Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гесс величина

    Следует иметь в виду, что при составлении точных таблиц необходимо согласовывать связанные между собой законом Гесса величины. Уточнение единичных тепловых эффектов без пересмотра остальных может привести даже к ухудшению результатов. [c.44]

    В соответствии с законом Гесса величина теплового эффекта химической реакции не зависит от промежуточных ее состояний, а определяется лишь начальными и конечными состояниями исходных и конечных веществ. Рис. 11. Схема возможных [c.115]


    В соответствии с законом Гесса величина ЛгЯ° (298) для реакции (6.1) может быть вычислена по уравнению [c.132]

    Реакции образования соединения из простых веществ в ряде случаев могут осуществляться (соединение железа и серы с образованием сернистого железа, образование двуокиси углерода при горении углерода и т. д.), и теплота образования может быть измерена. Однако большей частью теплоты образования соединений получаются путем расчета по закону Гесса из других термохимических величин. [c.62]

    Практически используемые энергии химических связей существенно отличны от рассмотренных выше. Практическая энергия связи является той долей энергии, поглощаемой при полной диссоциации молекулы на свободные атомы, которая приходится на данную связь. Складывая величины таких энергий для всех химических связей в молекуле, получаем то же значение энергии (теплоты) образования молекулы из свободных атомов (атомной теплоты образования), которое использовали при расчете энергии связей. Путь расчета атомных теплот образования соединений был рассмотрен выше (стр. 64—65). Зная атомные теплоты образования соединений и используя закон Гесса, можно найти энергии связей. [c.68]

    Так как величина G есть функция состояния системы, то ДС ае зависит от пути процесса. Поэтому изобарный потенциал для реакции, совершающейся в несколько стадий (1, 2, 3...), равен сумме величин ДО для каждой стадии, и если одно из значений ДО, входящих в сумму, неизвестно, то оно может быть рассчитано. Для такого расчета, аналогичного расчетам теплот реакций по закону Гесса, необходимо, чтобы конечные продукты одной реакции (первая стадия суммарной реакции) находились в том же состоянии, в каком они являются исходными веществами другой реакции (вторая стадия). Это как раз и достигается использованием стандартных изобарных потенциалов реакции ДО . При вычислении этих потенциалов принимают, [c.298]

    Величина равна (по закону Гесса) разности энтальпий исходных и конечных продуктов реакции [c.45]

    Согласно закону Гесса, ДЯд = ДЯ)-f ДЯг, откуда ДЯ, = . ДЯз —ЛЯа. Для нахождения искомой величины (ДЯ1) нужно, [c.116]

    Очевидно, ч"0 если известны общий тепловой эффект реакции и тепловой эффект одной из двух ее промежуточных стадий, можио на основании закона Гесса вычислить тепловой эффект другой промежуточной стадии, который почему-либо не может быть измерен опытным путем. Рассмотрим это на приведенном выше примере. Можно опытным путем найти теплоту образования СОз(АЯ== = —393,5 кДж/моль). Точно так же можно путем непосредственных измерений найти тепловой эффект реакции окисления СО н Oj (АЯ2 =—283,0 кДж/моль). Разность этих двух величин представляет собой теплоту образования СО. Последняя не может быть найдена опытным путем, так как при сжигании графита в калориметрической бомбе образуется оксид углерода (IV) образование же оксида углерода происходит только при высоких температурах и при наличии в системе избытка углерода или недостатка кислорода. [c.72]


    Второй подход более удобен, так как не требует выбора констант Кроме того, различие в величинах констанг иногда составляет многие порядки и выбор 0 = ехр (з ) в ряде случаев уменьшает разброс собственных значений матрицы Гесса и ускоряет минимизацию. К сожалению, иногда наблюдается и обратная картина, поэтому можно организовать некий комбинированный метод, с помош ью которого для тех компонент вектора 0, для которых введение замены 0у = ехр (Zj) приводит к ухудшению организации поверхности, осуш ествляется замена лишь при попытке этой компоненты выйти за границу допустимой области. [c.226]

