Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

АСУ-хлор хлора

    Кислотную функцию катализатора риформинга выполняет оксид алюминия. Он определяет активность катализатора в реакциях изомеризации, гидрокрекинга и дегидроциклизации. Кислотность поверхности АЬОз обусловлена как льюисовскими, так и бренстедовскими центрами. Бренстедовская кислотность определяется протонами хемосорбированной воды или протонодонорных ОН-групп. При частичном удалении ОН-групп путем прокаливания на поверхности остаются координационно-ненасыщенные ионы АР+, которые являются кислотными центрами Льюиса. Для усиления кислотности в оксид алюминия вводят 0,5—2 % хлора. Хлор замещает часть гидроксильных групп поверхности, и катион А1 + оказывается связанным с двумя различными анионами. При этом нарушается электронная симметрия и происходит отток электронов от связи О—Н, благодаря чему повышается подвижность водорода. В процессе работы часть хлора теряется, в основном, за счет взаимодействия с влагой, содержащейся в сырье. Поэтому одно из требований к сырью риформинга — содержание воды не более %. Для компенсации возможных потерь хлора в сырье постоянно или периодически вводят определенное количество органических хлоридов (дихлорэтан, четыреххлористый углерод или этил-хлорид). [c.354]


    Современные цехи большой мощности при одноступенчатом сжижении по комбинированному методу работают по следующей схеме. Компримирование хлора до 3,5 ат производится турбокомпрессорами типа ХТК-2,5/3,5, конденсация в элементных конденсаторах происходит при —20°С. Хладоноситель подается с централизованной аммиачной установки. При нормальном содержании водорода в хлоре коэффициент сжижения составляет 85—88%-Удельные расходы на 1 т жидкого хлора 50—70 квт-ч электроэнергии, 10—15 -м воды, 100 тЫс. ккал холода, 1,15—1,17 т газообразного хлора. [c.81]

    Свойства газообразного и жидкого хлора. Хлор С1 входит в VII группу периодической системы элементов Д. И. Менделеева под порядковым номером 17 и относится к группе галогенов, в которую входят также фтор, бром и иод. Относительная атомная масса хлора 35,453, относительная молекулярная масса 70,906. В природе встречаются два изотопа хлора С1и С1. Обычно хлор представляет собой смесь 75,77% и 24,23% С1. При атмосферном давлении и обычной температуре газообразный хлор имеет желто-зеленый цвет, характеризуется резким раздражающим запахом, легко сжижается при -34,05 °С и давлении 101,3 кПа, образуя подвижную, маслянистую жидкость желто-зеленого цвета. Твердый хлор - это бледно-желтые ромбические кристаллы, которые плавятся при -101,6 °С и давлении 101,3 кПа. Газообразный хлор тяжелее кислорода почти в 2,3 раза и воздуха в 2,5 раза. [c.8]

    Обеззараживание воды. Воду обеззараживают по большей части путем хлорирования свободным хлором. Хлор реагирует с водой, и бактерии погибают вследствие быстрого окисления органических веществ выделяющимся кислородом. При хлорировании число микроорганизмов понижается почти до нуля. Для устранения неприятного запаха и вкуса в воду одновременно с хлором вводят немного аммиака. [c.106]

    Предположим далее, что газообразный водород существует не в виде отдельных атомов, а в виде молекул водорода, каждая из которых состоит из двух атомов, а газообразный хлор состоит из молекул хлора, также двухатомных. В этом случае 100 атомов водорода — это 50 далеко отстоящих друг от друга частиц водород-водород, а 100 атомов хлора — это 50 далеко отстоящих друг от друга частиц хлор-хлор, т. е. всего 100 частиц. При образовании хлорида водорода происходит перегруппировка частиц возникает атомная комбинация водород-хлор. При этом 100 атомов водорода и 100 атомов хлора дают 100 молекул хлорида водорода (каждая из молекул содержит по одному атому каждого вида). Следовательно, 50 молекул водорода и 50 молекул хлора образуют 100 молекул хлорида водорода. Этот вывод совпадает с результатами наблюдений, которые показывают, что один объем водорода и один объем хлора дают два объема хлорида водорода. [c.60]


