Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сульфокислоты ароматические бензола

    РЕАКЦИЯ ХЛОРАНГИДРИДОВ АРОМАТИЧЕСКИХ СУЛЬФОКИСЛОТ с БЕНЗОЛОМ [c.112]

    Далее мастер производственного обучения знакомит учащихся с практическими приемами получения простейшей сульфокислоты ароматического ряда - бензолсульфокислоты. Ее получают из бензола реакцией сульфирования. Эта реакция широко применяется в промышленности органического синтеза. [c.158]


    Таким путем удается количественно отделить серную кислоту от ароматических бензол- или нафталинсульфокислот, так как бариевые соли сульфокислот остаются в растворе. [c.100]

    Сульфокислоты (ароматические) — серная кислота — ксилолы Сульфолан — бензол — н-гептан (три слоя) [c.133]

    Техническое значение имеют преимущественно сульфокислоты ароматического ряда, поэтому в дальнейшем мы будем изучать лишь ароматические сульфокислоты. Они образуются при действии серной кислоты на ароматические соединения, причем реакцию сульфирования можно представить как замену атома водорода при ариле (ароматическом радикале Аг) сульфо-группой с выделением молекулы воды за счет этого атома водорода и гидроксила серной кислоты. Таким образом, получение, например, бензосульфокислоты действием серной кислоты на бензол выразится схемой  [c.35]

    Влияние заместителей при сульфировании аналогично другим реакциям электрофильного замещения в ароматическое ядро, причем для сульфирования характерна средняя селективность в отношении ориентации в разные положения молекулы и относительной реакционной способности. Так, толуол сульфируется в 5 раз быстрее бензола, причем получается 75% пара-, 20% орто-и 5% лета-толуол сульфокислот. Электроотрицательные группы значительно дезактивируют ароматическое ядро, вследствие чего не удается ввести вторую сульфогруппу при действии серной кислотой. В отношении состава изомеров сульфирование имеет некоторые особенности, зависящие от обратимости реакций. При мягких условиях состав изомеров определяется относительной реакционной способностью различных положений ядра, при нагревании или при большой продолжительности реакции он зависит от термодинамической стабильности изомеров. Так, нафталин в первом случае дает главным образом 1-сульфокислоту, а во втором 2-изомер. [c.329]

    Лучший спосо.6 полного использования кислоты — газофазное сульфирование, основанное на отмеченной выше способности бензола 1И его гомологов образовывать с водой низкокипящие гетеро-азеотропные смеси. При непрерывном пропускании паров соответствующего ароматического углеводорода через реактор удается постоянно удалять образующуюся при сульфировании воду и тем обеспечивать практически стабильную скорость процесса и полное превращение серной кислоты в сульфокислоту. Недостатком процесса является необходимость испарения и конденсации больших объемов углеводородов, а также возможность образова-ния сульфона  [c.27]


    Ароматические углеводороды. Марковников и Оглоблин, изучая бакинскую нефть, еще в конце прошлого века выделили (через соответствующие сульфокислоты) бензол, толуол, ксилолы, этил-бензол, 1,2,4-триметилбензол и некоторые другие углеводороды этого класса. В настоящее время в нефтях обнаружены многие ближайшие гомологи бензола (С — ia) с одним, двумя, тремя и четырьмя заместителями в ядре. Заместителем чаще всего является радикал метил. Но доказано наличие и таких углеводородов ряда С Н2п-б, как изопропилбензол (кумол), пропилбензол, бутилбензолы, диэтилбензол и гомологи с различными заместителями в боковых цепях. [c.29]

    Как уже было указано, ароматическими спиртами называются производные бензола, имеющие гидроксильную группу в боковой цепи. По химическим свойствам эти соединения близки спиртам жирного ряда, а не фенолам. Они не растворяются в водных щелочах, и, следовательно, кислотные свойства у них выражены значительно слабее, чем у фенолов обычно они имеют приятный ароматический запах. Способы получения ароматических спиртов также аналогичны способам получения спиртов жирного ряда они получаются из соответствующих галоидпроизводных или путем восстановления альдегидов и эфиров кислот, а не из сульфокислот или солей диазония, подобно фенолам. [c.563]