    Значения тепловых эффектов реакции с получением изооктанов различной структуры лри алкилировании бутана изобутиленом, бутеном-1 и бутеном-2, а также различных изомеров С и Сд приведены в Приложении 1. Эти величины были определены по известному закону Гесса, согласно которому тепловой эффект реакции равен разности теплот образования конечных и исходных веществ. Необходимые для расчетов термодинамические данные заимствованы из литературы [42]. [c.44]

    В литературе имеется очень мало сведений о теплотах процесса каталитического крекинга. С. Н. Обрядчиков [18] подсчитывал теплоты промышленных процессов крекинга с помощью закона Гесса. Согласно предложенной им зависимости величины теплоты от плотности сырья, при плотности около 0,8 теплота [c.206]

    Процесс горения колчедана идет с выделением тепла, величину которого можно вычислить но термохимическому закону Гесса. [c.39]

    Так, например, наряду с обычными примерами применения закона Гесса (часть первая) рассмотрено его использование в различных термохимических циклах, включающих такие величины, как потенциал ионизации, электронное сродство, энергия решетки, теплота гидратации. Это позволяет продемонстрировать студентам универсальность простого метода расчета и уже с самого начала связать излагаемый материал с вопросами строения вещества. [c.4]

    Сопоставление тепловых эффектов и проведение термохимических расчетов привело к необходимости введения понятий стандартного теплового эффекта и стандартного состояния вещества. Под стандартным тепловым эффектом понимают его величину при давлении Р° = 1,01325 10 Па (760 мм рт. ст. = 1 атм) — стандартном давлении — и температуре Т К. Так как в настоящее время термохимические исследования чаще всего проводят при 25 С, то в справочных таблицах тепловые эффекты реакции проводят при Т =298,15 К (в дальнейшем для краткости записи 298,- 15 заменяется 298). Стандартный тепловой эффект реакции при 298, 15 К принято записывать в виде Дг//°(298). За стандартное состояние чистого жидкого или твердого (кристаллического) вещества принимается его наиболее устойчивое физическое состояние при данной температуре и нормальном атмосферном давлении. В качестве стандартного состояния для газа принято гипотетическое (воображаемое) состояние, при котором газ, находясь при давлении 1,013 10 Па, подчиняется законам идеальных газов, а его энтальпия равна энтальпии реального газа. Из закона Гесса вытекает ряд следствий, из которых два наиболее широко используются при вычислении тепловых фектов реакции. [c.209]

    Для расчета А О°(Т) по уравнению (82.3) и lg ° по уравнению (82.4) необходимо знать Ф° для каждого реагента при данной температуре и величину АгИ°(0). Стандартный тепловой эффект при О К[ДгЯ°(0)] может быть определен несколькими способами. В частности, Д Я°(0) можно рассчитать по второму следствию из закона Гесса  [c.269]

    Недостаток метода заключается в том, что вследствие больших значений теплот сгорания, выражающихся четырех- и пятизначными цифрами, небольшая относительная ошибка в их определении вызывает значительную ошибку в абсолютных единицах и, следовательно, ошибку в величине теплоты реакции, порядок цифр которой гораздо меньше. Ошибка может оказаться весьма значительной, если величины отклонения при определении теплот сгорания сырья и какого-нибудь из продуктов крекинга окажутся с разными знаками (если, например, эти отклонения примерно одинаковы по величине, ко разные по знаку, ошибка в определении теплового эффекта процесса будет вдвое больше). Если взамен экспериментальных определений теплот сгорания пользоваться эмпирическими формулами, то подсчеты по уравнению Гесса абсолютно ненадежны. Более точные результаты можно получить при использовании в уравнении. Гесса вместо теплот сгорания теплот образования сырья и продук- [c.53]

