Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химические реакции углеводородов нефти

    ХИМИЧЕСКИЕ РЕАКЦИИ УГЛЕВОДОРОДОВ НЕФТИ [c.89]

    Сходство химического состава сырых нефтей может привести к гипотезе, что углеводороды сырой нефти, достигшие равновесия в определенных условиях температуры и давления их образования, более или менее одинаковы для всех сырых нефтей. Вообще говоря, эта гипотеза несовместима с термодинамическими свойствами углеводородов. Известно, что все углеводороды сырых нефтей термически нестабильны и могут быть превращены в такие стабильные системы, как, например, метан или этан и углерод. Такие реакции, однако, характеризуются высокими значениями энергии активации и поэтому невозможны при тех низкотемпературных условиях, которые соответствуют образованию и залеганию сырой нефти. Реакции изомеризации протекают значительно легче, в частности в присутствии некоторых гетерогенных катализаторов, таких, как алюмосиликатные системы, обычно имеющиеся в нефтяных пластах. Следовательно, равновесие между изомерами таких углеводородов более вероятно, чем равновесие, рассмотренное выше. [c.23]


    В химии нефти с тепловым свойствами чаще всего приходится встречаться при определении констант равновесия тех или иных химических реакций углеводородов, для чего необходимо знание теплового эффекта реакции. Непосредственное определение теплоты реакции обычно чрезвычайно трудно и сложно и чаще эту величину находят расчетом, пользуясь законом Гесса. [c.84]

    Нитрование алканов как один из методов химического использования углеводородов нефти издавна привлекало к себе внимание исследователей. Получаемые при этом нитросоединения представляют собой ценные для промышленности органического синтеза полупродукты, а также имеют и непосредственное применение в качестве растворителей, добавок к дизельным топливам и пр. Следует отметить, что в процессе нитрования одновременно с нитроалканами образуются еще и такие кислородсодержащие продукты, как альдегиды, кетоны, спирты в небольших количествах, окислы углерода. Из них соединения первых двух указанных классов так же представляют значительный практический интерес. Таким образом, реакция нитрования алканов должна рассматриваться как потенциальный источник ценных продуктов, как химически процесс, который после нахождения путей управления им сможет получить практическое значение. [c.286]

    Термические процессы. Переработка нефтяного сырья под действием высоких температур значительно расширила возможности использования нефти как химического сырья. При изучении термических реакций углеводородов нефти прежде всего возникает вопрос о влиянии условий процесса на направление реакции и на степень превращения исходного сырья при достижении равновесия. Главными факторами, влияющими на скорость и глубину превращения углеводородов сырья, являются температура, давление, длительность нахождения в зоне реакции. [c.234]

    Большинство химических превращений углеводородов нефти, имеющих практическое значение, осуществляется в присутствии катализаторов. Катализаторы позволяют снижать энергию активации химических реакций и тем самым значительно повышать их скорость. В самом общем виде в этом и заключается сущность и значение катализа. Проведение реакции в присутствии катализаторов позволяет также резко снижать температуру процесса. Для реакций, характеризующихся положительным тепловым эффектом (полимеризация, гидрирование, алкилирование и др.), это имеет особо важное значение, так как высокие температуры с термодинамической точки зрения для них неблагоприятны. [c.197]


    Давление не влияет на скорость мономолекулярных реакций, поскольку каждая молекула в них реагирует самостоятельно. Для бимолекулярных реакций повышение давления увеличивает возможность столкновения реагирующих молекул и поэтому увеличивает скорость реакции. Большинство реакций углеводородов нефти характеризуется небольшими скоростями. Поэтому достижение равновесных концентраций конечных продуктов в ряде случаев затруднено. Для увеличения скорости реакции приходится повышать температуру и применять катализаторы (см. 31).Скорость любой химической реакции увеличивается с повышением температуры, причем для большинства реакций при повышении температуры на 10° она увеличивается в 2—4 раза. Относительное увеличение константы скорости реакции при повышении температуры на 10° называется температурным коэффициентом скорости реакции (у) [c.159]

    Производства органических веществ из углеводородов нефти и газа (нефтехимическая и химическая промышленность) и производства топлив, масел, углеводородного сырья химических процессов (нефтеперерабатывающая промышленность) относятся к водоемким. Большую часть воды расходуют для охлаждения и конденсации продуктовых потоков. В значительной части технологических процессов воду используют как растворитель или вводят в виде пара. Воду применяют и как реагент химических реакций. [c.80]

