Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Переходы фазовые необратимые

    Электрохимические преобразователи информации различаются по своему функциональному назначению и по механизму работы, т. е. по принципам, которые положены в основу их действия. По последнему признаку выделяют три основных типа электрохимических преобразователей 1) преобразователи, основанные на закономерностях диффузионных процессов в обратимых окислительно-восстановительных системах (иногда эти преобразователи называют концентрационными или жидкофазными) 2) преобразователи, использующие закономерности обратимых и необратимых фазовых переходов на электродах (электроосаждение и растворение металлов, выделение газов, образование и восстановление окислов, осаждение нерастворимых солей, явления пассивации и растворения металлов и др.) 3) преобразователи, основанные на электрокинетических явлениях (электроосмос, потенциалы течения и др.). [c.216]


    Теплотами фазовых превращений называют тепловые эффекты полиморфных переходов, плавления, испарения и сублимации. Полиморфные переходы, т. е. процессы превращения одних кристаллических форм вещества в другие в последовательности возрастания температуры могут быть двух типов экзотермические (моно-тропные)—необратимые, односторонне осуществимые, и эндотермические (энантиотропные)—обратимые, двусторонне осуществимые. Примерами полиморфизма могут служить переходы серого олова в белое или моноклинной серы в ромбическую. Процессы плавления, сублимации и испарения во всех случаях являются эндотермическими (в направлении возрастания температуры). С повышением температуры теплота парообразования любого вещества уменьшается и при критической температуре обращается в нуль. Фазовые превращения при условии постоянства давления осуществляются при строго определенной температуре. [c.22]

    Поскольку давление пара в начальном состоянии (жидкость) и конечном (твердый бензол) различается, рассматриваемый фазовый переход является необратимым. Мысленно заменим его следующей цепью обратимых процессов  [c.113]

    В отдельных случаях, когда коагуляция частиц дисперсной фазы приводит к образованию сплошного пространственного структурного каркаса, охватывающего весь объем дисперсной системы, следует обратить особое внимание на понятие фазовой устойчивости, которая считается результатом потери системой агрегативной устойчивости. В этих случаях образуются конденсационные структуры с фазовыми контактами, являющиеся результатом срастания частиц с образованием качественно новой фазы. Подобные необратимые структуры отличаются повышенной прочностью и хрупкостью. Ярким примером рассматриваемого процесса является коксование, когда жидкая коксующаяся масса переходит в твердую пену — кокс, [c.24]

    Углеводородные смазки имеют низкую температуру плавления (35—60°С). Только углеводородные смазки отдельных марок, загущенные высокоплавким церезином, имеют температуру каплепадения 70—75° С. Поэтому углеводородные смазки не могут конкурировать с литиевыми, комплексными кальциевыми и другими мыльными смазками в высокотемпературных узлах трения. Однако нет худа без добра . Невысокая температура плавления и обратимость структуры способствуют легкому нанесению углеводородных смазок на металлические детали и поверхности в расплавленном виде. Под обратимостью структуры следует понимать способность пластичных смазок восстанавливать структуру и свойства после переплавления. Такая обратимость, в полной мере свойственная углеводородным смазкам, совершенно отсутствует у многих мыльных, например кальциевых или натриевых, смазок. При нагреве выше температуры плавления или фазового перехода последние необратимо распадаются. [c.36]


    При переходе к необратимым реакциям построение фазового комплекса и диаграммы состояния в целом, за немногими исключениями, отпадает, по тем более важным становится роль сингулярного комплекса. Химическая диаграмма с указанием стабильных диагоналей, отвечающих реально протекающим реакциям, является выражением законов стехиометрии, которым подчиняется образование двойных и более сложных соединений. [c.171]

    Учет особенностей незамерзающих прослоек позволил получить (на основе термодинамики необратимых процессов и теории расклинивающего давления) уравнения течения, связывающие скорость переноса влаги в мерзлых грунтах и пористых телах с теплотой фазового перехода лед — вода [32]. Более подробно эти вопросы рассматриваются в разделе 6 этой же главы. [c.11]

    Поясним подход к расчету Л5 для реальных необратимых процессов, рассмотрев неравновесный фазовый переход, например кристаллизацию одного моля переохлажденной жидкости. [c.84]

    Неравновесный процесс, термодинамически необратимый процесс (необратимый фазовый переход, или неравновесный фазовый переход) — характеризуется переходом системы из одного состояния в другое с конечной скоростью, за счет соответствующего изменения на конечную величину параметров, воздействующих на систему. Неравновесный процесс приводит к необратимым изменениям в системе и окружающей ее среде. [c.317]