    Хлор поступает по перфорированной свинцовой трубе в освинцованный чугунный, деревянный или керамический аппарат, оборудованный мешалкой и обратным холодильником. Углеводород насыщается галоидом и отводится по трубе, в которой в защитной рубашке установлена ртутная лампа. При прохождении потока смеси углеводорода с хлором, что облегчается при помощи пропеллерной мешалки, расположенной у входа 3 циркуляционную трубу, протекает хлорирование в ультрафиолетовом свете. Хлорированный углеводород через верхний патрубок циркуляционной трубы возвращается в основной аппарат и там снова насыщается хлором. Образующийся хлористый водород отводится с верха обратного холодильника. [c.144]

    Если в газовую фазу вводить не кислород, а хлор то с повышением его количества концентрация низших нитропарафинов падает, т. е. происходит совершенно противоположное, чем при добавке кислорода. Концентрация 2-нитропропана при этом увеличивается, а концентрация 1-нитропропана остается прежней. Следовательно, добавка хлора повышает селективность замещения атомов водорода. Как уже было раньше установлено на примере хлорирования, изопропильных радикалов образуется больше, чем н-пропильных. [c.572]

    В большинстве соединений хлор как сильно электроотрицательный элемент (ЭО =3,0) выступает в отрицательной степени окисления —1. В соединениях же с более электроотрицательными фтором, кислородом и азотом он проявляет положительные степени окисления. Особо разнообразны соединения хлора с кислородом, в которых степени окисления хлора +1, -f3, +5 и +7, а также +4 и Ч-6. [c.286]

    В ряду СЮ — СЮг — СЮз — СЮ4 по мере увеличения степени окисления хлора устойчивость анионов возрастает. Это можно объяснить тем, что при переходе от СЮ к СЮ увеличивается число электронов, принимающих участие в образовании связей. Особо устойчив ион СЮ4, в котором все валентные электроны атома хлора принимают участие в образовании связей  [c.295]

    Что является более сильным окислителем — хлор или кислород — в системе, состоящей из газообразных Ог, С 2, НС и НгО Ответ дайте для комнатной температуры и 1000 К, а также вычислите температуру, при которой в данной системе окислительные свойства хлора и кислорода одинаковы. [c.66]

    Потребление ртути на тонну хлора меняется в щироких пределах, зависит от типа завода, года его постройки, контроля и других факторов, влияющих на расход сырья. На более старых заводах расход ртути составляет около 0,2 кг/т хлора. Использование средств контроля позволяет уменьшить его до 0,1 кг/т. На отдельных заводах расход ртути доведен менее, чем до 0,02 кг/т. [c.253]

    Исследование природных соединений различных элементов показывает, что существование устойчивых изотопов наблюдается у большинства элементов периодической системы. Так, например, совсем не было обнаружено атомов хлора с массой 35,46, отвечающей его атомному весу 35,46, а было установлено, что хлор в любых его соединениях состоит из атомов с массой 34,980 (их относительное количество 75,4%) и атомов с массой 36,977 (они составляют 24,6%). Наблюдаемый же нами атомный вес хлора 35,46 отвечает средней величине, получаемой из масс изотопов в соответствии с их процентным содержанием. [c.46]

    Данные по удельной смертности от хлора весьма существенны, так как он широко используется и очень токсичен. Эти данные могут быть использованы для оценки удельной смертности от других токсичных веществ по их известной относительной токсичности по сравнению с хлором. Такую оценку, позволяющую продвинуться в этом важном направлении, следует проводить с учетом замечаний, сделанных в гл. 14. Как будет показано ниже, число погибших в Бхопале, с учетом интенсифицирующих поражение факторов, может быть разумным образом соотнесено с произведением удельной смертности для хлора на токсичность метилизоцианата относительно хлора и массу выброса метилизоцианата. [c.506]

    Задача локального управления процессом — поиск оптимального режима секций хлоратора Хл для достижения максимума превращения парафина при ограничениях на расход хлора и температуру в секциях реактора. Оптимизация процесса производилась методом Розенброка [84]. Были испытаны два варианта алгоритма управления XI и Х2 [227, 234]. В варианте XI в качестве управляющих воздействий использовались расход хлора на секцию и температура секции. [c.394]