    Образование нефти непосредственно из СО2 и Н2О, из которых состояла материнская атмосфера Земли, термодинамически без фотосинтеза невозможно ( термодинамический аргумент). Теоретически более вероятна возможность образования нефти в земных глубинах взаимодействием воды с карбидами металлов. Единственное, но не убедительное доказательство этому, являющееся козырной картой сторонников неорганической концепции, - это нефтеподобная жидкость, получаемая в лабораторных условиях по карбидному синтезу, но принципиально отличающаяся по качеству от природной нефти (как, например, сливочное масло от маргарина). Кроме того, на наш взгляд, карбиды металлов могли образоваться в природе в результате взаимодействия карбидообразующих металлов с органическими веществами при термобарических условиях подземелья. В таком случае карбидный синтез углеводородов есть не что иное, как промежуточная каталитическая стадия (вторичная реакция) суммарного биогенного процесса рождения нефти. Ведь из теории катализа известно, что металлы (и не только металлы) - катализаторы ускоряют химические реакции, образуя с участниками химического процесса промежуточные химические соединения, но при этом не изменяя равновесия реакций (физико-химический аргумент). [c.64]

    Как известно, перед обычными процессами нефтепереработки не ставится задача разделить нефть на отдельные химически чистые углеводороды. Нефтяные топлива и масляные фракции представляют собой простые или сложные смеси углеводородов, причем последние встречаются много чаще простых. Химические свойства таких смесей необычайно сложны и зачастую сильно отличаются от свойств их основных компонентов, поэтому нам представляется чрезвычайно важным изучить и классифицировать Химические реакции и свойства нефтепродуктов. [c.68]

    Б. А. Казанский и Т. Ф. Буланова [22] исследовали поведение смеси циклогексана и циклопентана в условиях дегидрогенизационного катализа над платинированным углем прн 300 -310°. Оказалось, что в начале реакции имеет место гидрогенолиз циклопентана (за счет водорода, отщепляющегося от циклогексана), но катализатор быстро теряет активность по отношению к гидрогенолизу циклопентана, сохраняя прежнюю активность по отношению к дегидрогенизации циклогексана. Таким образом платиновый катализатор, находящийся в соприкосновении с углеводородной смесью, содержащей циклопентан, настолько теряет активность по отношению к гидрогенолизу циклопентановых углеводородов, что даже циклопентан, размыкающийся легче всех остальных пятичленных цикланов, остается в дальнейшем нетронутым. Так как платиновый катализатор, применяемый нами для исследования химического состава норийской нефти, находился в работе длительное время, то нужно полагать, что в условиях наших опытов гидрогенолиз циклопентановых и дегидроциклизация парафиновых углеводородов были сведены к минимуму. [c.165]

    В первой части книги из главы III Физические свойства нефти исключен текст о приборах и методах определения физических свойств нефти, так как этот материал частично устарел и более полно описывается в специальных учебниках. Материал о физических (глава III) и химических (глава IV) свойствах нефти дополнен Г. Д. Гальперном. Исключена глава IV Краткие сведения из органической химии в связи с тем, что эти сведения устарели и более полно и современно освещаются в учебниках и справочниках по органической химии. В главе V сокращены разделы, посвященные характеристике непредельных углеводородов, реакции углеводородов, получаемых в процессе переработки нефти, сведения о выработке нефтепродуктов и очистки нефти. По этим же мотивам исключены глава VI Характеристика важнейших нефтей в СССР и за границей и глава VII Методы переработки нефти . [c.2]


    Предыдущее наше знакомство с отдельными группами углеводородов, входящих в состав нефти, показало, что химическая активность углеводородов всецело зависит от степени насыщения углеродных атомов в той или иной группе углеводородов. Наибольшей реакционной способностью обладают ненасыщенные углеводороды, несколько менее — ароматические, затем — нафтены и, наконец, наименьшей способностью к химическим реакциям обладают, углеводороды парафинового ряда (под химическими реакциями в данном случае подразумеваются реакции присоединений, восстановления, полимеризации, окисления и т. д.). [c.89]

    Реакции окисления являются интересными и перспективными методами химической переработки парафиновых углеводородов нефти. Вопросам окисления парафиновых углеводородов посвящено много работ. [c.26]