    Реакция запекания позволяет получать чистые сульфокислоты многих первичных и вторичных аминов при минимальной затрате серной кислоты. Эту реакцию осуществляют путем длительного нагревания бисульфатов ароматических аминов при определенной температуре, обычно не превыщающей 200°С. Раньще сухие бисульфаты аминов нагревали на металлических противнях в специальных печах при заданной температуре, иногда под вакуумом. В настоящее время эту операцию проводят, нагревая бисульфаты аминов в высококипящих органических растворителях, например в полихлоридах бензола. Это обеспечивает значительно более равномерный обогрев и исключает подгорание твердого продукта. [c.73]

    В итоге, подвергаясь действию солнечной энергии, влажности, давления и др. факторов, химические вещества разлагаются с образованием более простых соединений и, как правило, становятся менее опасными. Однако известны случаи образования в атмосфере более токсичных продуктов в процессе трансформации. Так, установлено, что ароматические углеводороды (бензол), предельные (гексан) и непредельные (олефины) вступают в фотохимические реакции с сернистым газом с образованием промежуточных продуктов превращений — органических сульфокислот и серной кислоты (22). [c.79]

    Одной из важных реакций, в которых используются сульфохлориды ароматического ряда (бензол- или толуолсульфо-хлорид), является реакция этерификации, приводящая к получению сложных эфиров ароматических сульфокислот. Эти соединения представляют собой ценные алкилирующие средства. [c.127]

    Ван-дер-ваальсовская адсорбция ароматических ионов с конденсированными ароматическими ядрами (например, сульфокислот нафталина и его производных) значительно выше, чем ионов производных бензола, что обусловлено увеличением интенсивности дисперсионного взаимодействия углеродного скелета с поверхностью угля. При значениях констант ионизации порядка 10 —10 , характерных для сульфокислот нафталина и его производных в водных растворах, практически 95— 99% всего растворенного вещества находится в ионизированном состоянии. В этом случае возможна совместная адсорбция молекул и ионов. [c.90]

    Как известно, реакция десульфирования или гидролиза тех же г-сульфо-кислот антрахинона была до последнего времени возможна лишь в присутствии ртути. Было известно, что в отличие от сульфокислот нафталина, бензола и многих других ароматических производных гидролиз сульфокислот антрахинона в водусодержащей серной кислоте невозможен. [c.173]

    Различные производные бензола. Имеется сообщение [240], что бензальдегид при обработке парами ЗОз при 140° С дает только Л1-сульфокислоту. Однако другие исследователи [7, 118] нашли, что эта реакция дает только небольшие количества желаемого продукта, возможно, из-за чувствительности альдегидной группы к окислению. Удовлетворительные результаты дает олеум [7, 467]. Как показано в гл. 5, сульфокислоты ароматических альдегидов используются в качестве сульфоарилирующих агентов. [c.86]

    К числу менее распространенных активаторов, применяемых с суль-фоэфирами и сульфокислотами, относятся соли сульфаминовой кислоты [11] и соли простых ароматических сульфокислот, например бензол- или нафталинсульфокислоты [12]. [c.230]

    Несмотря на сульфирование в больших количествах фракции 60—95° бензина и неоднократное повторение разложения сульфокислот, не удалось собрать нужного количества бензола причиной является то обстоятельство, что бензолсульфокислота сравнительно трудно подвергается гидролизу, чем сул11фокислоты других ароматических углеводо- [c.29]


    Сульфированием фракции 60—95 патараширакской нефти и гидролизом сульфокислот полученный ароматический углеводород не содержал бензола, что, по-видимому, объясняется сложностью гидролиза сульфокислоты бензола. [c.59]