    Такие свойства твердых тел, как плавление, возгонка, растворение, хрупкость, прочность на разрыв, упругие деформации и другие, зависят от прочности кристаллической решетки. Если в узлах решетки расположены молекулы или атомы, то прямую характеристику связи частиц в кристалле дает теплота сублимации. Если в узлах решетки находятся ионы, то энергия такой решетки, в соответствии с законом Гесса, будет больше теплоты сублимации на величину энергин, которую надо затратить, чтобы вызвать диссоциацию газообразных молекул на ионы. Задача теоретического вычисления энергии ионных кристаллических решеток была удовлетворительно решена Борном в 1918 г. и А. Ф. Капустинским в 1933 г. [c.81]


    В химии нефти с тепловым свойствами чаще всего приходится встречаться при определении констант равновесия тех или иных химических реакций углеводородов, для чего необходимо знание теплового эффекта реакции. Непосредственное определение теплоты реакции обычно чрезвычайно трудно и сложно и чаще эту величину находят расчетом, пользуясь законом Гесса. [c.84]

    В табл. 4-1 приведены расчетные значения констант равновесия Кр для некоторых реакций горения и диссоциации при разных температурах. При использовании значений Кр из этой таблицы давление следует выражать в физических атмосферах. По приведенным величинам можно определить значения Кр для некоторых других реакций, которые могут быть получены комбинированием реакций из таблицы. Дело Б том, что по закону Гесса тепловой эффект АН какой-либо сложной реакции не зависит от промежуточных стадий. Точно так же изменение энтропии А5 (являющейся, как и энтальпия, функцией состояния) не зависит от промежуточных стадий. Следовательно, по соотношению (4-4) величина Кр для сложной реакции найдется перемножением или делением значений Кр для промежуточных реакций (в зависимости от того, суммируются или вычитаются эти реакции). Ниже приводятся примеры 1 и 2, в которых таким путем найдены значения Кр для реакции горения твердого углерода с образованием СО2 и для восстановительной реакции между СО2 и твердым углеродом. Данные по константам равновесия для многих реакций приводятся в термодинамических справочниках. [c.91]

    Поскольку подавляющее большинство химических реакций проводится при постоянном давлении, их тепловые эффекты равны изменению энтальпии системы в результате ее химического превращения, поэтому и в термодинамических уравнениях часто тепловой эффект q обозначают знаком энтальпии (АН). Отсюда понятно и ограничение процессов, для которых выполним закон Гесса (изобарические или изохорические), т. к. только в этих случаях тепловые эффекты не зависят от пути протекания процесса и характеризуют изменение состояния системы в силу равенства их изменениям значений соответствующих функций состояния АН и AU (во всех остальных случаях теплота характеризовать изменение состояния системы не может, т. к. ее величина зависит от пути протекающего процесса). [c.76]

    В табл. 64 находим величины ДЯ/гэа для этанола, кислорода, СО2 и Н2О. Согласно второму следствию из закона Гесса находим, что [c.117]

    На рис, 11.7 дано графическое пояснение к закону Гесса и его следствиям. Направления стрелок указывают на направления рассматриваемых процессов, а их длина соответствует величине изменения энтальпии системы в ходе соответствующего процесса. Из рис. II.7 следует, что  [c.78]

    Удельную теплоемкость стекла (С1) и раствора (Сз) см. в работе П. Определив теплоты растворения, найдите теплоту гидратации безводного карбоната натрия, руководствуясь примером 2. Напишите термохимическое уравнение гидратации данной соли, нарисуйте треугольник Гесса. Какова величина энтальпии гидратации  [c.57]

    В соответствии с законом Гесса величины Q и Q" равны следовательно, количество тепла, выделяющегося при образовании нитрующей смеси из 100%-ной H.2SO4, 100%-ной HNO3 и воды, может быть найдено так  [c.214]

    Теплота диссоциации О двухатомной молекулы, находящейся в газе, обычно равна приблизительно 100 ккал/моль, теплота адсорбции молекулы д 10 шал1моль, а теплота адсорбции Р атома приблизительно равна 35 ккал1г-атом. Пользуясь законом Гесса, можно скомбинировать эти три величины так, чтобы получить интересующую нас величину —теплоту диссоциации молекулы на поверхности. Реакцию образования молекулы в объеме можно записать так  [c.83]