    Изучение химических (а вернее геохимических) условий образования нефтей в природе, кроме чисто познавательного интереса, имеет и очевидный практический интерес, так как позволяет сознательно подходить к проблеме разведки нефтяных месторождений. Не меньшее значение имеет понимание механизма образования нефтей и для химиков, так как-геохимические условия образования нефтей определяют закономерности ее химического состава, что в значительной мере помогает разобраться в сложных задачах, связанных с исследованием строения нефтяных углеводородов. Под геохимическими условиями образования нефти следует подразумевать сложный комплекс вопросов, связанных как со строением и составом нефтематеринских веш,еств, так и с условиями преобразования последних в нефть. Как будет показано в дальнейшем, наиболее важным звеном является в данном случае определение химических реакций, лежаш,их в основе нефтеобразования. [c.370]

    Начиная с 80-х годов, исследования состава нефтей стали широко производиться как в России, так и в США. В России в этих исследованиях участвовали выдающиеся ученые того времени — Д. И. Менделеев, В. В. Марковников, М. И. Коновалов и другие. Д. И. Менделеев в 1883 г. установил присутствие пентана в легкой фракции бакинской нефти и его идентичность с пентаном американской нефти. В. В. Марковников и В. Оглоблин установили присутствие в бакинских нефтях нового класса углеводородов, названных ими нафтенами. Дальнейшие исследования показали, что в составе нефтей присутствует много различных углеводородов, и содержание углеводородов разных классов неодинаково в разных нефтях. Оказалось, что в бакинской нефти много нафтенов, а пенсильванская нефть США более богата метановыми углеводородами. Все эти исследования состава нефтей проводились с помощью перегонки, химических реакций и определения плотности. [c.218]

    Сырая нефть, полученная из скважин, обычно подвергается прежде всего такой переработке, при которой ее компоненты, т. е. углеводороды и другие соединения, химически не изменяются. Нефть очищается и из нее выделяются отдельные фракции — бензина, керосина и других. Это направление называется первичной переработкой нефти. Отдельные фракции нефти после ее очистки могут быть подвергнуты более глубокой переработке, при которой в результате химических реакций изменяется состав фракций и получаются новые нефтепродукты. Это вторичная переработка нефти, основанная на разложении и превращении ее компонентов под действием повышенной или высокой температуры. Сюда относятся различные виды крекинга и пиролиза нефти. В этом разделе мы рассмотрим первичную переработку нефти. [c.247]

    В гл. 2 указывалось, что олефины не встречаются в природе (в сырой нефти). Они образуются при крекинге нефти — одного из основных процессов нефтеперерабатывающей промышленности, проводимого с целью получения бензина. Кроме того, олефины являются главными продуктами крекинга или пиролиза фракции нефтяных углеводородов. В основе крекинга и пиролиза лежит один и тот же тип химической реакции, однако эти термины связывают обычно с различными температурными режимами крекингом называют термическое разложение углеводородов, происходящее при 350—650°, а пиролизом — термическое разложение, протекающее при температурах выше 650°. [c.103]

    Рассматриваются физико-химические свойства нефти, методы ее исс, дования и разделения, а также свойства и реакции основных классов сое нений, входящих в состав нефти и газа. Освещены вопросы происхожден нефти, химии термокаталитических превращений, процессов окисления, ги рогенолиза и других реакций углеводородов нефти и газа. Приводятся данн о составе и эксплуатационных свойствах основных видов топлив и мас< Предназначено для студентов нефтяных и химико-технологических вузе Пол рно также инженерно-техническим и научным работникам, занятым нефтеперерабатывающей и нефтехимической промышленности. [c.3]

    Кроме карбидной теории, было разработано еще несколько гипотез неорганического происхождения нефти космическая, вулканическая, магматическая. Эти гипотезы в настоящее время не кажутся достаточно обоснованными, и мы не будем останавливаться на их изложении. Однако повторяем, что и сейчас ряд ученых рассматривает появление нефти как результат происходящих в недрах земли химических реакций, считая, что нефтяные углеводороды сложного состава образуются в природе и в отсутствие органического вещества. [c.11]