    Изомеризация является следующим типом побочной реакции, встречающейся прп сульфировании ароматических углеводородов. Перегруппировка Якобсена происходит только в случае тетра- и пентаалкилирован-ных бензолов (включая октагидрофенантреп), причем скорее сульфоновая кислота, чем углеводород, претерпевает перегруппировку при контакте с избытком серной кислоты [94]. Отмечалось TaKHte, что миграция алкильных групп обычно происходит как внутри молекулы, так и между молекулами и приводит к образованию смеси, состоящей из нескольких сульфокислот с различным числом и положением алкильных групп в кольце. [c.526]

    Сульфокислоты бензола и нафталина используют для получения фенолов, полифенолов и соответствующих нафтолов методом щелочного плавления RSOgNa -f 2NaOH —> R—ONa + NagSOg + H O (R — ароматический радикал). Кроме того, через сульфокислоты получают различные аминофенолы и аминонафтолы, при этом установки сульфирования почти всегда дополняются установками для производства фенолов методом щелочного плавления. [c.328]

    Изменение температуры влияет на изомерный состав сульфокислот, получаемых при сульфировании гомологов бензола, а также при сульфировании нафталина, его гомологов, конденсированных ароматических углеводородов. Изомерный состав определяется протекающими реакциями сульфирования — десульфирования, причем в результате возрастает содержание термодинамически более стойкого изомера. Как показали исследования [24, 25], стабильность толуолсульфокислот возрастает в ряду оргр-<яара <л(ега-соединение, что и подтверждается следующими данными  [c.27]

    При изучении свойств различных солей ароматических аминов с бензолсульфокислотой [28] (табл, 1) обнаружено, гго 1) соли диаминов имеют более высокую температуру плавления, чем соли моноаминов 2) наименьшей растворимостью обладают соли,, образованные аминопроизводными нафталина и дифенила 3) солк 2-аминоантрахинона и о-нитро-п-толуидина не могут быть получены 4) основные соли диаминов не удается получить в чистом состоянии 5) N-замещенпые амины с трудом дают соли с бензол-сульфокислотой. [c.201]

    Реакции пиролиза. При термическом разложении алкилсульфонатов (за исключением метилсульфонатов) образуются сульфокислота и олефин или продукт его полимеризации. Метиловые эфиры бензол- и л-толуолсульфокислот перегоняются практически без разложения при 280—290°, тогда как из этилового эфира бензолсульфокислоты получаются почти количественно бензолсульфокислота и этилен [197]. Олефины являются главными продуктами пиролиза р-хлор этилового и р,Р -дихлоризопропилового эфиров бензолсульфокислоты, но выходы ниже, чем в предыдущем случае. Аллиловые и бензиловые эфиры дают продукты полимеризации. Если разложение бензиловых эфиров проводится в ароматическом растворителе, может иметь место бензилированив последнего. Реакция идет лучше всего в интервале 110—140° и сопровождается выделением тепла. При нагревании с обратным холодильником бензилового эфира бензолсульфокислоты с избытком [c.345]

    Сульфокислоты, в жирном ряду сульфокислоты играют второстепенную роль, так как они мало доступны. Иначе обстоит дело с ароматическими сульфокислотами, которые легко получаются путем так называемого сульфирования, т. е. ири действии концентрированной серной кислоты на ароматические углеводороды, и являются ценными исходными веществами для дальнейших синтезои. Однако если все связанные с ароматическим кольцом атомы водорода бензола или его производного уже замещены, то сульфирование не идет. [c.532]

    Одним из способов полу чения фенолов является сплавление ароматических сульфокислот со щелочами. Какое количество фенола можно при10Т0ви1ъ таким способом, если для получения бензолсульфокислоты бьшо взято 3,9 кг бензола  [c.52]

