Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полярография максимумы

    В дополнении помещена статья А. И. Фрумкина о природе полярографических максимумов и приведен список советских работ по полярографии с 1940 по 1947 г. [c.488]

    Информация о качественном составе образца, которую мы получаем при анализе пробы, находит свое выражение в константах вещества 2/ (например, потенциал полуволн в полярографии, длины волн резонансных линий в атомно-эмиссионной спектроскопии, величина Rf в бумажной хроматографии и т. п.). Во многих методах инструментального анализа измерения проводят в интервале zv— Z2, т. е. от нижней до верхней границы значений, и появляющиеся сигналы записывают (рис. Д.174 и Д.175). При этом часто получают колоколообразную кривую, которая приближенно описывается функцией Лоренца или Гаусса (газовая хроматография, дифференциальный термический анализ, атомная спектроскопия и т. д.). В методах, дающих интегральную S-образную кривую, например в постояннотоковой полярографии, осуществляя дифференцирование при помощи определенной схемы, также можно получить аналогичную колоколообразную кривую. И наоборот, интегрирование колоколообразной кривой приводит к кривой S-образной формы. Координата максимума сигнала колоколообразной кривой или [c.448]


    Метод градуировки. Целью количественного анализа является определение содержания какого-либо элемента или соединения X. Поэтому необходимо точно знать функциональную зависимость между измеряемой величиной у и содержанием х (рис. Д.194). Желательно, чтобы эта зависимость не была многозначной (а). В случае двузначной зависимости, например для активной составляющей метода осциллометрии, нужно определить, в какой области должно находиться значение у для получения правильных результатов для х (б). Даже однозначная функциональная зависимость не всегда является идеальной (в), так как при наличии кривизны функции существует сильная зависимость чувствительности измерений от содержания компонента. Такая ситуация возникает, напр/ мер, при подавлении максимумов первого рода в постояннотоковой полярографии при определении содержания примесей поверхностно-активных веществ в воде. В таких случаях используют специальные приемы, например измеряют объем пробы, при добавлении которого сигнал уменьшается наполовину. Фиксируют значение у и определяют X при соответствующем разбавлении пробы. Как правило, для аналитических определений необходимо наличие однозначной линейной функциональной зависимости (г). Тогда градуировочный график можно описать уравнением у = ув+Ъх. При х =0, т. е. в отсутствие определяемого компонента, у=ув, поэтому ув называют сигналом фона. Причинами возникновения сигнала фона могут служить примеси определяемых компонентов в реактивах и растворителе, а также наложение сигналов, перекрывающих сигналы определяемых компонентов. Сигнал фона стараются в каждом конкретном случае уменьшить (при- [c.455]

    Вольтамперометрия (полярография) с линейной разверткой потенциала — метод анализа, при котором микроэлектрод поляризуется напряжением, изменяющимся с большой скоростью (до 100 В/с) по определенному закону, и вольтамперная кривая регистрируется электронно-лучевой трубкой (осциллографом). Значительно большие, чем в классическом методе скорости изменения поляризующего напряжения приводят к изменению формы вольтамперной кривой вместо плавной волны наблюдается кривая с четко выраженным максимумом — пиком. Причина этого в том, что при увеличении накладываемого напряжения скорость диффузии деполяризатора в приэлектродный слой становится меньше скорости электрохимического процесса — приэлектродный слой истощается, ток уменьшается (рис. 2.20). Потенциал пика служит качественной характеристикой деполяризатора, ток пика (высота пика) —количественной, зависящей также от скорости изменения поляризующего напряжения v  [c.143]


    Переменнотоковая вольтамперометрия (полярография) отличается от классической (постояннотоковой) тем, что на электроды наряду с постоянным напряжением, медленно изменяющимся во времени, накладывается переменное напряжение небольшой амплитуды (до 50 мВ). Переменнотоковая вольтамперная кривая, так же как кривая, полученная при линейной развертке напряжения, имеет форму кривой с максимумом (см. рис. 2.20) и содержит такую же аналитическую информацию. Количественная зависимость максимального тока на переменнотоковой полярограмме от концентрации анализируемого вещества определяется уравнением  [c.143]