    Научно обоснованную концепцию неорганического происхождения нефти выдвинул Д.И.Менделеев (1834-1907). Он считал, что расплавленное ядро Земли состоит из карбидов металлов, преимущественно железа. По трещинам в литосфере вода проникает в глубь Земли. В результате химической реакции между карбидом железа и воды образуются оксиды железа и углеводорода, которые поднимаются по трещинам в верхние части земной коры и скапливаются [c.13]

    В процессе получения на промышленных установках компоненты нефти подвергаются действию температуры в различных каталитических системах. Вероятность химических реакций основана на величине изменения свободной энергии Гиббса. Для всех углеводородов нефти с повышением температуры энергия Гиббса возрастает. Чем большим запасом свободной энергии обладает молекула, тем менее она стабильна, т. е. термодинамическая стабильность всех углеводородов с повышением температуры падает. [c.203]

    Большинство химических превращений углеводородов нефти, имеющих практическое значение, осуществляется в присутствии катализаторов. Катализаторы позволяют снижать энергию активации химических реакций и тем самым значительно повышать их скорость. В самом общем виде в этом и заключается сущность н значение катализа. Проведение реакции в присутствии катализаторов позволяет также резко снижать температуру процесса. Для реакций, ха рактеризующихся положительным тепловым эффектом (полимеризация, гидрирование, алкилирование и др.), это имеет особо важное значение, так как высокие температуры с термодинамической точки зрения для них неблагоприятны. Следовательно, катализаторы в данном случае и ускоряют процесс, и способствуют достижению наиболее высоких равновесных концентраций. Следует, однако, не забывать, что сдвигать положение равновесия катализаторы не могут, они в равной степени ускоряют как прямые, так и обратные реакции. [c.214]

    Проблемы повышения качества и увеличения производства автомобильного бензина были решены с появлением термического крекинга. Бензин этого процесса имеет лучшие характеристики сгорания по сравнению с бензином, полученным перегонкой. При термическом крекинге более тяжелые фракции нефти, проходя через нагревательные змеевики и реакционные камеры при температуре около 500° С и давлении 34 ат, расщепляются, превращаясь в более легкие продукты с пределами выкипания бензина. Кроме бензина, продуктами реакции являются газ и высококинящий остаток. В течение некоторого времени существовало много трудностей нри оценке топлив, так как имеющиеся различия часто сводили к различиям в физических свойствах. Однако в конечном итоге было найдено, что улучшение качества бензина при термическом крекинге является результатом изменения химического состава углеводородов нефти, главным образом вследствие образования олефинов при крекинге парафинов и ароматических углеводородов при дегидрировании нафтенов. Становилось ясно, что насыщенные углеводороды с разветвленной цепью улучшают характеристику бензина. Для количественной оценки характеристику бензина сравнивают с характеристикой эталонного топлива в стандартном двигателе. В свон> очередь, эталонное топливо градуируют по смеси чистых -гептана и изооктана. На шкале октановых чисел эти два углеводорода отвечают KpaiiHHM значениям октановое число м-гептана принято за ноль, а изооктана (2,2,4-триметилпентана) — за сто. [c.12]

    Другие различия в составе нефтей, а пмонно соотношенрхя парафиновых, циклопарафиновых и ароматических углеводородов в легких фракциях, непосредственно не могут быть связаны с какой-нибудь из известных форм морских организмов нли с известными химическими соединениями, образующимися из этих организмов. Причину различия состава нефтей скорее следует искать в химических процессах образования нефти из различных сырых материалов разнообразных форм морских организмов в результате известных химических реакций в соответствии с геологической обстановкой. [c.84]

    Продолжительность этих периодов времени недостаточна, чтобы произошли заметные изменения состава насыщенных углеводородных масел, вызываемые одним нагреванием при температурах, полученных при измерениях на забое скважин, что подтверждается расчетами Сейера, а также Мак-Нэба с сотрудниками, упомянутыми выше. На это указывает и тот факт, что состав нефтей не соответствует термическому равновесию смесей при температурах, наблюдаемых в нефтяных пластах. Относительное содержание углеводородов в нефтях определяется, с одной стороны, стерическими факторами, а с другой стороны, факторами, связанными с природой промежуточного карбоний-иона (см. ниже) в реакциях образования углеводородов. Так, неопентан не образуется в алкилатах и очень редко находится в нефтях и притом только в очень малых количествах, хотя при низких температурах он является наиболее устойчивым из пентанов. Катализаторы, принимая участие во многих химических реакциях, могут также оказывать влияние на природу образующихся углеводородов, как, например, в процессе Фишера-Тропша в присутствии кобальтового катализатора получается бензин, содержащий высокий процент нормальных углеводородов и обладающий октановым числом 40, в то время как в присутствии железного катализатора при прочих равных условиях получается бензин с малым содержанием нормальных парафиновых углеводородов и обладающий октановым числом порядка 75 и выше. [c.87]