    Таким образом, фибриллярные белки обладают той специфической структурой, при которой плавление должно сопровождаться сокращением. В некоторых из указанных систем, в частности в кератинах, существуют межмолекулярные ковалентные связи. Предполагается, что они возникают в процессе биосинтеза уже после образования волокна и, следовательно, накладываются на предварительно ориентированную структуру. Поэтому здесь следует ожидать обратимой сокращаемости при фазовом переходе кристалл — жидкость. Для фибриллярных белков, не имеющих межмолекулярных связей или не сохраняющих их при плавлении, возможно лишь необратимое изменение размеров. [c.199]

    Неравновесные фазовые переходы. В реальных условиях достаточно часто фазовые переходы совершаются в неравновесных необратимых условиях (кристаллизация переохлажденных жидкостей, конденсация переохлажденного пара, превращение твердых кристаллических модификаций). Во всех подобных случаях изменение термодинамических функций вычисляют путем мысленной замены данного необратимого процесса совокупностью обратимых, с помощью которых осуществляют переход системы из заданного исходного состояния в заданное конечное. [c.122]

    Монотропное превращение необратимый фазовый переход из одной модификации в другую. [c.150]

    Переходя к оценке прочности структуры с фазовыми контактами, мы обнаруживаем, что в зависимости от дисперсности (числа контактов на единицу п.лощади) и от средней прочности отдельного контакта, т. е. в зависимости от химической природы частиц и всей совокупности физико-химических условий формирования данной структуры, значения Рс %р охватывают очень широкий интервал от 10 Н/м (0,1. кг/см ) до 10 Н,/м2 (Т/см ) и еще шире. В отличие от коагуляционных контактов фазовые контакты разрушаются необратимо. [c.318]

    Книга представляет собой сборник задач по термодинамике и статистической физике с подробными решениями. Задачи охватывают широкий круг вопросов от задач на законы термодинамики, фазовые переходы, флуктуации различных величин, до задач на вариационные принципы термодинамики необратимых процессов. Разбираются также задачи по кинетической теории переноса в газах и металлах, по физике плазмы и применению метода функций Грина в статистической физике. [c.383]

    Хотя ориентированные кристаллические полимеры обычно претерпевают необратимое плавление, возможностью обратимого перехода в условиях, приближающихся к равновесию, все же нельзя пренебрегать. Действительно, рассматривая эту проблему с точки зрения фазового равновесия, можно получить важные соотношения между кристаллизацией, деформацией и изменениями размеров [3, 4]. [c.173]

    Различают низкотемпературный физический (обратимый) и высокотемпературный химический (необратимый) процессы структурообразования. Принципиальная схема изменения термодинамических свойств системы при кристаллизационном и коагуляционном фазовых переходах приведена на рис. 3. [c.35]

    Допустимая температура нагрева ПВХ в зависимости от требований технологии сушки определяется такими характеристиками, как теплостойкость, т.е. способность материала противостоять нагреву до температуры, при которой он переходит в иное фазовое состояние (для ПВХ - это размягчение), термостойкость - способность материала противостоять нагреву до температуры, при которой происходит необратимое изменение его качества (ухудшение его физической или химической структуры, для ПВХ - деструкция), термостабиЛьность -способность материала длительно выдерживать нагревание при определенной температуре без изменения свойств продукта (для ПВХ - без разложения). [c.90]


    Есть основания думать, что цитоплазма с ее цитоскелетом обладает свойствами тиксотропии. Тиксотропия — фазовые переходы гель = золь, обратимые или необратимые, происходящие иод действием механических сил. Пример тиксотропного тела — обычный кефир, переходящий из твердого состояния (гель) в жидкое (золь) при взбалтывании. [c.414]

    Другой интересный момент состоит в том, что число стационарных состояний открытой системы может сильно возрастать вдали от равновесия (гл. 16). Такое расширение возможностей имеет важное значение в биологических приложениях. В качестве иллюстрации изучается модель возбуждения мембраны, предложенная Блюменталем, Шанже и Лефевером [10], в которой кооперативное поведение вместе с необратимыми процессами вдали от равновесия приводит к новому типу диссипативного фазового перехода. [c.15]

    Процесс переориентации приводит к необратимым изменениям формы образца и, следовательно, может сопровождаться течением материала, возможным в кристаллическом полимере только путем перегруппировок молекул при разрушении кристаллических решеток. Поэтому переход от одной модификации к другой является фазовым превращением кристаллов, вызванным действием внешних сил. При этом возникновение фазового превращения кристаллов связывается нами с тем обстоятельством, что кристаллы вследствие цепного строения молекул полимеров должны обладать зависимостью температуры плавления от ориентации кристалла относительно действующих на пего сил. В зависимости от ориентации одни кристаллы нод действием сил становятся термодинамически неустойчивыми, в то время как другие становятся еще более устойчивыми. [c.302]