    Метод дифференциальной полярографии облегчает определение потенциалов полуволны, так как при ф = Ф1/2 достигается максимум I dl/d p . Этот метод повышает также возможность определения малых количеств какого-либо вещества В в присутствии большого избытка другого более легко восстанавливающегося вещества А. В самом деле, в дифференциальной полярографии высота пиков для обоих веществ отсчитывается от емкостного тока, тогда как в обычной полярографии для определения тока по веществу В приходится вычитать из общего тока большой ток восстановления вещества А и ток заряжения. [c.198]

    Для аналитической химии представляет интерес применение осциллографической полярографии для определения концентрации и природы реагирующих веществ. Ток в осциллографической полярографии согласно уравнению (41.6) пропорционален концентрации реагирующих частиц. Поэтому удобно использовать максимальное значение тока В максимуме (X) = 0,452 и максимальный осцилло- [c.222]

    Метод переменнотоковой полярографии сводится обычно к измерению фарадеевского импеданса или соответственно фарадеевского переменного тока в зависимости от приложенного потенциала постоянного тока. Как было отмечено в разд. 4.5.1 и показано на рис. 4.28, минимум фарадеевского импеданса, т. е, максимум фарадеевского переменного тока, наблюдается при потенциале полуволны постояннотоковой полярографии. Кривая переменнотоковой полярограммы деполяризатора в идеальном случае имеет вид первой производной постояннотоковой полярограммы (рис. 4.28). Переменнотоковую полярограмму формально можно рассматривать как усиление характеристической кривой триода (которая в данном случае соответствует вольтамперной кривой). Но следует учесть, что скорость процесса определяется скоростью передачи ионов (диффузии) или самих реакций. [c.156]

    Принципиальная схема классического полярографа показана на рис. ПО. Напряжение (2—4 в) от внешнего источника Б (батареи) через делитель напряжения / подается на ртутные электроды полярографической ячейки катод 1 — ртутный капельный электрод, и анод 2 —слой ртути на дне ячейки. Ток, проходящий через ячейку, измеряется гальванометром Г, а величина напряжения, подаваемого на ячейку, регулируется перемещением движка на делителе от нуля — крайнее верхнее положение, до максимума — крайнее нижнее положение. [c.170]

    Влияние общей концентрации постороннего сильного электролита — фона (ионной силы раствора) более сложно. Увеличение концентрации фона в растворе вызывает сначала некоторое уменьшение О, однако а очень концентрированных растворах солей (1,5—2 М) коэффициент диффузии снова возрастает. В полярографии часто прибавляют к раствору для подавления максимумов растворы желатины или других аналогичных веществ это увеличивает вязкость раствора и уменьшает значение О. [c.489]

    Дифференциальная импульсная полярография. В этом методе на ячейку налагается, как и в обычной классической полярографии, медленно возрастающее напряжение. В конце периода капания на развертку напряжения налагают импульс небольшой амплитуды, приблизительно 50 мВ. Фиксируемый сигнал — разность токов, измеренных до и после наложения импульса. Получаемая кривая имеет форму пика с максимумом, близким к потенциалу полуволны. [c.501]

    Параметры фарадеевского тока в дифференциальной импульсной полярографии заметно меняются при наличии кинетических ограничений с уменьшением к ° высота пика уменьшается и увеличивается его ширина. При этом максимум тока смещается в сторону больших перенапряжений и может проявляться асимметрия формы пика относительно вертикали, проходящей через максимум, зависящая от коэффициента переноса а. Деформация пика с уменьшением объясняется тем, что его форма примерно соответствует первой производной полярографической волны, параметры которой (максимум крутизны, положение на оси потенциалов, симметрия и т.п.) зависят от к °. Поскольку при количественных определениях аналитическим сигналом является высота пика, чувствительность метода дифференциальной импульсной полярографии уменьшается с уменьшением обратимости электрохимической реакции. [c.354]