    О действии серной ] и( лоты на углеводороды нефти ...Мак-Ки (1912 г.) опубликовал интересно наблюдение, по которому при очень сильном размешивании (мешалкой, делающей 900 об/мип) парафиновые углеводороды уже нри комнатной температуре и с обыкновенной крепкой Нз304 реагиру.эт с образованием сульфокислот... По опытам Зентке в лаборатории Энглера метановые углеводороды, начиная с пентана и выше, при сильном встряхивании заметно растворяются уже в крепкой НдЗО даже без нагревания постоингкю выделение ЗОз указывает па то, что мы имеем дело не с простым растворением, а с химической реакцией. Мне представляется вероятным, что реагирование предельных углеводородов с кислотой при энергичном встряхивании обусловливается тем, что от углеводородов при этом отрываются чрезвычайно мелкие каили и 1то нри очень малых размерах капель способность ясидкости к химическому реагированию возрастает так же, как и растворимост . и испаряемость... [13]. [c.29]

    Трудность разделения гибридных структур высокомолекулярных углеводородов и отсутствие достаточно специфических реакций предельных (парафино-циклопарафиновых) углеводородов гибридного строения являются причиной слабой изученности химической природы этой группы высокомолекулярных углеводородов нефти. До сих пор почти отсутствуют данные о соотношении пента- и гексаметиленовых колец в составе предельной высокомолекулярпой углеводородной части сырых нефтей и нефтепродуктов. В бензино-керосиновых фракциях нефтей для решения этой задачи успешно была использована открытая Зелинским [74] реакция избирательной дегидрогенизации гексаметиленов в присутствии платинового катализатора. За последнее время появились сообщения об использовании этой реакции и при изучении строения таких сложных органических соединений, как политерпены, стерины, желчные кислоты, витамины, гормоны и др. [75]. Однако в литературе не встречалось указаний об использовании метода избирательной каталитической дегидрогенизации нри изучении строения предельных высокомолекулярных углеводородов нефти. Нам представлялась весьма заманчивой и перспективной возможность использования этого метода в комбинации с хроматографией и спектроскопией (инфракрасной и ультрафиолетовой) для более глубокого познания химического строения предельной части высокомолекулярных углеводородов нефти гибридного характера. Но прежде чем воспользоваться этим методом, нада было доказать его применимость для решения указанной выше задачи и проверить экспериментально надежность и воспроизводимость получаемых при этом результатов, показать пределы точности метода. [c.213]

    Трудности, с которыми сталкиваются физики, химики и тexнoJюги при анализе существа физико-химических явлений в технологических процессах, заключаются в различном характере их описания средствами названных выше областей знания. Физики интересуются фазовыми превращениями химики—условиями и механизмом протекания химических реакций в нефтяных системах технологи-нефтепереработчики заняты поиском технических решений для увеличения выхода и качества или улучшения эксплуатационных свойств нефтепродуктов технологи-промысловики ищут способы воздействия на пласт с целью повышения дебитов скважин технологи-транспортники решают технические проблемы транспортировки высоковязких нефтей инженеры-экологи предлагают технические способы защиты окружающей среды от вредного воздействия нефтяных загрязнений. Кажущаяся разорванность технологического цикла, связанного с добычей, транспортировкой, переработкой нефти и применением нефтепродуктов, а также с сопровождающими эти процессы экологическими проблемами, привела к той ситуации, что по существу одни и те же физико-химические явления изучаются различными технолога-ми-специалистами. Например, фазовый переход, связанный с выделением твердых углеводородов, представляет собой одну из проблем при добыче и транспортировке нефти этот же переход лежит в основе технологического процесса получения низкозастывающих масел — депарафииизации он же осложняет эксплуатацию дизельных топлив (табл. 1). [c.178]