    Реакция сульфирования находит очень широкое применение, и в нее были введены многие типы ароматических углеводородов (включая конденсированные циклические системы), арилгалогениды, простые ароматические эфиры, карбоновые кислоты, ацилированные амины, кетоны, нитросоединения и сульфокислоты [139]. Фенолы также можно успешно сульфировать, но реакция может осложняться конкурентной атакой по кислороду. Для сульфирования часто применяют концентрированную серную кислоту, но можно использовать также дымящую серную кислоту, 50з, С18020Н и другие реагенты. Как и в случае нитрования (реакция 11-2), имеется широкий ассортимент реагентов различной реакционной способности для проведения реакции как с высокоактивными, так и с инертными субстратами. Поскольку эта реакция обратима (см. реакцию 11-44), то для доведения ее до конца может потребоваться внешнее воздействие. Однако при низких температурах обратная реакция идет очень медленно, поэтому прямое взаимодействие оказывается практически необратимым [140]. Серный ангидрид реагирует значительно быстрее, чем серная кислота,— с бензолом взаимодействие идет практически мгновенно. Побочно часто образуются сульфоны. При введении в реакцию сульфирования субстратов, содержащих в кольце четыре или пять алкильных заместителей или атомов галогена, обычно происходят перегруппировки (см. реакцию 11-42). [c.341]

    Наиболее мягким сульфирующим агентом является серная кислота, применяемая для сульфирования больпюго количества ароматических соединений. В связи с тем, что реакция сульфирования обратима (на-5 пример, для реакции сульфирования бензола в температурном интервале 100—200° равновесие наступает при попижепии концентрации исходной серной кислоты приблизительно до 75% ) для улучшения выхода про- дуктов реакции часто применяется избыток сульфирующего агента. Иногда, напротив, такой избыток нежелателен из-за возможности образования поли-замещенных сульфопроизводных или из-за возможности перегруппировок образующихся сульфокислот. В таких случаях выде- ляющуюся в результате реакции воду удаляют в виде азеотропа при нагревании в вакууме. Описан ряд лабораторных приборов для проведения таких реакций -Иногда тот же эффект достигается при пропускании через реакционную смесь нейтрального газа, например паров бензина . Более энергичным сульфирующим агентом является хлорсульфоновая кислота, реагирующая, например, с алифатическими соединениями. Хлорсульфоновая кислота легче реагирует с парафинами, содержащими разветвленные цепи, чем с парафинами нормального строения, и поэтому применяется для разделения смесей изомерных углеводородов . [c.242]

    Изучение сульфирующего действия диоксан-сульфотриоксида проведено Сьютером с сотрудниками на ряде ароматических соединений, сульфокислоты которых были получены ранее другими методами. Бензол сульфировался с хорошим выходом до бензолсульфокислоты в течение одного дня при комнатной температуре. Сульфирование л -ксилола, анизола и нафталина заканчивалось в несколько минут. Фенол и анилин реагировали своими активными атомами водорода, давая соответственно фенилсер-ную и фени л сульф амовую кислоты. Хлорбензол в обычных условиях не сульфировался. Бензойная кислота дает легко гидролизуемый продукт Спирты вступают во взаимодействие с диоксан-сульфотриоксидом практически мгновенно, давая с количественным выходом соответствующие кислые эфиры серной кислоты. Эта реакция может быть использована для практических целей, так как соли подобных эфиров высших спиртов широко применяются в качестве поверхностно-активных веществ [c.252]

    Ароматические сульфокислоты — это соединения, содержащие сульфо-групну (ЗОзН), связанную с ароматическим кольцом, таким, как бензол. Они подобно серной кислоте легкорастворимы в воде из-за образования водородных связей, обладают сильным коррозионным действием и работать с ними весьма трудно. Из-за большей простоты обработки химики-органики часто вместо сульфирования проводят сулъфохлорирование. Сульфо-хлорирование дает сульфохлориды, Аг—ЗО С , а большинство арильных сульфохлоридов — твердые вещества, с которыми легко работать и которые могут быть превращены в сульфокислоты кипячением с водой. Сульфо-хлорирование осуществляют с помощью хлорсульфокислоты для сульфо-хлорирования, так же как и для сульфирования, катализатор, подобный хлориду алюминия, не нужен. [c.612]