    В случаях, когда электрохимическая реакция протекает частично или полностью необратимо, для нахождения вольт-амперной зависимости A ( ) используется уравнение, представленное в общем виде выражением (8.98). Его приближенное решение для переменной составляющей Ai( n) в рассматриваемых условиях графически представлено на рис. 9.13. Видно, что для квазиобратимых электрохимических реакций, как и в дифференциальной импульсной полярографии, происходит уменьшение высоты пика и его уширение, а также незначительное смещение максимума. Поскольку в переменнотоковом режиме время электролиза t при по-362 [c.362]


    Из равенств (9.83) и (9.92) можно найти отношение максимальных амплитуд второй и первой гармоник фарадеевского тока /2т(0,66)//п,(0) = 5,4иЕ откуда следует, что, например, при Е = 20/и мВ максимум амплитуды второй гармоники в 9 раз меньше первой. Следовательно, при реализации переменнотоковой полярографии второго порядка возникает проблема выделения второй гармоники фарадеевского тока в присутствии шумов и значительно большего переменного тока основной частоты со. В простейшем случае частотная фильтрация может осуществляться с помощью частотно-избирательного усилителя, после которого сигнал второй гармоники подается на обычный амплитудный демодулятор. В таком случае на его выходе получается постоянное напряжение, изменяющееся в соответствии с амплитудой 12т(Лп), т е. в соответствии с модулем 2-й производной. [c.372]

    Интерпретация полярографических максимумов, х е. причин их возникновения, еще не достаточно разработана . В обш ем случае, их возникновение связывают с конвекцией слоя раствора у поверхности индикаторного электрода, вызванной неравномерным распределением заряда ва поверхности ртутной капли. Максимумы можно подавить добавлением следовых количеств полярографически неактивных поверхностно-активных веществ (ПАВ), таких, как желатин, метиловый красный и другие красители или Тритов Х-100 (доступное ПАВ). Обычно к 10 мл раствора добавляют 0,1-0,2 мл 0,5%-вого желатина. При концентрациях выше некоторого порогового значения (> 10 %) диффузионный ток начинает зависеть от концентрации ПАВ из-за изменения вязкости раствора при добавлении ПАВ. Следует отметить, что ПАВ необходимы только в классической полярографии при работе с ртутным капающим электродом. [c.422]

    Серьезное исследование по применению полярографии в контроле производства малеинового ангидрида при парофазном контактном окислении фурфурола было проведено Страдынем с соавт. [79, с. 195]. Для раздельного определения малеиновой кислоты (получаемой при улавливании малеинового ангидрида водой) и фурфурола авторы используют тот факт, что малеиновая кислота в щелочных средах не восстанавливается на ртутном капающем электроде, в то время как фурфурол образует в щелочной среде одноэлектронную волну. Поэтому содержание фурфурола определяли по высоте его волны в щелочной среде, а содержание малеиновой кислоты — вычитанием высоты соответствующей волны фурфурола из высоты суммарной волны в слабокислой среде (рН = 5,0). Обращается внимание на то обстоятельство, что в связи с присутствием в производственных растворах поверхностно-активных веществ для анализа следует применять капилляр, исключающий появление максимумов второго рода (т<1 мг/с). При этом также устраняется деформация полярографических волн из-за торможения электрохимической реакции поверхностно-активными веществами. [c.153]

    В табл. 24 представлены значения констант скорости и энергии активации реакции полимеризации 4-винилпиридина, определенные с помощью полярографических максимумов при малых степенях превращений в сравнении с теми, которые получены при средних степенях превращений гравиметрическим методом. Из таблицы видно, что кинетические характеристики реакции полимеризации 4-винилпиридина, полученные различными методами, хорошо совпадают, т. е. полярографию можно применять для изучения кинетических характеристик мономеров и в случае малых степеней превращений. [c.195]

