнообразие реакций восстановления, к которым диалкилалюминийгидриды и триалкилалюминии более склонны, чем реактив Гриньяра. Можно повторить, однако, что область эта лишь начала разрабатываться. [c.5]

    Длительное нагревание при 200—300 °С в изометрических условиях или даже при некстором вытягивании ПАН волокон приводит к частичному окислению полимера. При этом макромолекулы полиакрилонитрила частично сшиваются. Исчезает способность волокон растворяться в чем бы то ни было. Волокно темнеет и, наконец, чернеет. Ориентационное состояние структуры полимера при этом сохраняется. Обработанное таким образом ПАН волокно приобретает высокую термостойкость и не воспламеняется на открытом огне газовой горелки. При дальнейшем нагреве окисленных ПАН волокон при температурах выше 1000 °С они превращаются в углеродные волокна, обладающие высокими прочностью и модулем упругости. [c.162]


Смотреть страницы где упоминается термин Полимеры открытые углеродные: [c.335]    [c.174]    [c.24]    [c.358]    [c.244]    [c.578]    [c.30]    [c.62]    [c.452]    [c.433]    [c.24]   
Графит и его кристаллические соединения (1965) -- [ c.49 ]




ПОИСК







© 2024 chem21.info Реклама на сайте