    В то время состав соляной кислоты не был известен, и естественно, что Бертолле вместе с Лавуазье (см. стр. 350) приняли, по аналогии с азотной, серной, фосфорной и другими кислотами, что в соляной кислоте содержится некое вещество, очевидно, элементарной природы, которое находится в соединении с кислородом. Это вещество и было названо мурием (muria — рассол ). Если подвергать соляную кислоту окис.лению, то нужно принять, что мурий переходит в более окисленное состояние. Таким образом, по мнению Бертолле, а также и Лавуазье, хлор должен представлять собой сложное вещество, в составе которого содержится элемент мурий в более окисленном состоянии но сравнению с мурием в соляной кислоте. Подтверждение этого заключения Бертолле видел в следующем явлении раствор хлора в воде, как известно, разлагается на свету. Наблюдая это явление, Бертолле установил, что при реакции образуется свободный кислород, а в растворе остается соляная кислота. Отсюда было естественно прийти к заключению, что хлор представляет собой окисленную соляную кислоту , т. е. состоит из соляной кислоты и кислорода. Бертолле даже количественно определил состав хлора. Он нашел, что на 87 весовых частей соляной кислоты в нем содержится в связанном состоянии 13 весовых частей кислорода. [c.391]


    Основной целью автоматизации процессов, непосредственно связанных со сжижением хлора, является стабилизация давления и температуры процесса, которые определяют заданную степень сжижения, а также предотвращение (или сигнализация) опасностей, возникающих при возможном образовании взрывоопасных концентраций водорода в абгазах, превыщении предельных давлений при компримировании газообразного хлора, испарении и хранении жидкого хлора и др. Для безопасной эксплуатации особо важное значение имеет также автоматизация контроля за содержанием водорода в хлоре и абгазах и степенью заполнения танков для хранения жидкого хлора. Р1звестное значение имеет также автоматическое регулирование производительности машин и оборудования. Решение перечисленных задач в области автоматизации производства жидкого хлора одновременно приводит к улучшению его технико-экономических показателей, в том числе к повышению производительности труда, так как позволяет уменьшить количество обслуживающего персонала. [c.119]

    Двигательной силой сжатия явился сжатый воздух давлением 8—10 атм. Воздух распределяется в аппараты особыми золотниками. В аппаратах сдвоенного типа для принудительного комбинированного движения золотников одной и другой половины пары компрессоров применяется коромысло, связанное штангами с поплавками. Когда одно плечо коромысла опускается, и тем самым открывает доступ сжатому воздуху в нижний сосуд одной половины аппарата, в это время другое плечо коромысла подымается и открывает выпуск отработанного сжатого воздуха из нижнего сосуда второй половины аппарата в атмосферу. В идеальном случае при нейтральных газах работа коромысла происходит точно, как часы. Практически же при работе с хлорным газом движение плотно пригнанных в своих цилиндрах поршневых золотников быстро затрудняется образованием налета от разъедания металла, и происходит настолько сильное заедание золотников, что для того, чтобы сдвинуть с места, необходимо бывает приложить значительное усилие, так как подъемная сила всплывающего поплавка оказывается уже недостаточной. Легко представить теперь себе, какие тяжелые расстройства в работе установки происходят при заедании распределительных золотников, регулирующих впуск и выпуск воздуха. Если, например, сжатый воздух, подымающий кислоту в одной половине аппарата, не будет во время вследствие заедания золотника прикрыт, то дальнейшее действие приведет к тому, что он после выталкивания всего сжатого хлора начнет выбрасывать в хлорный конденсатор серную кислоту, что будет разрушительным образом действовать на холодильные трубы конденсатора. В то же время в другой половине компрессора это приведет к тому, что остановится засасывание хлора из электролиза, и тем самым увеличится в нем давление хлора. Эти колебания давления хлора расшатывают все стыки в коммуникации и в крышках электролизера, и после этого трудно бывает восстановить высокую концентрацию хлора. Поэтому приходится всегда обеспечивать применение исскуственного опускания коромысла для переключения. Однако, этот спТ)соб является уже крайним средт ством, ибо раз уже заедание началось, то искуственное передвияее . ние коромысла спасает положение лишь на несколько ходов каин прессора, после чего золотники заедает намертво, и нет никакой вое ) можности передвинуть их помощью ручной силы. [c.271]