    Интервал определяемых концентраций 10 —10 М, нижний предел определений в методе с, линейной разверткой напряжения и в переменнотоковой полярографии достигает 10 и в инверсионной вольтамперометрии—10 М, при определении малых концентраций погрешность не превышает 3%. Метод достаточно селективен разрешающая способность по потенциалам (полярографические волны не сливаются) в классической полярографии 100—150 мВ, в переменнотоковой и в полярографии с линейной разверткой напряжения — 30—50 мВ. Разрешающая способность может быть увеличена, если регистрировать кривую AIlAE = f E). При этом на полярограмме при E = Ei/ наблюдается максимум, высота которого пропорциональна концентрации. Дополнительного разделения полярографических волн можно достичь, используя в качестве фонового электролита комплексо-образующий реагент. Например, раздельное определение ионов Со2+ и N 2+ в смеси на фоне 1 М раствора КС1 затруднительно Ei/ =—1,2 и —1,1 В соответственно), тогда как на фоне 1 М раствора KS N эти значения изменяются до —1,3 и —0,7 В. Метод быстр в исполнении единичные измерения занимают несколько минут и могут быть повторены для одного и того же раствора многократно (практически истощение деполяризатора в растворе не происходит). Ограничения метода полярографического анализа связаны с использованием ртутного электрода. [c.144]

    Во втором случае электрод поляризуют, как и в постояннотоковой полярографии, медленно меняющимся напряжением, но в конце жизни каждой капли на электрод накладывают дополнительный импульс напряжения небольшой амплитуды, 50 мВ, и длительностью л 100 мс (рис. 5.15, в). Измеряют разность сил токов, протекающих до и после налол ения импульса, в конце его действия, т. е. фактически измеряют приращение силы тока, отвечающее постоянному приращению потенциала. В связи с этим кривая имеет форму пика с максимумом, отвечающим являясь графиком зависимости сИ/йЕ от Е (по этой причине метод и называется дифференциальным). [c.286]

    В осциллографической полярографии зависимость тока от потенциала электрода имеет максимум, характеризуемый велсотой Яр (или /р) и потенциалом р. Величины Яр(/р) пропорциональны концентрации вещества в растворе и являются количественными характеристиками метода. р — качественная характеристика, она зависит от природы деполяризатора и состава фонового электролита. В начале кривой обычно наблюдается небольшой подъем, обусловленный емкостным током. Далее подъем переходит в горизонтальный участок, за которым следует резкое увеличение тока, вызванное разрядом деполяризатора при достижении потенциала восстановления данного иона. Ток достигает максимума, а затем падает, что связано с уменьшением концентрации ионов деполяризатора в приэлектродном слое вследствие электролиза (рис. 53). При достаточно больших скоростях изменения [c.160]

    Я- Гейровский. Полярографический метод. Химтеорет, 1937, (226 стр.). Автор является основателем полярографического метода анализа. В его книге из. ложены теоретические основы метода, рассматриваются виды электровосстановления-дается объяснение максимумов . В практической части описана аппаратура, техника проведения полярографирования и случаи применения метода в химическом анализе и др. областях. Приведена полная библиография работ по полярографии с 1922 по 1937 гг. [c.488]