    Применение закона Гесса избавляет от проведения большого числа излищних экспериментов в термохимии (так называется раздел химии, посвященный теплотам реакций и энергетическим свойствам веществ). Совершенно не обязательно измерять и табулировать изменение энтальпии каждой возможной химической реакции. Например, если известны теплота испарения жидкой воды [уравнение (2-10)] и теплота разложения пероксида водорода с образованием жидкой воды [уравнение (2-9)], то совсем не обязательно измерять теплоту разложения пероксида водорода с образованием водяного пара эту величину гораздо проще получить путем вычислений. Если какая-либо интересующая нас реакция трудно поддается проведению в лабораторных условиях, нужно попытаться подобрать последовательность легче осуществляемых реакций, сумма которых дает необходимую реакцию. После измерения изменений энтальпии для всех индивидуальных реакций в такой последовательности можно просуммировать соответствующие изменения энтальпии подобно самим химическим уравнениям и найти теплоту труднопроводимой реакции. [c.92]

    Другая важная задача — установление связи между вектором экспериментальных невязок 8 и параметрической чувствительностью модели (иными словами, ов-ражностыо ОКЗ). Гладкость функционала рассогласования локально определяется спектральным числом обусловленности гессиана к А) = >итахт. е. разбросом его собственных значений. Овражность означает большую величину этого разброса к А) 1. ОКЗ становится математически некорректной при вырождении гессиана Л, т. е. при выполнении условия к А) > 1/А, где в простейшем линейном случае А-точность представления коэффициентов уравнения Л6 = Ь. Экспериментальный вектор невязок и точность представления связаны обратной связью (е 1/А) и предельный случай очевиден — если компоненты вектора е малы и задача не слишком овраж-на , то мон ет случиться и так, что эксперимент сразу обеспечивает единственность решения. Ухудшение точности эксперимента и наличие разномасштабных во времени элементарных процессов ведут к выполнению условия А (Л)> 1/А и ОКЗ теряет единственность. В конкретном исследовании важно иметь хотя бы приблизительное представление, когда наступает такая ситуация — это помогает, с одной стороны, сформировать конкретные требования к эксперименту, а с другой — облегчает постановку ОКЗ. [c.358]

    Выясним теперь, как влияет температура на направление смещения равновесия в реакциях (I) и (IV). Определим вначале, [юльзуясь законом Гесса, тепловой эффект процесса (I). Для этого можно поступить двояко или от суммы теплот образования СО и Н О отнять теплоту образования СО2, или из теплоты сгорания Из вычесть теплоту сгорания СО. В результате получим величину ДЯ=—9,77 ккал/моль. Следовательно, нагревание будет сменить равновесие (1) влево, охлаждение — вправо (см. стр. 32) иными словами, с повышением температуры в смеси будет расти содержание окиси углерода и водяного пара, причем, так как ДЯ не очень велико, этот рост не будет значительным. [c.74]

    Разные области термодинамики химических реакций развивались неодновременно" . Изучение тепловых эффектов различных процессов и теплоемкостей разных веществ началось еще с первой половины прощлого века в результате разработки калориметрических методов. Хорошо известный закон Гесса, основанный на экспериментальных данных, был опубликован в 1840 г. В течение всего последующего времени параллельно с дальнейшим развитием теории и техники эксперимента происходило интенсивное накопление опытных данных о тепловых эффектах различных реакций, теплоемкостях, теплотах плавления, теплотах испарения разных веществ и других величин. В течение XIX века в работах Гесса, Томсена, Бертло, Лугинина, Зубова и других был накоплен обширный фонд данных для этих величин, в частности по теплотам испарения и сгорания органических соединений. Это дало возможность выявить ряд закономерностей в их значениях (правило Трутона, аддитивность теплот сгорания органических соединений некоторых классов). Последующее повышение точности показало, впрочем, довольно приближенный характер таких закономерностей. [c.17]