    Таким образом, проведя реакцию дегидрогенизации парафино-циклопарафиновых углеводородов, зателГ применяя хроматографическое разделение, а также спектральные и химические методы исследования продуктов дегидрогенизации и используя закономерности в изменении физико-химических свойств углеводородов в зависимости от строения, можно получить достоверные экспериментальные данные об элементах структуры высокомолекулярной части парафино-циклопарафиновых углеводородов нефти. [c.228]

    Изучение состава, строения химических реакций и свойств гетероорганических соединений нефти особенно важно для решения такой принципиальной научной проблемы, как генезис нефти. Именно среди гетероорганических компонентов нефти встречаются соединения, в разной степени приближающиеся к соединениям чисто углеводородного характера, которые, вероятно, являются отдельными звеньями длинной цепи химических превращений, соединяющей нефть с органическим веществом растительного и животного происхождения, из которого эта нефть образовалась. Чем больше звеньев в этой цепи удастся расшифровать при помощи современных экспериментальных методов, тем ближе мы подойдем к раскрытию и правильному пониманию геохимической истории многообразных химических превращений в недрах земных от органического вещества растительного и животного происхождения до нефти. Наиболее простые по химическому составу кислород- и серусодержащие соединения являются, но-видимому, одной из последних (если не самой последней) ступенью в ряду этих превращений. Так, содержащиеся в нефтях карбоновые кислоты и сернистые соединения, как показали многочисленные экспериментальные исследования, имеют такую же или очень близкую структуру углеводородной части молекулы, как и углеводороды соответствующих фракций тех же нефтей. [c.303]

    В течение более 60 лет после выделения Эйхлером из нефти первых карбоновых кислот объектами большого числа исследований являлись кислоты Се—Сю, выделяемые из различных нефтей и их дистиллятов и синтезируемые в лабораториях. Это объясняется тем, что кислоты Се—Сю, содержащие в молекуле циклопентановое или циклогексановое кольцо, по температурам кипения совпадали с керосиновой фракцией (200—300° С), которая являлась основным целевым нефтепродуктом, вырабатывавшимся нефтеперерабатывающей промышленностью на протяжении почти полустолетия. Кроме того, исследователи стремились по возможности полно и всесторонне изучить химические реакции нафтеновых кислот на наиболее простых низших гомологах ряда циклопентан- и циклогексанкарбоновых киблот. Сопоставление выделенных из нефти карбоновых кислот с синтезированными индивидуальными циклопентан- и циклогексан-карбоновыми кислотами, а также превращение их в соответствующие циклопарафиновые углеводороды по схеме [c.309]

    В изучении состава нефти и химических превращений углеводородов большая роль принадлежит работам Н. Д. Зелинского, проводившимся с начала текущего столетия в Московском университете. Были изучены реакции избирательной каталитической дегидрогенизации углеводородов и установлено, что в присутствии платинового и палладиевого катализатора при температуре около 200° С происходит потеря водорода циклогексаном, который при этом полностью переходит в бензол СвН12 = СвНд -Ь ЗНз. При этих условиях гексан и циклопентан не подвергаются дегидрогенизации. [c.218]

    Работы по изученшо химического состава кавказских нефтей были продолжены М. И. Коноваловым (1858—1906 гг.) и С. С. Наметкиным (1876—1950 гг.). Заслуга М. И. Коновалова состоит в изучении им реакций предельных углеводородов, образно названных им же химическими мертвецами . М. И. Коновалов поставил себе задачу найти способ их оживления . В 1889 г. он разработал реакцию нитрования парафиновых (алкановых) углеводородов разбавленной азотной кислотой. [c.15]

    Энергетические эффекты химических процессов имеют огромное практическое значение, так как многие хи.мические реакции (например, горение углеводородов нефти или составных частей каменного угля) люди сознательно используют в качестве источника энергии для промышленности и в быту. Экзотермические процессы окисления жиров и углеводов служат источником энергии, необходимой для жизнедеятелыюстн животных и растений. [c.34]


Смотреть страницы где упоминается термин Химические реакции углеводородов нефти: [c.4]    [c.303]    [c.53]    [c.55]    [c.463]    [c.199]    [c.5]    [c.174]    [c.73]    [c.41]    [c.151]    [c.62]   
Смотреть главы в:

Учение о нефти -> Химические реакции углеводородов нефти




ПОИСК





Смотрите так же термины и статьи:

Реакции нефти



© 2025 chem21.info Реклама на сайте