    Применение фазоселективного выпрямителя в переменнотоковой полярографии дает возможность полностью устранить емкостный ток, поскольку он опережает фарадеев ток (остаточный ток, обусловленный электродной реакцией деполяризатора). Ход перемениотоковой полярограммы становится понятным пр сопоставлении переменнотоковой полярограммы с постояннотоковой (рис. Д. 120). На постояннотоковой полярограмме (верхняя диаграмма) чистому фоновому электролиту соответствует кривая 1 (штриховая линия). Подъем на этой криво/г при. положительном потенциале ртутного капельного электрода обусловлен анодным растворением ртути, а при большом отрицательном значении потенциала— выделением катионов фонового электролита. При добавлении к фоновому электролиту деполяризатора ход кривой 2 вначале будет таким же. Вблизи потенциала полуволны деполяризатора возникает волна, а затем на кривой снова наблюдается горизонтальный участок до значения потенциала разложения фонового электролита. Небольшое переменное напряжение, наложенное на линейно возрастающее постоянное напряжение переменнотоковой полярографии (в точках а, б, в), вызывает в области небольшого возрастания постояннотоковой полярограммы (а и в) незначительное изменение силы тока, но большое изменение потенциала полуволны в области б, обозначенное б. Поскольку, как указано выше, протекает только переменный ток, на переменнотоковой полярограмме (нижняя диаграмма) наблюдаются только эти изменения. Для обычных деполяризаторов возникают максимумы при значениях их потенциалов полуволн. Таким образом,, в идеальном случае переменнотоковая полярограмма совпадает с первой производной соответствующей постояннотоковой полярограммы (рис. Д.121), а также с дифференциальной полярограммой. Существенным отличием является очень небольшой максимум в случае необратимого электродного процесса,, поскольку малого значения переменного напряжения уже недостаточно для окисления и восстановления соответствующего количества деполяризатора на электродах. Поэтому применение переменнотоковой полярографии ограничено обратимостью электродных реакций. Однако этот метод имеет то преимуще- [c.302]

    Преимуществом переменнотоковой полярографии является возможность гее применения для исследования адсорбционных процессов, происходящих на ртутном капельном электроде, а также для, количественного определения поверхностно-активных веществ, таких, как высшие спирты, жирные кислоты, моющие средства и др. Адсорбция вещества в пограничном слое ртутного капельного электрода достигает максимума при значении потенциала, соответствующем нулевой точке электрокапиллярной кривой (е ), при котором двойной электрический слой находится в незаряженном состоянии. В зависимости от знака потенциала происходит притяжение анионов или ооответст- веино катионов фонового электролита, а также в обоих случаях — притяжение диполей растворителя к пограничному слою, причем адсорбция поверх- [c.303]

    Так же как в методе переменнотоковой полярографии на полярограммах КВП наблюдаются характерные колоколообразные симметричные максимумы деполяризаторов (рис. Д.124), но с характерными ступенями. Для максимальной силы тока по аналогии с урав1нением (428) можно записать [c.305]

    Метод дифференциальной полярографии облегчает определение потенциалов полуволны, так как при Е=Ец2 достигается максимум ЫИйЕ. Этот метод повышает также возможность определения малых [c.186]

    На полярографических кривых часто в узкой области потенциалов появляются аномалии— полярографические максимумы из-за резкого возрастания тока. Их следует ликвидировать, повышая концентрацию фона или прибавляя органические поверхностноактивные вещества (желатин, агар-агар, столярный клей и др.). Чувствительность и точность полярографии увеличивают анализом автоматически записанных дифференциальных кривых (dlldE) =1(Е)т или построенных по опытным данным кривых (AIIAE) =f E)r (см. рис. 41, б). Полярограмма, полученная на ос-циллографическом полярографе, называется осциллографической. Количественной характеристикой вещества является на ней величина мгновенного тока, соответствующего максимуму кривой Лпах-Качественной характеристикой служит потенциал Ej при котором этот максимум достигается. Он совпадает с потенциалом полуволны (рис. 41, а), характерным для данного процесса и зависящем от природы вещества и среды. Значение /а зависит от температуры. При изменении температуры на 1° Id изменяется на 1,7%. Полярографический анализ проводят с термостатированными растворами. [c.206]