    Уравнения (69.28) — (69.30) также называются уравнениями Гиббса — Гельмгольца. Энергия Гиббса широко используется в термодинамике, когда в качестве независимых переменных выбраны Р Т. Параметры Р и Т, как V и Т, легко могут быть определены экспериментальным путем. Если химическая реакция будет протекать при постоянных давлении и температуре термодинамически необратимо (нестатически), то АН будет равно тепловому эффекту Q реакции. Следовательно, величина АН в уравнении (69.29) может быть определена термохимическим способом (калориметричейки или вычислена на основании закона Гесса). Произведение TAS согласно уравнению [c.228]

    В 1925 г. Фульчер [89] и в 1926 г. Тамани и Гессе [90] независимо друг от друга предложили формулу, дающую прекрасные результаты (по сравнению с опытом) в применении к ассоциированным жидкостям и, в частности, к нефтепродуктам. Эта формула, являющаяся видоизменением формулы Рамана Ig т](/т1о = С//, где т)о и С — постоянные для данной жидкости величины, имеет следующий вид  [c.257]

    При использовании закона Гесса необходимо учитывать агрегатное состояние исходных и образующихся веществ. Естествеино, например, что образование из водорода и кислорода водяного пара или жидкой воды будет сопровождаться тепловыми эффектами, различающимися на величину скрытой теплоты испарения воды. [c.53]

    Значения и QБ —теплоты сгорания или теплотворные способности — определяются экспериментально здачительно проще, чем тепловые эффекты реакций, и поэтому чаще всего теплоту реакции находят косвенным путем, пользуясь законом Гесса, по теплотам сгО рания начальных ц конечных продуктов реакции. Для оч ень многих углеводородов теплоты сгорания с большой точностью были определены экспериментально, и значения их можно найти в справочниках, например, Справочнике ф изико-химических и технических величин , т. УП, 1931, стр. 362 (дополнение к Технической Энциклопедии ). Для фракций нефти теплоту сгорания находят или экспериментально, сжиганием навески фракции в специальном приборе — калориметрическо й бомбе,— помещенной в водяной калориметр, или, если не требуется большая точность — по эмпирическим формулам. Для нефтяных фра Кций наиболее надежна формула Крагое, приводимая ниже. При вычислении по ней теплоты сгорания требуется знать только удельный вес фракции. [c.85]

    Результат расчета сопоставить с величиной Д//298, вычисленной с помощью следствия из закона Гесса (1.22), если ДЯздз участвующих в реакции веществ соответственно равны 4,879, —57,798, —64,2 ккал/моль (приложение 1). [c.35]

    Обычно при расчетах задаются температурамии смешиваемых КИС.П0Т (соответствуют температуре помещения) и температурой t получаемой кислоты. Величины теплоемкости могут быть найдены в соответствующих справочниках, тепловой эффект смешения вычисл5 ется в соответствии с законом Гесса по формулам Томсена и Поргера. [c.166]

    Величина i/j, (в ккал/г-мол) определяется для данного случая ио закону Гесса следующим уравиеинем  [c.293]

    Согласно закону Гесса, тепловой эффект реакции образования метана из углерода и водорода ие записит от того, в одну или несколько стадий осуществляется эта реакция. Таким образом, искомая величина АН может быть определена как алгебраическая сумма тепловых эффектон первой н второй стадий двухстадий-пого процесса. Как видно из предыдущего, тепловые эффекты этих стадий имеют разные знаки, поэтому при их суммировании никак не может получиться такая большая величина, как 1856 кДж/моль. [c.68]

    Вычислим величину ДСгэв прямой реакции. В табл. 64 находим, что для СН, эта величина равна —8о,85 кДж/моль, для СОг —394,37 кДж/моль, для СО 137,15 кДж/моль и для Нг О кДж/моль. Согласно второму следствию из закона Гесса [c.117]


Смотреть страницы где упоминается термин Гесс величина: [c.292]    [c.529]    [c.37]    [c.21]    [c.21]    [c.294]    [c.316]    [c.113]    [c.90]   
Физическая химия Том 1 Издание 4 (1935) -- [ c.143 ]




ПОИСК





Смотрите так же термины и статьи:

Гесса



© 2024 chem21.info Реклама на сайте