    Качество хлора оценивается не только по концентрации его в хлоргазе, но и по содержанию в нем водорода и СОг. Присутствие большого количества двуокиси углерода в хлоргазе крайне нежелательно, так как СОг ухудшает условия переработки хлора, Е частности увеличиваются потери СЬ с отходящими газами при сжижении хлора. Присутствие СОг в хлоргазе при получении хлорной извести приводит к ухудшению качества продукции. Двуокись углерода образуется в процессе электролиза вследствие окисления графита анодов. Условия, обеспечивающие низкое содержание СОг в хлоре, были подробно описаны при изложении мер предотвращения износа анодов (стр. 40 и сл.). При нормальном ходе процесса электролиза содержание двуокиси углерода в хлоре не поевышает 0,8—1,1%. [c.194]

    Следует отметить, что аппаратурное оформление процесса осушки хлора для дальнейшего развития хлорного производства требует новых решений. Гидродинамические характеристики насадочных башен ограничивают их производительность. Поэтому ведется разработка новых более совершенных способов и аппаратов для осушки хлора Возможно, наилучшим решением будет применение аппаратов пенного типа, обладающих при тех же габаритах производительностью, в несколько раз превышающей производительность насадочных башен. Принцип действия этого аппарата, предложенного М. Е. Позиным , заключается в том, что при пропускании газа через сетчатую тарелку достаточно большого диаметра со скоростью в наибольшем сечении аппарата, превышающей скорость свободного всплывания пузырьков газа (практически 1—3 м/сек), в аппарате создается пена. Образование пены способствует значительной интенсификации тепло- и массообмеиа между жидкой и газовой фазами. Благодаря этому пенные аппараты отличаются высокой производительностью при малых габаритах. Их гидравлическое сопротивление близко к суммарному сопротивлению сернокислотной системы осушки хлорй. Так, по расчетным данным, пенный осушитель производительностью 40 т/сутки хлора имеет сечение 500x400 мм и высоту около 3 м. Его сопротивление оценивается в 400—500 мм вод. ст. при скорости хлора от 1,9 до 2,75 м/сек. Большой интерес представляет способ осушки хлора охлаждением до —20 °С, при этом содержание влаги будет ниже нормы (0,04%). Расход холода невелик . [c.216]

    Хлор. При нормальных условиях хлор находится в газообразном состоянии. Масса одного литра хлора при 0°С и 760 MJЧ рт. ст. равна 3,214 г, плотность газа по отношению к воздуху составляет 2,49, температура кипения при атмосферном давлении равна —34Д °С. Давление ларов чисто1Го хлора лри различных температурах показа1Но на рис. 88. При наличии в хлоре инертных газов его давление уменьшается пропорционально их аодержа-нию (для 96%-ного хл.0(ра примерно а 25%). Критическое давление хлора составляет 76,1 атм, критическая температура 144 °С с водой хлор образует твердые гидраты (СЬ-дНгО) с температурой плавления не выше 10°С. [c.240]

    Гетерогенный катализ применяется главным образом при газофазном хлорировании. В качестве катализаторов используют активированный уголь, пемзу, отбеливающие земли и т. п., пропитанные металлическими солями, особенно медными. В соответствии с теорией Тэйлора их действие основано на способности их активных центров вызывать ионизацию хлора. Гетерогенное каталитическое хлорирование протекает по криптоионному механизму и нечувствительно к обрыву цепи, особенно если оп вызывается кислородом. Благодаря этой нечувствительности к кислороду становится возможной разработка такого процесса хлорирования, при котором хлор будет использоваться целиком именно потому, что процесс будет проходить в присутствии кислорода. При этом применяются такие контактные массы, которые делают возможным превращение образовавшегося хлористого водорода под воздействием кислорода в воду и хлор [,5]. [c.113]

    Мерзоль 30 получается, когда в мепазин вводится примерно 30% двуокиси серы и хлора от того количества, которое теоретически необходимо для полного превращения углеводородов в моносульфохлориды. Мерзоль Н соответствует 50%. Мерзоль О отвечает тому случаю, когда в мепазин введены все необходимые 100% двуокиси серы и хлора. [c.141]