    В качестве дисперсной фазы могут выступать различного рода ассоциаты и кристаллические образования, состоящие из значительного числа молекул или частиц, склонных к образованию надмолекулярных структур. Б процес- х асгоциатообразования и кристаллизации при различных условиях могут протекать обратимые и необратимые фазовые переходы. Обратимые фазовые переходы характерга>1 для низкотемпературных процессов, а необратимые протекают при высоких температурах. Склонностью к ассоциатообразованию и формированию фаз обладают большинство классов соединений, входящих в состав нефтяных остатков. Рассмотрим наиболее типичные фазовые переходы, которые характерны для различных классов соединений. [c.22]

    Образующиеся при высоких температурах в результате поли-конденсационных превращений углеводородных и неуглеводородных соединений нефтяных остатков карбены и карбоиды являются необратимыми частицами, не способными к разрушению до молекулярного состояния под действием внешних факторов (исключая жесткие приемы воздействия на НДС) ввиду налаживания прочных фазовых контактов внутри таких частиц. Для ССЕ, ядро которых образовано асфальтенами, алканами, в отличие от частиц карбоидов характерен обратимый переход от молекулярного к диспе >сному состоянию и наоборот, под действием внешних факторов. Такой же характер нрисущ ССЕ с ядром, представляющим собой пузырек легколетучих нефтяных газов. В табл. 13 и на рис. 8 приведены примеры ССЕ различ- [c.74]

    Термодинамика формирования нефтяных дисперсных систем. В нефтяных системах при соответствующих условиях возможны фазовые переходы двух типов переход твердое тело — жидкость (ассоциатообразование, кристаллизация) и переход жидкость — газ (газообразование). При этом следует различать среди процессов ассоциатообразования н кристаллизации низкотемпературные обратимые и высокотемпературные необратимые фазовые переходы. [c.34]

    Вернемся теперь к графическому изображению релаксационных состояний и релаксационных переходов, происходящих в пределах одного — жидкого — фазового состояния (рис. П. 2). Для этого воспользуемся рис. I.14, но дорисуем на плоскости д(х)—Г температурный спектр , эквивалентный (т). Напомним, что при подобном изображении релаксационного спектра система в зависимости от силы и энергии, связанных с воздействием, показываемым стрелкой действия, слева от стрелки действия даст неупругий, а справа — упругий отклик. Если спектр рис. II. 2 относится к одной какой-то полимерной системе (впрочем, приводимые соображения частично применимы даже при анализе сдвигового воздействия на кристаллы — см. [19]), то стрелке 1 будет соответствовать твердоподобное (вплоть до хрупкого) поведение, которое связано со стеклообразными свойствами, стрелке 2 — высокоэластическое, а стрелке 3 — вязкое поведение (т. е. необратимое течение). Опыты такого рода с неорганическими и органическими стеклами хорошо известны еще со времен работы Лазуркина и Александрова [39, с. 181]. [c.78]

    Неустоявшиеся проблемы. К ним, прежде всего, относится вопрос может ли быть развит строгий формализм термокинетики (релаксационной термодинамики), свободный от нестрого в термодинамике необратимых процессов критериального понятия близко или далеко от равновесия . Этот формализм должен привести к явным соотношениям для термокинетических добавок и прямому доказательству существования эквиэнергетических, но разных по структуре, конечных состояний, определяемых скоростью, т. е. кинетикой термодинамического (в специальных случаях — фазового) перехода. [c.283]

    Важнейшей особенностью вакуумной ректификации водных растворов формальдегида является необходимость тщательного увязывания температуры колонны с пределом стабильности ж д-кости, выраженным кривой ликвидуса (см. рис. 45). Понижение температуры в колонне, благоприятствующее четкости разделения, одновременно приближает эти смеси к границе выделения твердой фазы. Образование твердого полимера начинается на охладившихся (даже на самое короткое время) участках поверхности и практически необратимо. Поэтому во избежание постепенного зарастания и забивок аппаратуры, с учетом колебаний температуры наружного воздуха, особенно если установка расположена вне помещения, температура в любой точке колонны должна быть по крайней мере на 10—15 °С выше границы фазового перехода жидкость — твердая фаза. На практике остаточное давление редко снижают ниже уровня 13,3—26,7 кПа. Так, режим работы промышленных установок по концентрированию обезметаноленно-го формалина простой перегонкой под вакуумом характеризуется следующими показателями  [c.162]

    Укажите, какое значение (>0, <0, =0) будет иметь стандартная энтропия необратимых фазовых переходов, приведенных и вопросе 4.18. Проверьте Ващи ответы по справочным данным. [c.26]