    СУЛЬФОХЛОРИДЫ (сульфонилхлориды, хлорангидри-ды сульфокислот), соединения общей формулы КЗОзС , где К-орг. остаток. Жидкие или твердые в-ва (см. табл.) низшие алифатические и ароматические С. обладают неприятным резким запахом, не раств. или трудно раств. в воде, раств. в диэтиловом эфире, ацетоне, СНС1з, ССЦ, спиртах, бензоле. [c.473]

    На рис 5 3 представлены карты электростатического потенциала, создаваемого ядрами атомов и электронным зарядом в окрестности молекул бензола и нитробензола в плоскости молекул Проведены также расчеты потенциалов для сечений, поднятых над плоскостью молекул Поскольку эти расчеты приводят к аналогичным результатам, соответствующие карты не приводятся Видно, что потенциал вокруг молекулы бензола близок к нулю и быстро спадает, в то время как вокруг ароматического кольца молекулы нитробензола создается значительно больший по величине положительный потенциал (на сопоставимых расстояниях он приблизительно на 1-2 порядка превышает потенциал бензола и медленнее спадает) Обратим внимание на то, что изменение внешнего электростатического поля несравненно сильнее зависит от дальних заместителей, чем изменение электронной плотности То же наблюдается и в случае других полярных заместителей Расчеты показывают, что и введение фтора в молекулу бензола сильно изменяет внешнее электростатическое поле кольцо окружено областью интенсивного положительного потенциала Присутствие сульфогруппы в бензольном ядре приводит к появлению интенсивного положительного потенциала в пространстве вокруг молекулы Это не может не отражаться на реакционной способности бензол-сульфокислоты, как и более сложных по структуре органических соединений, какими являются органические аналитические реагенты, многие из которых содержат сульфогруппы Этот качественный вывод и подтвеж-дается экспериментом [c.181]

    При получении аминозамещенных сульфокислот типа сульфаниловой кислоты путем сульфирования первичных ароматических оснований сначала получаются кислые сернокислые соли этих оснований. При нагревании до более высокой температуры они вероятно через соответствующие сульфаминовые кислоты (см. последние) отщепляют воду и переходят в сульфаниловые кислоты. Это отщепление воды можно усилить, если вести работу при сильном разрежении или при пропускании сильного тока газа ( Oj или воздуха) При этих условиях можно уже в 50 мин. легко получить сульфани-ловую кислоту из кислой сернокислой соли анилина. Кислая сернокислая соль асимметричного т-ксилидина, не дающая сульфокислоты при обычном производственном способе так называемого запекания, образует при этом методе работы 1, З-диметил-4-амино-бензол-5-сульфокислоту. При сульфировании с избытком серной кислоты полу чается 1, 3-диме1ил-4-аминобензол-б-сульфокислота  [c.553]

    Дегидратация сульфокислот. Под действием Д. ароматические и алифатические сульфокислоты превращаются в ангидриды с высоким выходом 131. Преимущество Д. перед дициклогексилкарбпдиими-дом состоит в том, что образующаяся в этой реакции мочевина хул<е растворяется в бензоле и легко отделяется от аш пдрнда. [c.380]


Смотреть страницы где упоминается термин Сульфокислоты ароматические бензола: [c.178]    [c.164]    [c.202]    [c.30]    [c.73]    [c.532]    [c.186]    [c.199]    [c.95]    [c.57]    [c.636]    [c.491]   
Технический анализ в производстве промежуточных продуктов и красителей Издание 2 (1949) -- [ c.77 , c.119 ]




ПОИСК





Смотрите так же термины и статьи:

Сульфокислоты ароматические



© 2024 chem21.info Реклама на сайте