    Углеводород для хлорирования загружали в актоклав с мешалкой, куда вводили определенное количество хлора из баллончика 1. Баллон- чик заполняли жидким хлором через вентиль 2 при охлаждении, помещая в баню со льдом или охлаждающей смесью. Баллончик 1 взвешивали до и после наполнения, для этого его отъединяли в точке 3 от остальной аппаратуры. Затем хлор в газообразном состоянии вводили Б автоклав с мешалкой, где он растворялся в хлорируемом материале. Для этого баллончик 1 помещали в обогреваемую водяную баню. Однородность состава реакционной смеси достигалась кратковременным включением мешалки. К аппаратуре присоединены два баллона с азотом, один из которых полный, а второй частично опорожнен. Вентиль второго баллона соединяют с аппаратурой до выравнивания давлений. Для повышения давления в аппаратуре по сравнению с достигаемым при присоединении неполного lasiOTHoro баллона, открывают вентиль второго полного баллона до достижения требуемого уровня. [c.186]

    Так как при этой операции хлор в углеродной цепи почти не омыляется, то аналитически можно установить, какой процент всего связанного с углеродом хлора содержался в виде хлористого алкила и какой в виде хлорсульфохлорида. При незначительном хлорировании в углеродной цепи, как при сульфохлорировании н-парафинов при облучении ультрафиолетовыми лучами, можно считать, что в хлористо.м алкиле хлор содержится главным образом в виде алкилмонохлорида. [c.376]

    При пуске установки включают циркуляционный насос и ртутнокварцевые лампы, после чего подают хлор и двуокись серы. Двуокись серы ввсдится, как указывалось выше, в 10%-ном избытке по сравнению с хлором. Хлор поступает из цистерны под давлением 5—6 ат в жидком виде и. пройдя расходомер, поступает в испаритель, где дросселируется до 2,2 ат, и это давление поддерживается во всей системе. [c.401]

    Есл и обеспечить отвод тепла, выделяемого в реакции, то, казалось бы, любое поступающее кошичество хлора и двуокиси серы будет поглощено, Однако по двум причинам это технически неосуществимо. При обычной и нтенси вности освещения в пр омышлеиной установке при слишком большой скорости подачи газов имел бы место проскок хлора, который уходил бы с отходящими газами. Одновременно сильное вспенивание реакционной жидкости потребовало бы установки слишком высоких колонн или же других соответственных мер. Тем не менее выгода снижения продолжительности реакции (поскольку в овяэи с этим производительность, отнесенная на единицу объема и времени, сильно возросла бы) могла бы, несомненно, перевесить эти недостатки, если бы чисто химические соображения позволили сократить время реакции ниже определенного минимума. [c.402]

    Газ, гюступающип для этого процесса нри давлении 740 мм рт. ст. содержит 7,97% I2 (по объему) и имеет температуру 24° С. Пройдя сосуд с и шест-ковым молоком, газ имеет температуру 27° С и давление 743 мм рт. ст. Пар-UHajBjHoe давление хлора в отходящем газе равно 27 мм вод. ст. Подсчитать а) насколько уменьшится объем газа после процесса хлорирования б) сколько получится чистого гипохлорита кальция на 100 поступающего газа при услоппн, что весь абсорбируемый хлор вступает в реакцию с Са(0Г1)2. [c.65]

    Во многих случаях газовую смесь после хлорирования разбавляют воздухом или инертным газом, чтобы избежать образования взрывоопасной смеси водорода с хлором или кислородом устанавливают постоянный контроль состава газов после хлорирования аппаратуру для хлорировдния перед началом процесса продувают азотом хлораторы оснащаются эффективными средствами охлаждения реакционной массы, автоматическими регуляторами ведения процесса и средствами противоаварийной защиты. Хлор-производные, образующие с воздухом взрывоопасные смеси, хранят под азотом. [c.115]

    Установлено, что утечка жидкого хлора была вызвана ошибкой производственного персонала. Рабочий после залива железнодорожной цистерны стал разбирать съемный участок стального трубопровода при открытом вентиле на цистерне. Поэтому при ослаблении фланцевого соединения через него началась утечка жидкого хлора. Фланцевое соединение было ослаблершым, так как резиновая прокладка под воздействием хлора разрушилась. Следует отметить, что резиновые прокладки, которые ошибочно были установлены на фланцевых соединениях трубопровода жидкого хлора, могли сами по себе явиться причиной аварии, так как резина неустойчива в среде жидкого хлора. [c.192]