    Зачастую при рассмотрении таких переходов линия равновесия формально рассматривается как линия равенств химических потенциалов ([х(р, Т)) обеих фаз. При этом чаще всего игнорируются условия механического равновесия фазовой границы и то, что функция р, (р, Т) в области метастабильности (а эта область обязана существовать, поскольку фазовые переходы I рода могут реализовываться только через процесс образования зародыша новой фазы) не определена и ее нельзя рассматривать как аналитическое продолжение функции из области стабильности, отвечающей полностью равновесному состоянию вещества [13]. В данном случае образование зародыша конечных размеров, а следовательно, необходимость учета межфазной энергии и возникающих упругих полей в системе существенно меняют условия равновесия в системе, так что каждому метастабильному состоянию отвечает равновесие с зародышем новой фазы определенных размеров. При этом упругое поле, возникающее из-за контакта фаз с различными деформациями и мольными объемами, при определенных условиях оказывается пропорциональной не площади поверхности контакта, а объему фаз [25]. С учетом возникающей из-за гистерезиса необратимости процессов (понятие линии равновесия в известной мере теряет смысл) и невозможности трактовки термодинамического описания как предельного случая кинетического подхода при бесконечно малом отклонении системы от равновесия, становится понятна ограниченность расчетов по термодинамическим функциям без учета деформации и зародышеобразования. Эти трудности будут подробнее обсуждены в рамках развитого в работах А. Л. Ройтбурда, Б. Я- Любова и др. [27] представления о фазовом переходе как стохастическом процессе (характеризуемом параметром перехода ф), в ходе которого система эволюционирует через цепь метастабильных состояний. Для этого рассмотрим переход графит—алмаз с учетом упругих полей деформаций без конкретизации механизма такого превращения, поскольку имеющихся в настоящее время экспериментальных данных для этого недостаточно. [c.304]

    В классическом приближении [14] и др. определение равновесия графит —алмаз основано на расчете изменения свободной энергии (в предположении обратимости перехода, хотя он явно монотропен) без учета упругих полей и образования зародыша, фазовые переходы I рода идут только через образование зародыша, что приводит к значительным расхождениям между расчетными и экспериментальными р = 7-параметрами для процесса прямого превращения. Дальше приводятся результаты расчета нижней границы пересыщения ДС, а точнее, при заданных 7, способствующих образованию зародышей алмаза в графитовой фазе при условии полного или частичного сохранения когерентности межфазных границ. Дело в том, что учесть возможные нарушения когерентности (наиболее эффективного способа уменьшения свободной энергии гетерофазной системы) невозможно, так как механизм и времена релаксаций упругих напряжений в алмазе и графите мало изучены. Поэтому не будем совместно рассматривать процессы фазового превращения и деформации, а ограничимся расчетом ДСу ДСдеф. Следует подчеркнуть, что такой подход уже подразумевает необратимость процесса из-за наличия эффективного гистерезиса, обусловленного различиями в кристаллографических и упругих параметрах преобразующих фаз. Существует и еще вторая трудность при подобном расчете — отсутствие данных о механизме прямого перехода графита в алмаз, поскольку есть все 20 307 [c.307]

    В основе многочисленных приемов практического использования магнитной обработки водных систем лежат, естественно, определенные изменения их физических и физико-химических свойств. Выявлению таких изменений посвящено большое число исследований как в нашей стране, так и за рубежом. Следует отметить, что идеально чистую воду, как правило, не изучали. Опыты проводили с бидистиллятом, дистиллятом, технической водой, искусственными растворами, суспензиями и биологическими системами. Эти исследования были сопряжены с большими трудностями. Прежде всего, изменения свойств гомогенной жидкой фазы водных систем часто весьма невелики. Это, конечно, не предопределяет невозможность достижения существенных конечных эффектов. Усиление и стабилизация малых начальных изменений свойств могут происходить с помощью промежуточных механизмов, во много раз увеличивающих эти изменения. В подавляющем большинстве случаев такое усиление свойственно гетерогённым системам и фазовым переходам. Например, малейшее стимулирование образования кристаллов может вызвать лавинную и необратимую кристаллизацию в объеме, со всеми вытекающими из этого технологическими последствиями. Небольшое уменьшение степени гидратации поверхности твердых частиц в определенных условиях может привести к их массовой коагуляции, существенному улучшению фильтрования и др. [c.22]


Смотреть страницы где упоминается термин Переходы фазовые необратимые: [c.176]    [c.217]    [c.185]    [c.273]    [c.499]    [c.102]    [c.102]    [c.255]    [c.93]   
Правило фаз Издание 2 (1964) -- [ c.374 ]

Правило фаз Издание 2 (1964) -- [ c.374 ]




ПОИСК





Смотрите так же термины и статьи:

Переходы фазовые



© 2025 chem21.info Реклама на сайте