    Иногда вследствие увеличения предельного тока на поляро-граммах появляются максимумы и пики , сильно искажающие форму нормальной кривой. Явление возникновения максимумов состоит в том, что при отсутствии в растворе поверхностно активных веществ на полярограмме получается резкий скачок в силе тока (полярографический максимум) и только при даль-нейщем увеличении потенциала катода высота волны падает до нормальной величины. Следует отметить, что Гейровский дал неправильную теорию максимумов. Только после опубликования работы А. Н. Фрумкина (1934 г.), в которой была высказана новая теория максимумов и были проведены чрезвычайно изящные и наглядные опыты, подтверждающие эту теорию, этот раздел полярографии получил прочную теоретическую основу и с тех пор продолжает развиваться силами почти исключительно советских ученых. Было показано, что причиной увеличения предельного тока является движение ртутной капли, вызывающее размещивание раствора и поэтому уменьшающее толщины диффузного слоя. В результате возрастает диффузия разряжающихся ионов к капельному электроду. Как указывает Б. Н. Кабанов, движение поверхности ртути может вызываться двумя причинами во-первых, образованием капли при вытекании струи ртути из капилляра, во-вторых, неравномерной поляризацией капли, приводяш,ей к тому, что в разных точках капли получается различное поверхностное натяжение. Изменение поверхностного натяжения связано со взаимным отталкиванием ионов двойного слоя, растущим с увеличением заряда двойного слоя. Максимумы могут подавляться добавкой веществ, адсорбирующихся на поверхности электрода (желатина, агар-агара, метилового красного и др.). [c.293]

    Вращающиеся электроды были введены в электрохимию Нернстом и Мериамом (1905). Лейтинен и Кольтгоф в 1939—1941 гг. показали возможность применения вращающихся электродов в полярографии и амперометрии. При скорости врап ения электрода в пределах 600—1800 об мин на автоматически записанных "поляро-граммах наблюдалась прямая пропорциональность между концентрацией деполяризатора и величиной предельного тока. При использовании платинового и особенно серебряного амальгамированного электродов полярограммы мало отличаются от полученных на ртутном капельном электроде. Это объясняется тем, что при вращении электрода диффузионный слой частично смьквается и становится более тонким, поэтому ток быстро стабилизируется и максимумы на полярограммах, характерные для стационарных электродов (см. рис. 131 и 132), исчезают. [c.201]

    Тетрагидрофуран - окись тетраметилена, С4Н8О - широко используется в качестве среды для органических реакций, так как он является прекрасным растворителем для многих органических соединений и в то же время сам инертен, особенно в отношении восстанавливающих агентов. Тетрагидрофуран применялся при полярографии на КРЭ и при крупномасштабном электролизе. Однако поведение КРЭ в этих условиях не совсем удовлетворительно [1]. Вследствие относительно небольшого пограничного натяжения на границе раздела фаз ртуть - тетрагидрофуран образующиеся капли ртути имеют малый размер, а скорость капания нежелательно высока. Это приводит к возникновению широких максимумов, которые трудно подавить. Другое заметное осложнение связано с низкой диэлектрической постоянной тетрагидрофурана (7,4), из-за которой растворы в этом растворителе обладают высоким сопротивлением. [c.28]

    Для определения урана методом осциллографической полярографии предложен [383а] фон IN H IO4—0,01 N H l, содержащий 0,001% пептона и 0,002% фенола (для подавления максимума). На этом фоне получается линейная зависимость между величиной пика и концентрацией урана в пределах 2-10 —4-10 М. Как указывают авторы, наличие в растворе Си, РЬ, As, Sn, Bi в соотношениях к урану, равных 1 1, не оказывает влияния на его определение. Присутствие Sb и V в тех же соотношениях вызывает некоторое искажение волны урана. Но особенно мешает при определении урана молибден, который необходимо отделить. [c.202]


Смотреть страницы где упоминается термин Полярография максимумы: [c.70]    [c.317]    [c.143]    [c.143]    [c.304]    [c.208]    [c.208]    [c.234]    [c.14]    [c.129]    [c.166]    [c.208]    [c.74]    [c.226]   
Основы аналитической химии Часть 2 (1979) -- [ c.2 , c.66 ]




ПОИСК





Смотрите так же термины и статьи:

Полярограф

Полярография



© 2025 chem21.info Реклама на сайте