    Процесс s-Сб-айзомеризейшн (фирма British Petroleum) [114, 118]. Процесс проводят при температурах 120-160 °С, давлении до 2,8 МПа при циркуляции водородсодержащего газа на алюмоплатиновом катализаторе, промотированном хлором. Хлор вносится в катализатор путем обработки катализатора в реакторе изомеризации хлорорганическими соединениями в рекомендованных фирмой условиях. Катализатор,отличающийся высокой активностью и избирательностью, характеризуется продолжительностью рабочего цикла до 2 лет, может быть отрегенерирован в реакторе установки изомеризации с полным восстановлением первоначальной активности. [c.103]

    Согласно представленному циклу процесс образования кристалли ческого хлорида натрия из твердого металлического натрия и ГН зообразного хлора возможен по двум путям. Первый путь состоит в превращении натрия и хлора в состояние ионов Na+ и С1 и образовании из них твердого хлорида натрия. В соответствии с определением понятия энергия кристаллической рещетки при образовании Na l из газообразных ионов выделяется энергия, равная по абсолютной величине Uo. Для получения ионов натрия требуется перевести металлический натрий в газообразное состояние. На это затрачивается теплота возгонки ДЯвозг. Затем нужно подвергнуть атомы ионизации, что требует энергии ионизации/ма. Для получения ионов хлора необходимо сначала разорвать связь в молекуле СЬ (на получение 1 моль С1 потребуется /г св), затем к атому хлора нужно присоединить электрон, оторванный от атома натрия при этом выделяется энергия сродства к электрону E u Все указанные здесь величины мo yт быть измерены. [c.153]

    В работе [Legge, 1934] приводится обзор аварий с выбросом хлора, происшедших по данным государственных контролирующих органов в Великобритании за период 1908 - 1931 гг. Всего описано 177 случаев отравления газом с одним лишь летальным исходом. Такой низкий уровень смертности при авариях с выбросом хлора в данный период автор цитируемой работы объясняет тем, что работники предприятий, где перерабатывался хлор, боялись его воздействия и при малейших признаках появления утечки покидали предприятие. [c.375]

    Причиной схода с рельсов послужило заклинивание буксы одного из вагонов вследствие перегрева. Цистерна с хлором (90 т) в результате схода с рельсов получила пробоину. После аварии цистерну, в которой оставалось 30 т хлора, залатали и оттащили с места происшествия. Местность вокруг цистерны с хлором была завалена о(5ломками, несколько цистерн с пропаном загорелись. Одна из этих цистерн взорвалась, осколки разлетелись на значительное расстояние. Высказано предположение, что восходящие потоки воздуха от горящих цистерн предотвратили интенсивное рассеяние испарившегося хлора. Пожар продолжался в течение 6 дней, в его тушении принимали участие 100 пожарных. [c.382]

    Пример 26. Рассчитать размеры аппарата для хлорирования титановых шлаков в расплаве хлоридов. Производительность реактора Gp=170 т СЬ в сутки, содержание хлора в исходном газе 707о (об.), давление газа на входе в расплав 0,15 МПа. Температура расплава i = 800° . Давление парогазовой смеси на выходе из расплава 0,1 МПа парциальное давление хлора в отходящем газе 0,0002 МПа равновесное давление в газе над расплавом 0,00015 МПа. Усредненный диаметр пузырька газа в расплаве 5 мм. Коэффициент массопередачи при абсорбции хлора расплавом Na l, Mg l2, содержащим хлориды железа, составляет по экспериментальным данным fer = l,0 кмоль/(м2-ч-МПа). [c.192]


Смотреть страницы где упоминается термин АСУ-хлор хлора: [c.148]    [c.356]    [c.255]    [c.132]    [c.327]    [c.867]    [c.134]    [c.159]    [c.341]    [c.430]    [c.295]    [c.67]    [c.211]    [c.136]    [c.91]    [c.92]    [c.520]   
Автоматизация хлорных производств Издание 2 (1975) -- [ c.84 ]

Автоматизация хлорных производств Издание 2 (1975) -- [ c.84 ]




ПОИСК







© 2025 chem21.info Реклама на сайте